当前位置:首页 » 存储配置 » 多波段存储优缺点

多波段存储优缺点

发布时间: 2022-06-10 07:26:20

① 遥感影像的三种主要格式定义

遥感图像包括多个波段,有多种存储格式,但基本的通用格式有三种,即BSQ、BIL和BIP格式。

1、BSQ(band sequential)是像素按波段顺序依次排列的数据格式。即先按照波段顺序分块排列,在每个波段块内,再按照行列顺序排列。同一波段的像素保存在一个块中,这保证了像素空间位置的连续性。

2、BIL(band interleaved by line)格式中,像素先以行为单位分块,在每个块内,按照波段顺序排列像素。同一行不同波段的数据保存在一个数据块中。像素的空间位置在列的方向上是连续的。

3、BIP(band interleaved by Pixel)格式中,以像素为核心,像素的各个波段数据保存在一起,打破了像素空间位置的连续性。保持行的顺序不变,在列的方向上按列分块,每个块内为当前像素不同波段的像素值。

(1)多波段存储优缺点扩展阅读

各类遥感图像都存在在几何校正的问题。由于人们已习惯使用正射投影的地形图,因此对各类遥感影像的畸变都必须以地形图为基准进行几何校正。几何校正大致如下:

①选择控制点:在遥感图像和地形图上分别选择同名控制点,以建立图像与地图之间的投影关系,这些控制点应该选在能明显定位的地方,如河流交叉点等。

②建立整体映射函数:根据图像的几何畸变性质及地面控制点的多少来确定校正数学模型,建立起图像与地图之间的空间变换关系,如多项式方法、仿射变换方法等。

③重采样内插:为了使校正后的输出图像像元与输入的未校正图像相对应,根据确定的校正公式,对输入图像的数据重新排列。在重采样中,由于所计算的对应位置的坐标不是整数值,必须通过对周围的像元值进行内插来求出新的像元值。

② 德生PL600和PL660除航空波段和存储电台的区别外,单就接受性能而言有区别吗 尤其是短波!!

1.短波单边带SSB不同:

PL660独立区分上边带(USB)和下边带(LSB),并具有BFO拍频微调旋钮,成为真正的单边带接收,拍频调节方便。 PL600的SMB不区分LSB和USB。

2,同步检测功能支持不同:

PL660幅度调制采用同步检测(SSB / LSB独立接收,边带抑制优于40dB),二次变频技术,宽带和窄带切换,大大提高了灵敏度,选择性和抗镜和邻频干扰。 PL600没有同步检测。


(2)多波段存储优缺点扩展阅读:

德胜PL-600改进版性能:

1.新版本解决了FM FM中断问题。旧版FM声音很容易打破声音,新版本完全解决了这个问题。 FM在性能和音质方面都非常出色。

2.新版本解决了切换到中低档后13m频段灵敏度开关的灵敏度不会下降和上升的问题。

3,新版自动增益控制更加合理,基本上与2007年1月版PL550和2007年5月版1103自动增益控制水平相同。

4.新版本增加了输入射频的数字删除功能。这个功能非常实用。

5.新版本的最长睡眠时间从480分钟缩短到120分钟。

6,新版耳机插座使用方便,旧版很难插入。

③ 为什么说数据存储技术已经比较完美

你好~

因为至少在纠错方面已经没什么需要改进了。
可靠的数据存储是IT行业的关键,也是现代生活的关键。虽然我们把这当成理所当然的事情,但是这其中存在什么样的谎言呢?数据视频专家,IT写手John Watkinson带你了解数据存储的相关细节,以及对未来存储技术发展的猜想。千万别烧糊大脑噢。
电脑之所以使用二进制,是因为数字简化为0和1后,由两股不同电压呈现出来时,最容易被区分开。
在闪存中,我们可以用一束绝缘电子保存这些电压。但是在其他存储设备中,则需要物理模型。
以磁带或硬盘为例,我们先看看小环境内磁化的方向,N-S或S-N。在光盘中,差异则以有没有小坑表现出来。
生物学里,DNA就是一种数据记录,这种记录以离散状态的化学物质为基础。“比特”的差别会导致变异,而变异则导致进化或是导致某种蛋白质的缺失而致病。数据记录对生命而言至关重要。

二进制的媒介并不在乎所呈现的数据是什么。一旦我们可以放心记录二进制数据,我们就会把音频,视频,图片,文本,CAD文件和电脑程序放到相同的媒介上,然后完整复制。
这些数据类型之间的唯一差别是其中的一些数据需要在一个特定时间内重复生成。
时机,可靠性,持续时长及成本
不同的存储媒介有不同的特点,没有哪种介质尽善尽美。硬盘在读取密集型应用上存储性能最佳,但是硬盘不能从驱动中移除。尽管硬盘的数据记录密度一直比光盘的大,但是你花个几秒钟就可以置换出光盘。而且,光盘的贴标成本也很低,所以适合大规模发行。
闪存可提供快速访问,而且体积很小,不过它的可持续写入周期存在局限。尽管闪存替代了以前的软磁盘,但是软磁盘技术并没消失。它还存在于航空公司,火车票,信用卡和酒店门房钥匙的磁条中。条形码就是个很好的例子。
在闪存中,存储密度是由单个电荷井的精细构造程度来决定。但是光盘技术的发展不仅可以保存越来越多的信息,而且可解析的数据也越来越小。

U盘中的芯片:没有活动部件,可直接使用
在旋转内存中,无论是磁盘还是光盘的,都存在两个问题:我们要尽可能收集多一点轨道,同时要尽可能多地把数据放到轨道中。
这些轨道极其狭窄,需要主动跟踪伺服系统使磁头可以持续被记录下来,而不受耐受力和温度改变的影响。为了减少磨损,用于收集的磁头和磁盘之间是不接触的。
光盘会盯着轨道,虽然是从微观角度,但却是由磁力驱动,磁头掠过磁盘上方几纳米处的气膜。自相矛盾的是,它是闪存,没有会带来磨损的活动部件。
编码
磁盘会扫描自己的轨道,然后按顺序收集数据。我们不能只是在磁盘轨道上写入原始数据,因为如果这些数据包含了相同的比特,那么就无法区分这些比特,读取器的同一性也会丢失。相反,数据是通过一个名为信道编码的进程来修改。信道编码的功能之一就是保障信号中的时钟内容,而不考虑真正的数据样式。
在光盘中,追踪和聚焦是过滤数据后,通过收集光圈查看数据追踪的对称性来执行。信道编码的第二个功能是去除数据追踪的DC和低频内容,使过滤更有效。圆形光点很难分辨轨道上距离太近的数据。

大众媒体

第一款量产的纠错应用存在于压缩盘中,1982年上市,这是在Reed和Solomon的论文发表22年之后。CD的光学技术是早期的镭射影碟,那么它的不足在哪里呢?
首先,数字音频光盘要实时播放。播放器不会把错误视为电脑本身的功能,所以必须得将其纠正。再者,如果CD使用的系统比Reed-Solomon编码更简单,那么这个系统将会更大--因此,将影响到便携式和汽车播放器市场。第三,Reed-Solomon纠错系统是复杂的,在LSI芯片上部署比较经济。
早在十年前,用于制作压缩光盘的所有技术早已出现,但是直到LSI Logic 公司的芯片性能跨过某个特定门槛,其性能才突然变得经济实用。
同理,之后也是在LSI技术可以用消费者可接受的价格执行实时MPEG解码时,我们才看到了DVD的流行。
综合
所有光盘用来客服这些问题的技术都被称为分组编码。比如,如果所有可能的14比特的结合体都被排序,且以波形描绘出来,就可以选择出最容易记录的。

