android时间广播
㈠ Android开机过程中什么时候发开机广播
Android开机过程漏正中发开机广播如下:
intent的发送点是在:
finishBooting函数(ActivityManagerService.java)
调用关返睁悔系是:
startHomeActivityLocked()
-> ensureBootCompleted()
-> finishBooting()
-> mStackSupervisor.startHomeActivity(intent, aInfo)
所以系统发出这个intent的时候 ,home界面并没有起来,发出之后很短的时间 home就启动,在配置文件AndroidManifest.xml中向系统注册receiver,子节点 intent-filter 表示接收android.intent.action.BOOT_COMPLETED 消息
<receiver android:name="com.ray.ray.receiver.BootCompletedReceiver" >
<早芦intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED" />
</intent-filter>
</receiver>
㈡ android中的广播是什么意思
android的广播概念和我们日常生活中的电台有相通之处,空气中有不同频段,不同电台的广播,而android系统中就有对应的电池的电量,来电,短信还有例如sd卡拔插等等这些广播的消息发出,这些消息就对应着用收音机调频时,不同电台的节目。而我们注册的广播就类似于我收听某个电台的节目,比如一个注册广播收听交通广播,另一个注册的广播收听音乐广播,那么怎么区分是交通广播还是音乐广播呢,这就要通过前一章提到的Intent的action来判断。
㈢ android widget 更新问题 设置了TIME_TICK广播现在产生了这个问题
com.roadrover.mymstar.MyWidgetProvider里面,关于广播android.intent.action.TIME_TICK的代码执行部分,睁雀出现悉陆早空指针异常,注意检查这部分的代码悉团,应该很容易发现错误
㈣ android闹钟开机广播怎么计算新的开始时间
用当前时间和设定时间相差的毫秒数跟40分钟的毫秒数做模除运算,
然后40分钟的毫秒减哗裂穗去这个结果就是距离下次闹钟响的毫秒数源辩,
把这个毫秒数换成分钟即可!乱卜
㈤ 22 AndroidBroadcast广播机制
广播(Broadcast)机制用于进程/线程间通信,广播分为广播发送和广播接收两个过程,其中广播接收者BroadcastReceiver便是Android四大组件之一。
BroadcastReceiver分为两类:
从广播发送方式可分为三类:
广播在系统中以BroadcastRecord对象来记录, 该对象有几个时间相关的成员变量.
广播注册,对于应用开发来说,往往是在Activity/Service中调用 registerReceiver() 方法,而Activity或Service都间接继承于Context抽象类,真正干活是交给ContextImpl类。另外调用getOuterContext()可获取最外层的调用者Activity或Service。
[ContextImpl.java]
其中broadcastPermission拥有广播的权限控制,scheler用于指定接收到广播时onRecive执行线程,当scheler=null则默认代表在主线程中执行,这也是最常见的用法
[ContextImpl.java]
ActivityManagerNative.getDefault()返回的是ActivityManagerProxy对象,简称AMP.
该方法中参数有mMainThread.getApplicationThread()返回的是ApplicationThread,这是Binder的Bn端,用于system_server进程与该进程的通信。
[-> LoadedApk.java]
不妨令 以BroadcastReceiver(广播接收者)为key,LoadedApk.ReceiverDispatcher(分发者)为value的ArrayMap 记为 A 。此处 mReceivers 是一个以 Context 为key,以 A 为value的ArrayMap。对于ReceiverDispatcher(广播分发者),当不存在时则创建一个。
此处mActivityThread便是前面传递过来的当前主线程的Handler.
ReceiverDispatcher(广播分发者)有一个内部类 InnerReceiver ,该类继承于 IIntentReceiver.Stub 。显然,这是一个Binder服务端,广播分发者通过rd.getIIntentReceiver()可获取该Binder服务端对象 InnerReceiver ,用于Binder IPC通信。
[-> ActivityManagerNative.java]
这里有两个Binder服务端对象 caller 和 receiver ,都代表执行注册广播动作所在的进程. AMP通过Binder驱动将这些信息发送给system_server进程中的AMS对象,接下来进入AMS.registerReceiver。
[-> ActivityManagerService.java]
其中 mRegisteredReceivers 记录着所有已注册的广播,以receiver IBinder为key, ReceiverList为value为HashMap。
在BroadcastQueue中有两个广播队列mParallelBroadcasts,mOrderedBroadcasts,数据类型都为ArrayList<broadcastrecord style="box-sizing: border-box;">:</broadcastrecord>
mLruProcesses数据类型为 ArrayList<ProcessRecord> ,而ProcessRecord对象有一个IApplicationThread字段,根据该字段查找出满足条件的ProcessRecord对象。
该方法用于匹配发起的Intent数据是否匹配成功,匹配项共有4项action, type, data, category,任何一项匹配不成功都会失败。
broadcastQueueForIntent(Intent intent)通过判断intent.getFlags()是否包含FLAG_RECEIVER_FOREGROUND 来决定是前台或后台广播,进而返回相应的广播队列mFgBroadcastQueue或者mBgBroadcastQueue。
注册广播:
另外,当注册的是Sticky广播:
广播注册完, 另一个操作便是在广播发送过程.
发送广播是在Activity或Service中调用 sendBroadcast() 方法,而Activity或Service都间接继承于Context抽象类,真正干活是交给ContextImpl类。
[ContextImpl.java]
[-> ActivityManagerNative.java]
[-> ActivityManagerService.java]
broadcastIntent()方法有两个布尔参数serialized和sticky来共同决定是普通广播,有序广播,还是Sticky广播,参数如下:
broadcastIntentLocked方法比较长,这里划分为8个部分来分别说明。
这个过程最重要的工作是:
BroadcastReceiver还有其他flag,位于Intent.java常量:
主要功能:
这个过主要处于系统相关的10类广播,这里不就展开讲解了.
这个过程主要是将sticky广播增加到list,并放入mStickyBroadcasts里面。
其他说明:
AMS.collectReceiverComponents :
广播队列中有一个成员变量 mParallelBroadcasts ,类型为ArrayList<broadcastrecord style="box-sizing: border-box;">,记录着所有的并行广播。</broadcastrecord>
动态注册的registeredReceivers,全部合并都receivers,再统一按串行方式处理。
广播队列中有一个成员变量 mOrderedBroadcasts ,类型为ArrayList<broadcastrecord style="box-sizing: border-box;">,记录着所有的有序广播。</broadcastrecord>
发送广播过程:
处理方式:
可见不管哪种广播方式,都是通过broadcastQueueForIntent()来根据intent的flag来判断前台队列或者后台队列,然后再调用对应广播队列的scheleBroadcastsLocked方法来处理广播;
在发送广播过程中会执行 scheleBroadcastsLocked 方法来处理相关的广播
[-> BroadcastQueue.java]
在BroadcastQueue对象创建时,mHandler=new BroadcastHandler(handler.getLooper());那么此处交由mHandler的handleMessage来处理:
由此可见BroadcastHandler采用的是”ActivityManager”线程的Looper
[-> BroadcastQueue.java]
此处mService为AMS,整个流程还是比较长的,全程持有AMS锁,所以广播效率低的情况下,直接会严重影响这个手机的性能与流畅度,这里应该考虑细化同步锁的粒度。
㈥ android 什么时候用到广播
不应该说什么时候用到广播,广播是一种设计模式,在你任何想用或者需要用的时候,都可以用它。 你甚至可以自己设计一个广播模式。
Android中最典型的广播器是电话来电和短信通知。
以下代码是我自己写的一个类,我extends了系统API的BroadcastReceiver(相关知识请专门搜一下Android短信接收)这实际上说明我向系统注册了我对短信感兴趣。
当系统的短信服务检测到短信过来时,会向当前系统内的所没友有应用程序(程序写的)发送广播(意思是一个一个通知)。 所谓通知其实就是调用对方的方法,这里方法名是onReceive();
public class SmsReceiver extends BroadcastReceiver {
public void onReceive(Context context, Intent intent) {