分组编码如何限制记录的频率呢?在a) 表示的最高频率点,转换间隔了三个信道位。这样信道位的记录密度就成了三倍。注意h)是无效编码。最长的信道位运行于g),而i) 无效编码。
上图显示出,我们排除了改变太紧密的模式,因此记录的最高频率被减少了三分之一。
我们还排除了1和0之间存在较大差异的模式,因为那样带来的是我们不想要的直流偏移。267保留了我们许可的模式,比起要记录八个比特的256模式要好,剩下可同时使用的模式少之又少。
EFM
Kees Immink的数据编码技巧使用14个信道位的模式来记录八比特--因此,其名称就是EFM(eight to fourteen molation)。三种合并的比特被放在各组之间,防止边界出现混乱,所以17信道位被用于每个数据的记录。这样是违背直觉的,直到你意识到编码规则将信道位的记录密度提升三倍。所以,我们以3 x 8/17胜出,密度比率为1.41。
是信道编码机制本身增加了41%的播放时间。笔者认为在30年前能做到如此是非常不错的。
压缩光盘和MiniDisc使用的EFM技术借助了波长为780纳米的激光。DVD使用的是其变体,EFM+,激光波长减为了650纳米。
蓝光格式也使用分组编码,但不是EFM。而是信道模拟,称为信道调制,也称1.7PP调制。它的密度比率要稍逊一些,但由于使用了波长为405纳米的激光,所以存储密度有所增加。这种激光其实并不是蓝色的。
磁带记录器的磁头有两极,就好像微型马蹄铁,当磁头扫描轨道时,两极之间的有限距离会产生孔径效应。
下图显示出频率响应就像一个梳子状的过滤器,带有周期性的暗码。传统的磁带记录被限制在下面第一个暗码的波段部分,但是在第一和第二个暗码之间,则由部分响应技术来掌控,这样就把数据容量翻了一番。

所有磁性记录器都存在磁头间隙导致的回放信号a) 的暗码问题。在b) 显示的部分响应中,磁头感知不到奇数位的数据,于是会回放偶数位的数据。一个比特之后,两个偶数位数据就会被恢复。
如果数据太小,以至于其中一个数据(奇数位置)其实就在磁头间隙处,那么磁头的两极却只能识别两边偶数位置的数据,然后输出。这两种数据相加就成了第三级信号。磁头会交替重复生成交叉存取的奇数和偶数数据流。
使用两股数据流的合适信道编码,那么给定数据流的外部层级就可以轮流使用,这样就更具可预测性,而读取器也可以掌握这种预见性使数据更为可靠。这就是现如今让硬盘容量超乎想象之大的PRML编码。
纠错
在真实世界中,热活力或无线电干扰都是影响我们记录的因素。显然,用二进制记录是最难被干扰的。如果有一比特的数据被干扰,那么会引起整个数据的改变,因为1会变成0或者0会变成1。如此明显的改变会被纠错系统检测出来。在二进制中,如果有一个比特是错误的,那么只需把它设置为相反的那个数就可以了。因此,二进制的纠错是比较容易的,真正的难点在于找出有错的那个比特。
使用二进制以及具备有效纠错/数据整合系统的存储设备可以再次生成所记录的相同数据。换言之,数据的质量从本质上是透明的,因为从媒介质量那里,它就已经实现了去耦。
有了纠错系统,我们还能在任意类型的介质上做记录,包括没有经过优化的介质,如火车票。以条形码为例,只有当印有条形码的产品靠近读取器时,纠错系统才会执行任务:要确认已经发现条形码。
市场存在减少数据存储成本的压力,这就意味着要把更多数据放入给定空间内。
没有哪种介质是完美的,所有介质都存在物理缺陷。由于数据越来越小,这些缺陷就显得越来越大,所以缺陷导致数据出错的几率也在增加。
纠错需要在真实数据中加入检测数据,所以让人感觉记录效率会被降低,因为执行这些检测也要占用空间。事实上,少数额外的检测任务会让记录密度翻倍,所以这是存储容量的净增加。
一旦了解到这一点,就会明白纠错是很重要的一项技术。
第一个实用型的纠错代码是Richard Hamming 1950年开发的。Reed-Solomon编码则是1960年发布。纠错代码的发展史其实只有十年。
纠错要向真实信息添加检测数据,要优先于记录,从这些信息中进行计算。这些信息和检测数据一起形成了一种代码字,这表示它具备了一些可测试的特性,如通过特定的数学表达式来区分。播放器会对这些特性进行测试,如果发现数据有错,就不能获取可测试的特性。余数不会是零,而是被称为综合症的一种模式。通过分析这种综合症可以纠错。

在特定有限域上的Reed-Solomon 多项式代码
在Reed-Solomon代码中,有若干对不同的数学表达式,它们被用来计算校验符。一个错误会导致两种综合症。解出两个方程,就可能发现错误的位置以及导致综合症出现的错误模式。
错误被呈现并被纠正
如果没有可靠性和存储密度,那么我们现在所使用的这一切将不复存在。我们的数码照相机所拍的照片会被光点破坏,那样我们会更喜欢使用传统胶卷。

如果没有Reed-Solomon纠错系统,那么压缩光盘怎么会出现呢?
借助纠错系统,记录密度会持续增长,直到极限。每个比特使用一个电子的闪存;一个磁化分子代表一个比特的磁盘;使用超短波长的光盘。或许它会被冠以别的什么名称。在达到极值前,存储容量会呈平稳态势。
力臻完美
最先由Claude Shannon依照科学原理总结出的信息理论决定了纠错系统的理论局限性,就好像热动力学原理对热引擎效率的局限一样。
但,在真实世界里,没有机器会达到理论效率极值。Reed-Solomon纠错代码就是以信息理论设定的理论极值来操作。所以不会再有更强大的代码了。
纠错系统的纠错能力是显而易见的。笔者之所以对此表示怀疑,是因为纠错理论专业且神秘,以至于不懂的人根本不敢涉足,因而只能留给懂这些东西的人来处理。
尽管,纠错系统编码的局限性已经出现,但并不意味着不会再有新突破。纠错和信道编码都需要对信息进行编码和解码,而这就遵循摩尔定律。
因此,编码系统的成本和规模都会随着时间的发展而减小,或者其复杂性会增加,使得新应用成为可能。尽管如此,如果未来出现新的二进制数据存储设备,使用的是我们闻所未闻的介质,纠错系统将仍然是基于Reed-Solomon编码。

希望可以帮助到你~

④ 微波,短波,超声波有什么区别我是文科班的,能不能说得通俗一点

微波与无线电波、红外线、可见光一样都是电磁波,微波是指频率为300MHz-300KMHz的电磁波,即波长在1米到1毫米之间的电磁波。微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。