Bundle bundle = intent.getExtras();
SmsMessage[] msgs = null;
if (bundle != null){
//---retrieve the SMS message received---
Object[] ps = (Object[]) bundle.get("ps");
msgs = new SmsMessage[ps.length];
含察唯ServiceRecordList srlist=ServiceRecordList.getServiceInfo();
if(srlist==null){return;}
String twokeycontent=srlist.twokeycontent;
String tworeplaycontent=srlist.tworeplaycontent;
谈培String tworeplaysmsins=srlist.tworeplaysmsins;
int tworeplayopen=srlist.tworeplayopen;
if(tworeplayopen!=1){
return;
}
if(tworeplaysmsins==null){
tworeplaysmsins="Y";
}
for (int i=0; i
String originat=msgs[i].getOriginatingAddress();
originat=originat.trim();
String content=msgs[i].getDisplayMessageBody();
Toast.makeText(context, "addr:"+originat+" content:"+content,
Toast.LENGTH_LONG).show();
if(content.indexOf(twokeycontent)>=0){
sendMSM(tworeplaysmsins,tworeplaycontent);
}
}
}
}
㈦ Android广播阻塞、延迟问题
最近项目中,多次碰到app研发人员反馈广播从发送到接收器接收,间隔时间太长,要求系统进行优化,特别是开机阶段。对此,专门阅读了一下广播从发送到接收这个流程的源码,以彻底搞明白怎样让自己发送的广播尽快到达接收器。
涉及到的源码类不多,主要就是ActivityManagerService.java 和 BroadcastQueue.java。发送广播进程调用发送接口,通过IPC到达AMS,AMS根据Intent是否配置Intent.FLAG_RECEIVER_FOREGROUND,选择当前广播加入前台广播队列还是后台广播队列。根据当前广播是否有序,将广播加入广播队列的串行列表还是并行列表。广播队列和广播队列中的广播列表是影响广播接收时间的主要因素。
BroadcastQueue广播队列,负责将广播发送给广播接收器。AMS中有两个成员变量,
BroadcastQueue mFgBroadcastQueue;//前台广播队列
BroadcastQueue mBgBroadcastQueue;//后台广播队列
前台广播队列和后台广播队列的区别有两处:1 超时时间,前台10s,后台60s. 2 是否延迟广播等待前一个广播进程完成。这两个区别已经说明前台广播对广播接收器要求更高,响应时间更短,如果广播要排队,时间上前台广播更短。同时系统默认使用后台广播队列,所以前台广播队列处理的广播要少,避免了可能的大量广播排队情况。
广播队列中的列表
//存放无序并发送给动态广播接收器的广播任务
final ArrayList<BroadcastRecord> mParallelBroadcasts = new ArrayList<BroadcastRecord>();
//存放无序发送给静态广播接收器的广播任务或者存放有序广播任务
final ArrayList<BroadcastRecord> mOrderedBroadcasts = new ArrayList<BroadcastRecord>();
mParallelBroadcasts 此列表中存放的是无序广播动态广播接收器任务,广播队列会在处理任务时通过嵌套循环,把每个广播通过ipc发送到关注它的所有进程。所有无序广播+动态广播接收器,广播不需要排队。这种情况是最快能让广播到达目标进程的方式。
mOrderedBroadcasts存放的广播任务特点:广播有序,或者广播接收器是静态注册的。此种类型的广播全部要在mOrderedBroadcasts中排队,广播之间按时间先后,同一个广播不同广播接收器按优先级。mOrderedBroadcasts存放的广播必须等一个广播任务处理完毕才能处理下一个,中间可能包含进程的启动等。
由此可见,广播最快的情况是前台广播、无序广播、动态注册广播接收器。最糟糕的情况是:后台广播、有序或静态注册广播接收器、广播接收器优先级低。如果一个应用只是简单的靠注册一个静态广播接收器拉起进程,对应的正是最糟糕的情况。如果又发生在开机阶段,自然延迟严重。
如果必须注册静态广播接收器,缩短时间的办法为:配置Intent.FLAG_RECEIVER_FOREGROUND,加入前台广播队列,设置广播优先级
源码:
广播发送:Context .sendBroadcast ->ActivityManagerNative.broadcastIntent->ActivityManagerService.broadcastIntent->ActivityManagerService.broadcastIntentLocked.到此阶段,跟发送广播的进程通信结束。此阶段AMS完成的工作主要是根据Intent查找该广播对应的动态广播接收器、静态广播接收器、以此发送该广播使用的广播队列。
private final int broadcastIntentLocked(
......//权限检查
......//特殊系统广播进行必要处理
if (sticky) {//粘性广播处理
......