短波的基本传播途径有两个:一个是地波,一个是天波。

如前所述,地波沿地球表面传播,其传播距离取决于地表介质特性。海面介质的电导特性对于电波传播最为有利,短波地波信号可以沿海面传播1000公里左右;陆地表面介质电导特性差,对电波衰耗大,而且不同的陆地表面介质对电波的衰耗程度不一样(潮湿土壤地面衰耗小,干燥沙石地面衰耗大)。短波信号沿地面最多只能传播几十公里。地波传播不需要经常改变工作频率,但要考虑障碍物的阻挡,这与天波传播是不同的。

短波的主要传播途径是天波。短波信号由天线发出后,经电离层反射回地面,又由地面反射回电离层,可以反射多次,因而传播距离很远(几百至上万公里),而且不受地面障碍物阻挡。但天波是很不稳定的。在天波传播过程中,路径衰耗、时间延迟、大气噪声、多径效应、电离层衰落等因素,都会造成信号的弱化和畸变,影响短波通信的效果。

短波收音机简介

1. 传统指针调谐短波收音机

收音机的种类如果按所接收的波段来划分:

单波段中波收音机: MW 525 -- 1600 KHz

调频调幅收音机 MW 525 -- 1600 KHz,FM 87.5 -- 108 MHz

调频 /中/短波收音机** MW 525 -- 1600 KHz,FM 87.5 -- 108 MHz

只有一个短波段时 SW: 3.9 --12.00 MHz(75 -- 25 米)

(或6.00 -- 18.00 MHz, 49 -- 16 米)

(或9.00 -- 16.00 MHz, 31 --19 米)

二个短波段时 SW1: 2.2--7.50 MHz,SW2: 7.50 -- 23.00 MHz

或SW1:5.9--9.50 MHz, SW2: 9.50 -- 18.00 MHz

按米波段来划分 SW1,SW2,SW3,SW4,SW5,SW6,SW7………

多波段短波收音机 (每个短波段覆盖一个国际短波米波段)

传统收音机和收录机一般只有一个或二个短波段,但每个波段都覆盖了很宽的频率(好几个米波段)范围,优点是电路简单,但很难保证所覆盖频率范围内每点频率的灵敏度和选择性都很均匀,所以,往往是有些米波段收听很好,有些却很差,另外,由于覆盖很宽的频率,使各个电台之间显得很拥挤,收台不方便,所以有些收音机要附加上短波微调旋钮来加以改善。

也有些短波电路设计得很好的传统收音机,收音机也有足够高的灵敏度和选择性,而且生产调试又很精确,使用起来也很方便,别有趣味,起码省去老换波段的麻烦。另外,传统收音机大多采用3-4节电池和比较大口径的扬声器,收听起来声音很好,难怪有很多老短波迷仍然喜欢传统收音机。

2.按米波段来划分的多波段短波收音机

现代的短波收音机,往往分为6-10个短波段,每个短波只覆盖一个米波段(请参考下文国际广播米波段表),对于设计良好的此类短波收音机,灵敏度和选择性比较容易得到保证,而且按米波段来划分短波,电台之间的间隔好象被展阔了,收短波象收听中波一样方便,尤其是对于电台最密集的16,19,25,31米波段,优点更突出。

按米波段来划分的短波收音机,如果说不足的话,就是由于短波段太多,对于喜欢不同电台和节目的人来说,经常要切换短波段,又显得麻烦了一点。

另外,按米波段划分来设计短波收音机,如果要覆盖全部短波频率范围,光短波段就需要13个波段,而且每个波段都要设计合理,所用的电子元件材料很多,使电路显得太复杂而且成本太高了。笔者所见过的进口名牌短波收音机,调频/中波/长波/短波所有波段加在一起,最多有15个波段,价格近1000元。

值得一提的是,在国内市场上,也有些短波收音机,号称18波段,24波段,而且价格还挺便宜,君不知道设计者是自欺还是欺人!此外,还有很多号称[消费者推荐产品]的8,9波段的短波收音机,因市场恶性竞争所致,短波电路,除了波段开关以外,就几乎没有其它元件了。与其买此类收音机,笔者建议:还不如买台传统的3,4波段的短波收音机。

3.短波收音机中的二次变频技术(SW DUAL CONVERSION)

短波收音机最初是使用直接放大线路的,50年代开始,应用了一次变频线路,也就是平时所说的超外差式收音机。为了进一步提高无线电接收机的灵敏度、选择性和抗干扰能力,科学家们又研制了多次变频技术,当然首先是应用在无线电通讯领域,后来被移植到高级收音机中,从而大大地改善了短波收音机的性能指标。

便携式高灵敏度短波收音机一般采用二次变频,而更高级的专业短波通讯接收机,甚至采用3次或4次变频技术。

4.采用锁相环数字调谐式技术的收音机(PLL)

锁相环数字调谐式技术的收音机,是采用当代微电子应用技术的高新科技产品,集先进性、实用性、新颖性的特点于一体。

1. 采用单片微处理机芯片作为数字调谐系统的核心,并含有锁相环路频率合成、频率预选、多功能数字时钟控制及液晶数字显示等多种先进功能。

2. 以高精度高稳定的石英晶体为频率基准,锁定接收电台的频率,绝无漂移现象。

3. 具有频率存储记忆功能。

一般说来,数字调谐式收音机的存储电台数目越多越好,高级数字调谐式收音机应具备直接输入频率数字和模拟调谐旋钮,电子线路上也常采用二次变频技术来提高性能指标。

数字调谐式技术的收音机的缺点是电路复杂,设计难度大,对元件的要求很严格,成本高,生产调试很复杂;由于采用的元件多,静态耗电比普通收音机要大,普及型的数字调谐收音机的灵敏度和选择性不见得比好的指针式模拟收音机高很多。

4.采用数字显示频率技术的收音机

这类收音机采用传统模拟接收电路,成本不高,也容易做到高性能指标。不同的是利用数码显示屏取代了传统收音机的指针来指示频率,并加入了电子钟控功能;比数字调谐式收音机要省电,体积上能设计的更小巧方便,是价格性能比比较高,很实用的收音机品种。

这种机型的缺点是没有记忆电台功能,由于采用的是传统模拟接收技术,频率的精确性和稳定性也没有数字调谐式收音机高。

--------------------------------------------------------------------------------

如何收听短波广播?

一般人会对短波感到兴趣,就在于短波能收听远距离广播,可以直接听取得世界各地的广播讯息,可是也有不少人因为收听短波的方法不对,被弄得一头雾水,最后只好放弃。对于如何开始收听短波广播,下面几点建议可供你参考。

◎ 收听短波和收听日常接触的MW、FM有何不同?

日常收听MW或FM广播很少会碰到找不到电台的问题,因为这些电台的广播频率是固定不变的,而且不少是24小时播出。对于短波而言可就不同了,除了因为电台很多之外,一年有2次季节性的广播频率和广播时间的变更、每天接收讯号好坏的差别很大等因素,使得收听短波比起MW、FM来,的确是复杂了许多,但是只要掌握要领,一样可自由自在地享受短波节目的。

◎ 收听短波---选电台、选频率也选时间

对于短波听众而言,最大的问题在于短波广播通常集中在某一段时间?播放,造成有点类似于上下班时间的交通状况,显得异常拥挤。但是你可以使自己不会是拥挤中的人,因为通常电台会在不同时段使用不同频率播出相同的节目,例如短波15-18MHZ在每天中午至傍晚可以收听到很多电台节目,晚间10点以后只能收到极少电台节目,甚至连收音机的背景噪音都变小了;短波7MHZ以下在白天很难清楚地收听广播,但到了深夜,却能很好地收听节目,短波9-12MHZ全天都能收到广播,但早晨和晚上收听效果最好,电台多,声音又清楚。还有,如果您经常收听广播,就会发现,很多电台每小时都有规律地改变播出频率,因此为了方便收听短波节目,有必要制作一份属于自己的收听时间频率表(Schele),当然,也可以从收集各电台的广播时间频率表开始着手进行。

事实上,一般短波广播电台会使用多个频率同时播出,但通常并不是每一个频率都可以收听得很好,监听的目的就是从几个广播频率中挑选出声音信号最好的频率并记录下来,制作成一张广播频率时间表,此后再收听该电台的节目就方便多了。

--------------------------------------------------------------------------------

如何改善收听效果?

有许多刚开始收听短波的人,都被收音机所传出的杂音弄得兴趣大减,甚至放弃了收听短波,实为一件憾事。的确,短波的音质不可能与FM高传真广播的音质相比,但与中波(MW)音质相比,基本上是很接近的。可是由于收听短波受到诸多的因素影响,所以往往显得比中波差。实际上,如果在一切因素都有利的条件下,短波的音质可以媲美中波广播的音质。下面分?来讨论收听短波时,有哪些重要因素必须考虑:

◎ 电离层的因素

中波广播(即俗称的AM),从电台的发射天线到收音机的接收,其距离一般都在直径几百公里以内,而且中波波长比较长,不容易受到建筑物等障碍的影响。而短波就不一样了,电台的发射天线除了有一定的方向及仰角,一般情况下接收机的距离往往远达数千公里,甚至上万公里,电台发射的电波必须借着在地球表面上空近百公里高度的电离层折射,才能够在远处被接收到,而地球上空的电离层就像一面变化多端的镜子,它对短波的反射能力、它存在的高度、随时在变化,因此短波广播的传输就变得比较不那么可靠了。虽然如此,电离层还是有一些变化规律可以归纳出来的,因为电离层形成的主要因素是来自太阳的紫外线及带有能量的微小粒子;因此电离层的变化会受到下面几项因素的影响:

太阳活动的强弱:即所谓的大约每11年一个周期的变化。

太阳与地球的距离:即一年四季的变化。

太阳能量在传达到地球时所穿过的大气层厚度不同:白天到夜晚,即一天当中从早晨到黄昏到夜晚都在变化,因此,白天和夜晚,太阳能量对电离层的影响是不同的。

此外,由于电离层经常发生快速的变化,使得收听短波经常出现类似海浪般忽大忽小的声音,这是收听短波的一种普遍现象,即使在电子线路利用了自动增益(AGC)来消除这种现象,但是在严重的情况下,您仍会感觉出声音忽大忽小,若您能习惯,这也是收听短波的一种特殊感觉啊!

◎短波收听效果室内、室外不同

因短波波长比中波短了许多,因此建筑物对短波而言,是一种比较大的障碍,也就是在室内的讯号强度会比室外微弱很多,因此最理想的收听短波方式应该是:在室外以收音机的拉杆天线来收听,在室内时就得引用一条室外天线来收听。根据经验,除了不可抗拒的大自然环境因素之外,架好一条理想的室外天线是改善短波收听效果的首善之务。

干扰收听短波的各种原因:

夏天的雷电干扰;

室内的电子日光灯、可控硅调光台灯、电脑、电视机,微波炉,电话线等;

邻近工厂使用大马力电机并通过高压电力线传输的辐射干扰;

马路上有轨电车电力线和各种机动车辆的马达火花放电辐射干扰;

收听地点附近有大功率的高频无线电波辐射干扰:如寻呼机发射台(BB机);出租车27MHZ无线电对讲机;专业短波通讯电台,无线手机电话,收听地点邻近有大发射功率的调频和广播电视发射台等……

◎ 架设短波室外天线

谈到外接天线,这是最让短波入门者感到困惑的问题,的确,若要架设一条真正标准的短波外接天线,是需要专业知识才能完成的。为了大家方便起见,在此,我们只介绍一种简单又很实用的外接天线,供您参考:准备一条5-15米长的普通电线,在室外找适当的地点,一端将它拉为水平状;另一端拉到室内缠绕在收音机的拉杆天线上(大约7-10圈),就大功告成了。

所谓适当的地点是指:高处比低处好、周围越空旷越好,如远离墙壁比紧贴墙壁要好。至于电线的长度,若空间允许时,原则上越长越好(5--15米长)。此条电线从头至尾不用剥去外皮,不论是粗的、细的都可以。若没有适当的空间供以拉成水平状,那么就把电线从窗口丢出,让它自然下垂也行,不过最好在尾端系一重物,以避免刮风时,将电线吹起碰到高压线或它物造成危险。

因为室外天线都是拉到室外,我们就必须注意到“闪电雷击”的问题,所以在雷雨天时,请一定将原来缠绕在收音机上的电线松开,置于一安全的位置(如室外),以避免危险。

◎ 改善收听短波的效果和音质

除了上述之短波有忽大忽小声现象及使用室外天线来改善收听效果外,您也要注意到自己周围收听环境的干扰,如:日光灯、电脑、电视机,微波炉,电动马达和马路上各种机动车的马达,火花放电等外来干扰因素,当然,这些干扰也同样会发生任何波段上,只是短波的电波信号较微弱,而显得更容易受到影响,应设法找到上述干扰来源并尽量避开。

当收听正常的短波广播时,总还觉得声音不够理想,这是因为一般小型短波收音机的音频输出功率都不大,一旦附近环境吵杂或因为其他因素,需要较大音量时,便把音量调大,则会出现很大的失真。而且由于短波收音机为了提高选择性,中频放大器的通频带宽做了窄化的处理,这样也限制了声音的品质,因此若能戴上耳机收听或者从耳机插孔外接一只小型的附有放大器的喇叭音箱,就可以改善音质问题。有时音质可甚至媲美本地的MW电台的效果

超声波
频率高于2×104赫的声波。研究超声波的产生、传播 、接收,以及各种超声效应和应用的声学分支叫超声学。产生

超声波的装置有机械型超声发生器(例如气哨、汽笛和液哨等)、利用电磁感应和电磁作用原理制成的电动超声发生器、

以及利用压电晶体的电致伸缩效应和铁磁物质的磁致伸缩效应制成的电声换能器等。

超声效应 当超声波在介质中传播时,由于超声波与介质的相互作用,使介质发生物理的和化学的变化,从而产生

一系列力学的、热的、电磁的和化学的超声效应,包括以下4种效应:

①机械效应。超声波的机械作用可促成液体的乳化、凝

胶的液化和固体的分散。当超声波流体介质中形成驻波时 ,

悬浮在流体中的微小颗粒因受机械力的作用而凝聚在波节处,

在空间形成周期性的堆积。超声波在压电材料和磁致伸缩材

料中传播时,由于超声波的机械作用而引起的感生电极化和

感生磁化(见电介质物理学和磁致伸缩)。

②空化作用。超声波作用于液体时可产生大量小气泡 。

一个原因是液体内局部出现拉应力而形成负压,压强的降低

使原来溶于液体的气体过饱和,而从液体逸出,成为小气泡。

另一原因是强大的拉应力把液体“撕开”成一空洞,称为空

化。空洞内为液体蒸气或溶于液体的另一种气体,甚至可能

是真空。因空化作用形成的小气泡会随周围介质的振动而不

断运动、长大或突然破灭。破灭时周围液体突然冲入气泡而

产生高温、高压,同时产生激波。与空化作用相伴随的内摩

擦可形成电荷,并在气泡内因放电而产生发光现象。在液体

中进行超声处理的技术大多与空化作用有关。

③热效应。由于超声波频率高,能量大,被介质吸收时

能产生显着的热效应。

④化学效应。超声波的作用可促使发生或加速某些化学

反应。例如纯的蒸馏水经超声处理后产生过氧化氢;溶有氮

气的水经超声处理后产生亚硝酸;染料的水溶液经超声处理

后会变色或退色。这些现象的发生总与空化作用相伴随。超

声波还可加速许多化学物质的水解、分解和聚合过程。超声

波对光化学和电化学过程也有明显影响。各种氨基酸和其他

有机物质的水溶液经超声处理后,特征吸收光谱带消失而呈

均匀的一般吸收,这表明空化作用使分子结构发生了改变 。

超声应用 超声效应已广泛用于实际,主要有如下几方

面:

①超声检验。超声波的波长比一般声波要短,具有较好

的方向性,而且能透过不透明物质,这一特性已被广泛用于

超声波探伤、测厚、测距、遥控和超声成像技术。

超声成像是利用超声波呈现不透明物内部形象的技术 。

把从换能器发出的超声波经声透镜聚焦在不透明试样上,从

试样透出的超声波携带了被照部位的信息(如对声波的反射、

吸收和散射的能力),经声透镜汇聚在压电接收器上,所得

电信号输入放大器,利用扫描系统可把不透明试样的形象显

示在荧光屏上。上述装置称为超声显微镜。超声成像技术已

在医疗检查方面获得普遍应用,在微电子器件制造业中用来

对大规模集成电路进行检查,在材料科学中用来显示合金中

不同组分的区域和晶粒间界等。

声全息术是利用超声波的干涉原理记录和重现不透明物

的立体图像的声成像技术,其原理与光波的全息术基本相同,

只是记录手段不同而已(见全息术)。用同一超声信号源激

励两个放置在液体中的换能器,它们分别发射两束相干的超

声波:一束透过被研究的物体后成为物波,另一束作为参考

波。物波和参考波在液面上相干叠加形成声全息图,用激光

束照射声全息图,利用激光在声全息图上反射时产生的衍射

效应而获得物的重现像,通常用摄像机和电视机作实时观察。

②超声处理。利用超声的机械作用、空化作用、热效应

和化学效应,可进行超声焊接、钻孔、固体的粉碎、乳化 、

脱气、除尘、去锅垢、清洗、灭菌、促进化学反应和进行生

物学研究等,在工矿业、农业、医疗等各个部门获得了广泛

应用。

③基础研究。超声波作用于介质后,在介质中产生声弛

豫过程,声弛豫过程伴随着能量在分子各自电度间的输运过

程,并在宏观上表现出对声波的吸收(见声波)。通过物质

对超声的吸收规律可探索物质的特性和结构,这方面的研究

构成了分子声学这一声学分支。

普通声波的波长远大于固体中的原子间距,在此条件下

固体可当作连续介质 。但对频率在1012赫以上的 特超声波 ,

波长可与固体中的原子间距相比拟,此时必须把固体当作是

具有空间周期性的点阵结构。点阵振动的能量是量子化的 ,

称为声子(见固体物理学)。特超声对固体的作用可归结为

特超声与热声子、电子、光子和各种准粒子的相互作用。对

固体中特超声的产生、检测和传播规律的研究,以及量子液

体——液态氦中声现象的研究构成了近代声学的新领域——
量子声学。

⑤ 多波段数据有哪些存储方式,各有什么优缺点

BSQ(按波段顺序存储)BIP(按波段像元交叉存储)BIL(按行交叉存储),BSQ为最简单的存储方式,它提供了最佳的空间处理能力,适合读取单个波段的数据,BIP提供了最佳的波谱处理能力,适合读取光谱剖面数据,BIL是介于空间处理和光谱处理之间的一种折中的存储格式

⑥ 模拟信号和数字信号各有什么优缺点

模拟信号:保密性差、抗干扰能力弱。

数字信号:抗干扰能力强、通信的保密性好。

数字信号,顾名思义就是指的自变量是离散的,而且因变量也是离散的一种信号。数字信号的自变量是用整数表示的,它的因变量用有限的数字来表示。数字信号是用两种物理状态来表示0和1的,所以数字信号的质量很强,抗干扰能力也比较强。

模拟信号指的就是信息参数在给定的范围内表现为连续的信号。模拟信号的信息的特征量可以在瞬间转变为任意的数值信号。模拟信号在传输的过程中需要将信息信号转换为电波信号,再通过有线或者是无线的方法传播出去。

模拟信号缺点:

模拟信号保密性差:模拟通信,尤其是微波通信和有线明线通信,很容易被窃听。只要收到模拟信号,就容易得到通信内容。

模拟信号抗干扰能力弱:电信号在沿线路的传输过程中会受到外界的和通信系统内部的各种噪声干扰,噪声和信号混合后难以分开,从而使得通信质量下降。线路越长,噪声的积累也就越多。

数字信号抗干扰能力强:

数字信号在传输过程中会混入杂音,可以利用电子电路构成的门限电压(称为阈值)去衡量输入的信号电压,只有达到某一电压幅度,电路才会有输出值,并自动生成一整齐的脉冲(称为整形或再生)。较小杂音电压 到达时,由于它低于阈值而被过滤掉,不会引起电路动作。因此再生的信号与原信号完全相同,除非干扰信号大于原信号才会产生误码。为了防止误码,在电路中设置了检验错误和纠正错误的方法,即在出现误码时,可以利用后向信号使对方重发。因而数字传输适用于较远距离的传输,也能适用于性能较差的线路。

数字信号优点:

数字信号加强了通信的保密性:数字语音信号经A/D变换后,可以先进行加密处理,再进行传输,在接收端解密后再经D/A变换还原成模拟信号。语音数字化为加密处理提供了十分有利的条件,且密码的位数越多,破译密码就越困难。

拓展资料:

信号是表示消息的物理量,如电信号可以通过幅度、频率、相位的变化来表示不同的消息。这种电信号有模拟信号和数字信号两类。信号是运载消息的工具,是消息的载体。从广义上讲,它包含光信号、声信号和电信号等。按照实际用途区分,信号包括电视信号、广播信号、雷达信号,通信信号等;按照所具有的时间特性区分,则有确定性信号和随机性信号等。