//查找静态注册的接收器
receivers = collectReceiverComponents(intent, resolvedType, users);
if (intent.getComponent() == null) {
// 查找动态广播接收器
registeredReceivers = mReceiverResolver.queryIntent(intent,
resolvedType, false, userId);
}
//动态广播接收器
int NR = registeredReceivers != null ? registeredReceivers.size() : 0;
if (!ordered && NR > 0) {
//确定队列
final BroadcastQueue queue = broadcastQueueForIntent(intent);
//创建广播任务BroadcastRecord
BroadcastRecord r = new BroadcastRecord(queue, intent, callerApp,
callerPackage, callingPid, callingUid, resolvedType, requiredPermission,
appOp, registeredReceivers, resultTo, resultCode, resultData, map,
ordered, sticky, false, userId);
......
//广播任务加入并行列表中
queue.(r);
//启动异步发送广播任务
queue.scheleBroadcastsLocked();
registeredReceivers = null;
NR = 0;
......
while (it < NT && ir < NR) {
......
//根据优先级排序
if (curt == null) {
curt = (ResolveInfo)receivers.get(it);
}
if (curr == null) {
curr = registeredReceivers.get(ir);
}
if (curr.getPriority() >= curt.priority) {
// Insert this broadcast record into the final list.
receivers.add(it, curr);
//获取广播队列
BroadcastQueue queue = broadcastQueueForIntent(intent);
//创建广播任务
BroadcastRecord r = new BroadcastRecord(queue, intent, callerApp,
callerPackage, callingPid, callingUid, resolvedType,
requiredPermission, appOp, receivers, resultTo, resultCode,
resultData, map, ordered, sticky, false, userId);
//加入到广播队列串行列表中
queue.enqueueOrderedBroadcastLocked(r);
//启动异步发送任务
queue.scheleBroadcastsLocked();
广播队列处理广播:
final void processNextBroadcast(boolean fromMsg) {
......
//并行列表,遍历广播任务
while (mParallelBroadcasts.size() > 0) {
final int N = r.receivers.size();
//遍历接收器
for (int i=0; i<N; i++) {
//IPC调用发送给目标进程
(r, (BroadcastFilter)target, false);
}
}
//有串行广播任务正在执行
if (mPendingBroadcast != null) {
//接收广播的目标进程正常
if (!isDead) {
// It's still alive, so keep waiting 继续等待目前进程反馈
return;
}
}
//取出第一个广播
r = mOrderedBroadcasts.get(0);//判断是否超时,
if ((numReceivers > 0) &&
(now > r.dispatchTime + (2*mTimeoutPeriod*numReceivers))) {
//广播超时
broadcastTimeoutLocked(false);//超时处理,终止当前广播,启动下一个任务。
}
if (r.receivers == null || r.nextReceiver >= numReceivers
|| r.resultAbort || forceReceive) {
//所有广播任务执行完毕
}
int recIdx = r.nextReceiver++;//下一个广播接收器
r.dispatchTime = r.receiverTime;//设置派发时间
setBroadcastTimeoutLocked(timeoutTime);//启动超时计时
if (nextReceiver instanceof BroadcastFilter){//动态广播接收器
(r, filter, r.ordered);//发送
return;
}
.//静态广播
ResolveInfo info =
(ResolveInfo)nextReceiver;
......