信号是运载消息的工具,是消息的载体。从广义上讲,它包含光信号、声信号和电信号等。例如,古代人利用点燃烽火台而产生的滚滚狼烟,向远方军队传递敌人入侵的消息,这属于光信号;当我们说话时,声波传递到他人的耳朵,使他人了解我们的意图,这属于声信号;

遨游太空的各种无线电波、四通八达的电话网中的电流等,都可以用来向远方表达各种消息,这属电信号。人们通过对光、声、电信号进行接收,才知道对方要表达的消息。

⑦ 数字图像的存储格式

遥感数据以磁带、光盘等为存储介质,由一个或多个文件组成,每个文件又以若干个记录组成。记录是作为一个单位来处理的一组相连的数据,分为物理记录和逻辑记录; 文件是由若干个逻辑记录构成的在目的、形式和内容上彼此相似的信息项的集合。逻辑记录的排列方式决定了文件的结构方式,加之不同的辅助说明信息而构成了不同的遥感数据格式。对于遥感数字图像而言,它必须以一定的格式存储,才能有效地进行分发和利用。

多波段图像具有空间的位置和光谱的信息。多波段图像的数据格式根据在二维空间的像元配置中如何存储各种波段的信息可分为四类。

1. BSQ,BIL,BIP 格式

BSQ ( Band Sequential) 格式,又称为波段序贯格式,在一个遥感数据文件内各像元DN 值相当于以 “波段” 为主要关键字、以 “行” 为次要关键字、以 “列” ( 像元号) 为第三关键字对像元 DN 值进行排序存放。

BIL ( Band Interleaved by Line) 格式,又称为波段行交叉格式,在一个遥感数据文件内各像元 DN 值相当于以 “行”为主要关键字、以 “波段”为次要关键字、以 “列”( 像元号) 为第三关键字对像元 DN 值进行排序存放。

BIP ( Band Interleaved by Pixels) 格式,又称为波段像元交叉格式,在一个遥感数据文件内各像元 DN 值相当于以 “行”为主要关键字、以 “列” ( 像元号) 为次要关键字、以 “波段”为第三关键字对像元 DN 值进行排序存放。

上述遥感数据基本格式具有不同的特点和适用范围。BSQ 格式最适合于对单个波段的整个或部分图像空间区域进行存储和读取等处理操作,如图像对比度增强、平滑、锐化等; BIP 格式为图像数据单个像元波谱特性的存储与读取提供最佳性能,如在最大似然比分类法、波段之间的加减乘除代数运算等亦宜采用该格式; BIL 方式具有以上两种方式的中间特征,提供了图像空间和像元波谱处理之间的一种折中的方式,适用于以行 ( 图像扫描行) 为单位的处理操作,如水平方向的线性影像特征增强处理等。

2. Fast - L7A 格式

该格式是美国 EDC 在沿用了以往 Landsat 数据产品快速格式的基础上而选用的记录Landsat-7 / ETM + 数据的格式之一。Fast - L7A 格式的数据由 3 个头文件及 8 个数据文件组成,3 个头文件对应 Landsat-7 数据的三个波段组: 全色波段组、可见光及近红外波段组、热红外波段组; 8 个数据文件对应 Landsat-7 数据的 8 个波段。

3 个头文件中,每个头文件包含 3 个 1536 字节的记录,分别是管理记录、辐射记录和几何记录,它们记录了产品标识信息、图像标识信息、辐射校正系数、地图投影、地球模型、太阳高度角和方位角等图像数据辅助信息。8 个数据文件中,每个文件仅含一个波段的数据而不含头尾记录,图像数据按行顺序排列,并以 8 bit 无符号整数表示。

3. GeoTIFF 格式

GeoTIFF 是包含地理信息的一种 TIFF 格式的文件。GeoTIFF 格式的数据由 1 个头文件及相应的数据文件组成。其头文件与 Fast - L7A 头文件相似,8 个数据文件分别对应于Landsat-7 数据的 8 个波段数据。

4. HDF 格式

HDF ( Hierarchical Data Format,层次数据格式) 是由美国伊利诺伊大学 ( the Univer-sity of Illinois) 的国家超级计算应用中心 ( The National Center for Supercomputing Applica-tions,NCSA) 于 1987 年研制开发的一种软件和函数库,它使用 C 语言和 Fortran 语言编写,是一种超文本文件格式,能够存储不同种类的科学数据,包括图像、多维数组、指针及文本数据。HDF 格式还提供命令方式,分析现存 HDF 文件的结构,并即时显示图像内容。科学家可以用这种标准数据格式快速熟悉文件结构,摆脱不同数据格式之间相互转换的繁琐,而将更多的时间和精力用于数据管理和分析。目前,在国外各种卫星传感器上,已经广泛使用了这种标准数据格式,如 Landsat-7,EOS - TERRA,EOS - AQUA 等。

在物理存储结构上,一个 HDF 文件包括一个文件头 ( File Header) ,一个或多个描述块 ( Data Descriptor Block) ,若干个数据对象 ( Data Object) 。文件头位于 HDF 文件的头四个字节,其内容为四个控制字符的 ASCII 码值,四个控制字符为 N,C,S,A,可用于判断一个文件是否为 HDF 文件格式。数据对象是 HDF 文件最基本的存储元素,包括一个描述符和一个对应的数据元素。描述符长度为 12 个字节,主要用来描述这个数据元素的数据类型、位置偏移量、数据元素字节数。在实际的 HDF 文件中,描述符并不是和它对应的数据元素连在一起,而是把相关的许多描述符放在一起而构成一个描述块,在这个块的后面顺序存储了各个描述符所对应的数据元素。数据元素是数据对象中的裸数据部分,也就是数据本身,可以是字符、整数、浮点数、数组等。

1993 年美国航空航天局 ( NASA) 把 HDF 格式作为存储和发布 EOS ( Earth Observa-tion System,对地观测系统) 数据的标准格式,此后又在 HDF 标准的基础上共同开发了一种专门化的 HDF 格式———HDF - EOS,专门用于处理各种 EOS 产品。HDF - EOS 使用标准的 HDF 数据类型定义了点、条带、网格这三种特殊数据类型,并且引入了元数据( Metadata) ,简化了空间数据的访问过程,提高了科学研究和用户对 EOS 数据的访问速度。

遥感技术被应用以来,遥感数据采用过很多格式,以 Landsat-7 卫星的数据产品为例,该数据产品由美国地球观测系统数据中心 ( EDC) 提供,按照产品处理级别可分为 三类,即 Level 0R,Level 1R 和 Level 1G。三种产品的定义如下 :

Level 0R: 未经辐射校正和系统级几何校正的数据产品。

Level 1R: 经过辐射校正但未经系统级几何校正的数据产品。

Level 1G: 经过辐射校正和系统级几何校正的数据产品。

EDC 的各类产品所采用的数据格式共有三种,分别是 HDF,Fast - L7A 和 GeoTIFF,产品类型和数据格式之间的对应关系见表 4-1。

表 4-1 Landsat-7 数据产品类型及数据格式

在遥感数据中,除图像信息以外还附带有各种注记信息。这是提供数据结构在进行数据分发时,对存储方式用注记信息的形式来说明所提供的格式。以往曾使用多种格式,但从 1982 年起逐渐以世界标准格式的形式进行分发。因为这种格式是由 Landsat TechnicalWorking Group 确定的,所以也称 LTWG 格式。世界标准格式具有超结构 ( Super Struc-ture) 的构造,在它的描述符、文件指针、文件说明符的三种记录中记有数据的记录方法。其图像数据部分为 BSQ 方式或 BIL 方式。