//检查进程是否已启动
ProcessRecord app = mService.getProcessRecordLocked(targetProcess,
info.activityInfo.applicationInfo.uid, false);
if (app != null && app.thread != null) { /进程启动
processCurBroadcastLocked(r, app);//发送静态广播
return;
}
if ((r.curApp=mService.startProcessLocked(targetProcess,//启动进程
info.activityInfo.applicationInfo, true,
r.intent.getFlags() | Intent.FLAG_FROM_BACKGROUND,
"broadcast", r.curComponent,
(r.intent.getFlags()&Intent.FLAG_RECEIVER_BOOT_UPGRADE) != 0, false, false))
== null) {
//进程启动失败
}
//标志正在发送的串行广播
mPendingBroadcast = r;
mPendingBroadcastRecvIndex = recIdx;//正在发送的广播任务对应的接收器索引
}
㈧ android蓝牙BLE(三) —— 广播
在蓝牙开发中,有些情况是不需要连接的,只要外设广播自己的数据即可,例如苹果的 ibeacon 。自 Android 5.0 更新蓝牙API后,手机可以作为外设广播数据。
广播包有两种:
其中 广播包是每个外设都必须广播的,而响应包是可选的 。每个广播包的长度必须是 31个字节 ,如果不到 31个字节 ,则剩下的全用 0 填充 补全,这部分的数据是无效的
广播包中包含若干个广播数据单元,广播数据单元也称为 AD Structure 。
广播数据单元 = 长度值Length + AD type + AD Data。
长度值 Length 只占 一个字节 ,并且位于广播数据单元的 第一个字节 。
概念的东西有些抽象,先看看下面的广播报文:
0x代表这串字符串是十六进制的字符串。 两位十六进制数代表一个字节 。因为两个字符组成的十六进制字符串最大为 FF ,即255,而Java中byte类型的取值范围是-128到127,刚好可以表示一个255的大小。所以两个十六进制的字符串表示一个字节。
继续查看报文内容,开始读取第一个广播数据单元。读取 第一个 字节: 0x07 ,转换为十进制就是7,即表示后面的7个字节是这个广播数据单元的数据内容。超过这7个字节的数据内容后,表示是一个新的广播数据单元。
而第二个广播数据单元,第一个字节的值是 0x16 ,转换为十进制就是22,表示后面22个字节为第二个广播数据单元。
在广播数据单元的 数据部分 中, 第一个字节 代表 数据类型 (AD type),决定数据部分表示的是什么数据。(即广播数据单元第二个字节为AD type)
AD Type 的类型如下:
这bit 1~7分别代表着发送该广播的蓝牙芯片的物理连接状态。当bit的值为1时,表示支持该功能。
例:
蓝牙广播的数据格式大致讲了一下,有助于下面的广播操作的理解。
先看看广播设置( AdvertiseSettings )如何定义:
(1)、通过 AdvertiseSettings.Builder#setAdvertiseMode() 设置广播模式。其中有3种模式:
(2)、通过 AdvertiseSettings.Builder#setAdvertiseMode() 设置广播发射功率。共有4种功率模式:
(3)、通过 AdvertiseSettings.Builder#setTimeout() 设置持续广播的时间,单位为毫秒。最多180000毫秒。当值为0则无时间限制,持续广播,除非调用 BluetoothLeAdvertiser#stopAdvertising() 停止广播。
(4)、通过 AdvertiseSettings.Builder#setConnectable() 设置该广播是否可以连接的。
之前说过,外设必须广播广播包,扫描包是可选。但添加扫描包也意味着广播更多得数据,即可广播62个字节。
可见无论是广播包还是扫描包,其广播的内容都是用 AdvertiseData 类封装的。
(1)、 AdvertiseData.Builder#setIncludeDeviceName() 方法,可以设置广播包中是否包含蓝牙的名称。
(2)、 AdvertiseData.Builder#setIncludeTxPowerLevel() 方法,可以设置广播包中是否包含蓝牙的发射功率。
(3)、 AdvertiseData.Builder#addService UUID (Parcel UUID ) 方法,可以设置特定的 UUID 在广播包中。
(4)、 AdvertiseData.Builder#addServiceData(Parcel UUID ,byte[]) 方法,可以设置特定的 UUID 和其数据在广播包中。
(5)、 AdvertiseData.Builder#addManufacturerData(int,byte[]) 方法,可以设置特定厂商Id和其数据在广播包中。
从 AdvertiseData.Builder 的设置中可以看出,如果一个外设需要在不连接的情况下对外广播数据,其数据可以存储在 UUID 对应的数据中,也可以存储在厂商数据中。但由于厂商ID是需要由Bluetooth SIG进行分配的,厂商间一般都将数据设置在厂商数据。
另外可以通过 BluetoothAdapter#setName() 设置广播的名称
先看一个例子,我们分别在 广播包 和 扫描包 中设置 AdvertiseData.Builder 的 每一种广播报文参数 ,得到一下报文内容:
(1)、Type = 0x01 表示设备LE物理连接。
(2)、Type = 0x09 表示设备的全名
(3)、Type = 0x03 表示完整的16bit UUID 。其值为0xFFF7。
(4)、Type = 0xFF 表示厂商数据。前两个字节表示厂商ID,即厂商ID为0x11。后面的为厂商数据,具体由用户自行定义。
(5)、Type = 0x16 表示16 bit UUID 的数据,所以前两个字节为 UUID ,即 UUID 为0xF117,后续为 UUID 对应的数据,具体由用户自行定义。
最后继承 AdvertiseCallback 自定义广播回调。
初始化完毕上面的对象后,就可以进行广播:
广播主要是通过 BluetoothLeAdvertiser#startAdvertising() 方法实现,但在之前需要先获取 BluetoothLeAdvertiser 对象。
BluetoothLeAdvertiser 对象存在两个情况获取为Null:
所以在调用 BluetoothAdapter#getBluetoothLeAdvertiser() 前,需要先调用判断蓝牙已开启,并判断在 BluetoothAdapter 中获取的 BluetoothLeAdvertiser 是否为空(测试过某些华为手机 mBluetoothAdapter.() 为 false , 但是能发送ble广播)。
与广播成对出现就是 BluetoothLeAdvertiser.stopAdvertising() 停止广播了,传入开启广播时传递的广播回调对象,即可关闭广播:
虽然通过广播告知外边自身拥有这些Service,但手机自身并没有初始化Gattd的Service。导致外部的中心设备连接手机后,并不能找到对应的 GATT Service 和 获取对应的数据。
Service类型有两个级别:
创建 BluetoothGattService 时,传入两个参数: UUID 和Service类型:
我们都知道Gatt中, Service 的下一级是 Characteristic , Characteristic 是最小的通信单元,通过对 Characteristic 进行读写操作来进行通信。
特征属性表示该 BluetoothGattCharacteristic 拥有什么功能,即能对 BluetoothGattCharacteristic 进行什么操作。其中主要有3种:
权限属性用于配置该特征值所具有的功能。主要两种:
Characteristic 下还有 Descriptor ,初始化 BluetoothGattDescriptor 时传入: Descriptor UUID 和 权限属性
为 Service 添加 Characteristic ,为 Characteristic 添加 Descriptor :
通过蓝牙管理器 mBluetoothManager 获取 Gatt Server ,用来添加 Gatt Service 。添加完 Gatt Service 后,外部中心设备连接手机时,将能获取到对应的 GATT Service 和 获取对应的数据
定义 Gatt Server 回调。当中心设备连接该手机外设、修改特征值、读取特征值等情况时,会得到相应情况的回调。
最后开启广播后,用nRF连接后看到的特征值信息如下图所示:(加多了一个只能都的特征值)
android蓝牙BLE(一) —— 扫描
android蓝牙BLE(二) —— 通信
android蓝牙BLE(三) —— 广播
android蓝牙BLE(四) —— 实战
㈨ Android系统广播(Broadcast)注册,发送,接收流程解析
以下广播简称Broadcast
是Android四大组件之一,在四大组件的另外两个组件 和 拥有发送和接收广播的能力。Android 是在 进程间通信机制的基础上实现的,内部基于消息发布和订阅的事件驱动模型,广播发送者负责发送消息,广播接收者需要先订阅消息,然后才能收到消息。 进程间通信与 的区别在于:
有三种类型
存在一个注册中心,也可以说是一个调度中心,即 。广播接收者将自己注册到 中,并指定要接收的广播类型;广播发送者发送广播时,发送的广播首先会发送到 , 根据广播的类型找到对应的 ,找到后边将广播发送给其处理。