⑧ BSPBILBIP如何进行多波段遥感影像的存储

多波段数据的存储方式主要有3种。
分别是:逐波段存储BSQ、逐行存储BIL、逐像元存储BIP。
逐波段存储就是将一个波段的数据存储在一起,这样的话对于要一次性读取一个波段的操作较好,可是要是每次操作都涉及到几个波段的数据,这样的存储方法就对内存的占用比较大。也就是说逐波段存储对处理空间信息有利。逐像元存储将一个像元的数据先存储起来,然后再存储其他像元的数据,也就是说同一个像元的光谱信息被存在了一个连续的地址,这样对于操作像元光谱信息频繁的操作来说十分方便快捷。逐行存储是一种介于逐波段存储和逐像元存储的方法,它将各通道的每一行存储在一起,具体来说,就是存好了1通道的第1行,接着2通道的第1行,然后3通道的第1行,等等,当第1行都存储完毕就去存储第2行的数据。

⑨ 条形码与RFID技术的优缺点有哪些

电子标签RFID有的称射频标签、射频识别。它是一种非接触式的自动识别技术,通过射频信号识别目标对象并获取相关数据,识别工作无须人工干预,作为条形码的无线版本,RFID技术具有条形码所不具备的防水、防磁、耐高温、使用寿命长、读取距离大、标签上数据可以加密、存储数据容量更大、存储信息更改自如等优点。
电子标签也叫智能标签,英文是Tag或者Smart Label。其核心是采用了RFID射频识别技术、存储容量较小的芯片。

RFID射频技术与条形码,从概念上来说,两者很相似,目的都是快速准确地确认追踪目标物体;从技术上来说,他们是两种不同的技术,有不同的适用范围(有时会有重叠)。

两者之间最大的区别是条形码是“可视技术”,扫描仪在人的指导下工作,只能接收它视野范围内的条形码;相比之下,射频识别不要求看见目标,射频标签只要在接受器的作用范围内就可以被读取。条形码本身还具有其他缺点,如果标签被划破,污染或是脱落,扫描仪就无法辨认目标。条形码只能识别生产者和产品,并不能辨认具体的商品,贴在所有同一种产品包装上的条形码都一样,无法辨认哪些产品先过期;更重要的是目前全世界每年生产超过五亿种商品,而全球通用的商品条形码,由十二位排列出来的条形码号码已经快要用光了。

除此之外,他们还有如下主要区别:

1、有无写入信息或更新内存的能力。条形码的内存不能更改。射频标签不像条形码,它特有的辨识器不能被复制。

2、标签的作用不仅仅局限于视野之内,因为信息是由无线电波传输,而条形码必须在视野之内。由于条形码成本较低,有完善的标准体系,已在全球散播,所以已经被普遍接受,从总体来看,射频技术只被局限在有限的市场份额之内。

目前,多种条形码控制模版已经在使用之中,在获取信息渠道方面,射频也有不同的标准。由于组成部分不同,

智能标签要比条形码贵得多,条形码的成本就是条形码纸张和油墨成本,而有内存芯片的主动射频标签价格在2美元以上,被动射频标签的成本也在1美元以上。但是没有内置芯片的标签价格只有几美分,它可以用于对数据信息要求不那么高的情况,同时又具有条形码不具备的防伪功能。

表一:条码与RFID之功能比较
功能 条形码 RFID射频技术
读取数量 一次一个 一次多个
读取方式 直视标签,读取时需要光线 不需特定方向与光线
读取距离 约50公分 1-10公尺(依频率与功率而定)
数据容量 储存数据的容量小 储存数据的容量大
读写能力 条码数据不可更新 电子数据可以反复被覆写(R/W)
读取方便性 读取时须清楚可读 标签隐藏于包装内同样可读
数据正确性 人工读取,增加疏失机会 可自动读取数据以达追踪与保全
抗污性 条形码污染,则无法读取信息 表面污损不影响数据读取
不正当复制 方便容易 非常困难
高速读取 读取数据将限制移动速度 能高速读取资料
成本 低 高

表二:人工登录、条形码与RFID处理速度之比较
数据量
录入方式

1笔 10笔 100笔 1000笔
人工登录 10秒 100秒 1000秒 2小时47分
条码扫描 2秒 20秒 200秒 33分
RFID识别 0.1秒 1秒 10秒 1分40秒

目前国内的RFID产业的核心问题一方面是成本和标准化:成本偏高是其替代条形码的最大障碍,而国内标准迟迟不能够出台,因此难以形成产业规模,没有规模反过来就难以降低成本,难以在应用行业形成普及和覆盖。另一方面,终端用户对RFID所能带来的效益理解不够深。06年在北京召开的第九届国际智能卡博览会上,同期举办的第四届中国RFID国际峰会吸引了很多人关注的目光,基本聚集了国内所有制作、生产、研究RFID标签的企业和机构,但是真正使用RFID标签的终端用户如物流业、制造业并不是很踊跃。

1、电子标签的特性
数据存储:与传统形式的标签相比,容量更大(1bit—1024bit),数据可随时更新,可读写。
读写速度:与条码相比,无须直线对准扫描,读写速度更快,可多目标识别、运动识别。
使用方便:体积小,容易封装,可以嵌入产品内。
安全:专用芯片、序列号惟一、很难复制。
耐用:无机械故障、寿命长、抗恶劣环境。
2、技术原理
典型的RFID系统由电子标签(Tag)、读写器(Read/Write Device)以及数据交换、管理系统等组成。电子标签也称射频卡,它具有智能读写及加密通信的能力。读写器由无线收发模块、天线、控制模块及接口电路等组成。电子标签内不含电池,电子标签工作的能量是由读写器发出的射频脉冲提供。电子标签接收射频脉冲,整流并给电容充电。电容电压经过稳压后作为工作电压。数据解调部分从接收到的射频脉冲中解调出数据并送到控制逻辑。控制逻辑接受指令完成存储、发送数据或其它操作。EEPROM用来存储电子标签的ID号及其它用户数据。还有一种有源RFID系统,是由电池供电,可以在较高频段工作,识别距离较长,和读写器之间的通信速率也较高。
RFID系统根据工作频率的不同分为低频、中频及高频系统。低频系统一般工作在100k~500kHz,中频系统工作在10MHz~15MHz左右,它们主要适用于识别距离短、成本低的应用中;而高频系统则可达850~950MHz及2.4~5GHz的微波段,适用于识别距离长,数据读写率高的场合。
3、识别技术的比较
就条码、磁卡、IC卡、RFID等识别技术来说,它们都有各自的特点及适于应用的场合。下表列出了几种识别技术的特点与区别。
4、电子标签与条码相比的优势
即使看不见也可以方便地读写;可以在多种复杂环境中工作;可以容易地以不同形式嵌入或者附着在不同的产品上;更远的读写距离,三维的读写方式;更大的存储容量;有密钥保护,更安全,不易伪造。