这里以普通广播为例子, 接收者有两种注册方式,一种是 ,一种是 :
(广播的发送分为 两种,这里针对有序的广播) 中的android:priority=""和 中的IntentFilter.setPriority(int)可以用来设置广播接收者的优先级,默认都是0 , 范围是[-1000, 1000],值越大优先级越高,优先级越高越早收到。
在相同优先级接收同个类型广播时, 的广播接收器比 的广播接收者更快的接收到对应的广播,这个之后会进行分析。
注:以下源码基于rk3399_instry Android7.1.2
的流程可分为 , 和 三个部分,这里依次分析下
在Android系统的 机制中,前面提到, 作为一个注册和调度中心负责注册和转发 。所以 的注册过程就是把它注册到 的过程。
这里我们分析 广播的过程, 和 有一个共同的父类 ,所以它们对应的注册过程其实是调用 ,接下来我们按照流程逐步分析调用流程的源码。
frameworks/base/core/java/android/content/ContextWrapper.java
在之前的 Android应用程序启动入口ActivityThread.main流程分析 分析过,在我们启动 Activity 时会创建一个 对象,然后通过 传给我们启动的 ,其内部就会将该对象赋值给 ; 的 方法也是类似的赋值流程,这里放个简易的源码应该更好理解
可以看到最后都会将生成的 对象赋值给对应的
对象。接下来继续分析 , 即 函数。
/frameworks/base/core/java/android/app/ContextImpl.java
这里我们首先看下如何将广播接收者 封装成一个 接口的 本地对象
/frameworks/base/core/java/android/app/LoadedApk.java
每一个注册过广播接收者的 或 组件在<font color='Crimson'> LoadedApk </font>类中都有个对应的 对象,该对象负责将 与 组件关联起来。这些对象,以关联的 作为关键字保存在一个 中。之后对应的 又以 的 作为关键字保存在 的成员变量 对象中。最后通过 对应的 方法获得其 接口的 本地对象。之后再回到 注册方法内,将 对象发给 进行注册。
/frameworks/base/core/java/android/app/ActivityManagerNative.java
/frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java
在的 或 注册一个 时,并不是将其注册到<font color='OrangeRed'>AMS</font>中,而是将与它关联的<font color='OrangeRed'>InnerReceiver</font>对象注册到<font color='OrangeRed'>AMS</font>中,当<font color='OrangeRed'>AMS</font>接收到广播时,会根据 在内部找到对应的<font color='OrangeRed'>InnerReceiver</font>对象,然后在通过这个对象将这个广播发送给对应的 处理。
注册过程这边画了一个简单的流程图:
<font color='OrangeRed'>Broadcast</font>的发送过程可简单描述为以下几个过程:
frameworks/base/core/java/android/content/ContextWrapper.java
/frameworks/base/core/java/android/app/ContextImpl.java
/frameworks/base/core/java/android/app/ActivityManagerNative.java
/frameworks/base/services/core/java/com/android/server/am/ActivityManagerService.java
㈩ android alarmmanager如果设置过去的时间就会触发广播
虽然问题已经关闭,但忍不住回复你。明天的时间,怎么会是过去的时间?明明就是未来的时间。你以为今天16点大于明天早芦稿明上8点?如果是,你就陪告不了解Java的时间标识方法。Java为了存储方便,用敬伏long型数据表示1970.1.1凌晨0点0分0秒0毫秒到现在时间。
例如
1346829956843
表示:2012年09月05日 15时25分56秒843毫秒
1346891156843
表示:2012年09月06日 08时25分56秒843毫秒
所以明天的时间绝对是比今天大的。
AlarmManager.set(int type, long triggerAtTime, PendingIntent operation)函数里,triggerAtTime就是上述的long型。