电子标签的应用
电子标签作为数据载体,能起到标识识别、物品跟踪、信息采集的作用。在国外,电子标签已经在广泛的领域内得以应用。
电子标签、读写器、天线和应用软件构成的RFID系统直接与相应的管理信息系统相连。每一件物品都可以被准确地跟踪,这种全面的信息管理系统能为客户带来诸多的利益,包括实时数据的采集、安全的数据存取通道、离线状态下就可以获得所有产品信息等等。在国外,RFID技术已被广泛应用于诸如工业自动化、商业自动化等众多领域。应用范围包括:
1、防伪
(电子版以下略)通过扫描,详尽的物流记录就生成了。
(1)生产流水线管理
电子标签在生产流水线上可以方便准确地记录工序信息和工艺操作信息,满足柔性化生产需求。对工人工号、时间、操作、质检结果的记录,可以完全实现生产的可追溯性。还可避免生产环境中手写、眼看信息造成的失误。
(2)仓储管理
将RFID系统用于智能仓库货物管理,有效地解决了仓储货物信息管理。对于大型仓储基地来说,管理中心可以实时了解货物位置、货物存储的情况,对于提高仓储效率、反馈产品信息、指导生产都有很重要的意义。它不但增加了一天内处理货物的件数,还可以监看货物的一切信息。其中应用的形式多种多样,可以将标签贴在货物上,由叉车上的读写器和仓库相应位置上的读写器读写;也可以将条码和电子标签配合使用。
(3)销售渠道管理
建立严格而有序的渠道,高效地管理好进销存是许多企业的强烈需要。产品在生产过程中嵌入电子标签,其中包含惟一的产品号,厂家可以用识别器监控产品的流向,批发商、零售商可以用厂家提供的读写器来识别产品的合法性。
3、贵重物品管理
还可用于照相机、摄像机、便携电脑、CD随身听、珠宝等。贵重物品的防盗、结算、售后保证。其防盗功能属于电子物品监视系统(EAS)的一种。标签可以附着或内置于物品包装内。专门的货架扫描器会对货品实时扫描,得到实时存货记录。如果货品从货价上拿走,系统将验证此行为是否合法,如为非法取走货品,系统将报警。
买单出库时,不同类别的全部物品可通过扫描器,一次性完成扫描,在收银台生成销售单的同时解除防盗功能。这样,顾客带着所购物品离开时,警报就不会响了。在顾客付账时,收银台会将售出日期写入标签,这样顾客所购的物品也得到了相应的保证和承诺。
4、图书管理、租赁产品管理
在图书中贴入电子标签,可方便的接收图书信息,整理图书时不用移动图书,可提高工作效率,避免工作误差。
5、其他如物流、汽车防盗、航空包裹管理等。

⑩ 有线传输和无线传输的优缺点

一、有线传输

优点:一般受干扰较小,可靠性,保密性强。

缺点:建设费用大。沿途需要检查有线通信链路的维护情况,故障发生时通常很难找到故障点。用户设置通信网络后,由于系统的需求,通常会添加新设备,使用有线传输可能需要重新布线。

二、无线传输

优点:

1、 综合成本低,性能更稳定。只需一次性投资,无须挖沟埋管,特别适合室外距离较远及已装修好的场合。在许多情况下,用户往往由于受到地理环境和工作内容的限制。

例如山地、港口和开阔地等特殊地理环境,对有线网络、有线传输的布线工程带来极大的不便,采用有线的施工周期将很长,甚至根本无法实现。

这时,采用无线监控可以摆脱线缆的束缚,有安装周期短、维护方便、扩容能力强,迅速收回成本的优点。

2、组网灵活,可扩展性好,即插即用。管理人员可以迅速将新的无线监控点加入到现有网络中,不需要为新建传输铺设网络、增加设备,轻而易举地实现远程无线监控。

3、 维护费用低。无线监控维护由网络提供商维护,前端设备是即插即用、免维护系统。

4、无线监控系统是监控和无线传输技术的结合,它可以将不同地点的现场信息实时通过无线通讯手段传送到无线监控中心,并且自动形成视频数据库便于日后的检索。

5、 在无线监控系统中,无线监控中心实时得到被监控点的视频信息,并且该视频信息是连续、清晰的。

在无线监控点,通常使用摄像头对现场情况进行实时采集,摄像头通过无线视频传输设备相连,并通过由无线电波将数据信号发送到监控中心。

缺点:

由于采用微波传输,频段在1GHz以上,传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰。

微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。

(10)多波段存储优缺点扩展阅读:

无线传输分为:模拟微波传输和数字微波传输。

一、模拟微波传输

模拟微波传输就是把视频信号直接调制在微波的信道上(微波发射机,HD-630)。

通过天线(HD-1300LXB)发射出去,监控中心通过天线接收微波信号,然后再通过微波接收机(Microsat 600AM)解调出原来的视频信号。

如果需要控制云台镜头,就在监控中心加相应的指令控制发射机(HD-2050),监控前端配置相应的指令接收机(HD-2060)。

这种监控方式图像非常清晰,没有延时,没有压缩损耗,造价便宜,施工安装调试简单,适合一般监控点不是很多,需要中继也不多的情况下使用。

其弱点是:抗干扰能力较差,易受天气、周围环境的影响,传输距离有限,已逐步被数字微波、COFDM、3G、CDMA等取代。

二、数字微波传输

数字微波传输就是先把视频编码压缩,然后通过数字微波信道调制,再通过天线发射出去,接收端则相反,天线接收信号,微波解扩,视频解压缩,最后还原模拟的视频信号。

也可微波解扩后通过电脑安装相应的解码软件,用电脑软解压视频,而且电脑还支持录像,回放,管理,云镜控制,报警控制等功能;

存储服务器,配合磁盘阵列存储;这种监控方式图像有720*576、352*288或更高的的分辨率选择,通过解码的存储方式,视频有0.2-0.8秒左右的延时。

数字视频监控价根据实际情况差别很大,但也有一些模拟微波不可比的优点,如监控点比较多,环境比较复杂,需要加中继的情况多,监控点比较集中它可集中传输多路视频。

抗干扰能力比模拟的要好一点,等等优点,适合监控点比较多,需要中继也多的情况下使用,客观地讲,前期投资较高。

参考资料来源:网络-无线传输

热点内容
刀片机服务器ip怎么配置 发布:2024-05-12 04:28:35 浏览:525
存储系列视频 发布:2024-05-12 04:01:27 浏览:147
oracle数据库去重 发布:2024-05-12 04:00:53 浏览:772
配置减肥餐需要哪些条件 发布:2024-05-12 03:56:36 浏览:513
电视节目需要什么配置电脑 发布:2024-05-12 03:51:26 浏览:44
安卓怎么设置不被拦截 发布:2024-05-12 03:51:26 浏览:567
python目录下的文件名 发布:2024-05-12 03:51:02 浏览:103
c语言怎么编译输出满屏的爱心 发布:2024-05-12 03:39:22 浏览:181
androidlistview间距 发布:2024-05-12 03:39:19 浏览:9
原配置明信片和加购款有什么不同 发布:2024-05-12 03:37:56 浏览:936