当前位置:首页 » 存储配置 » 单片机访问一次存储器的时间

单片机访问一次存储器的时间

发布时间: 2022-06-11 19:47:48

❶ 单片机analog input是什么功能

没有晶振,就没有时钟周期,没有时钟周期,就无法执行程序代码,单片机就无法工作。 单片机工作时,是一条一条地从RoM中取指令,然后一步一步地执行。单片机访问一次存储器的时间,称之为一个机器周期,这是一个时间基准。—个机器周期包括12个时钟周期。如果一个单片机选择了12MHz晶振,它的时钟周期是1/12us,它的一个机器周期是12×(1/12)us,也就是1us。 MCS—51单片机的所有指令中,有一些完成得比较快,只要一个机器周期就行了,有一些完成得比较馒,得要2个机器周期,还有两条指令要4个机器周期才行。为了衡量指令执行时间的长短,又引入一个新的概念:指令周期。所谓指令周期就是指执行一条指令的时间。例如,当需要计算DJNZ指令完成所需要的时间时,首先必须要知道晶振的频率,设所用晶振为12MHz,则一个机器周期就是1us。而DJNZ指令是双周期指令,所以执行一次要2us。如果该指令需要执行500次,正好1000us,也就是1ms。 机器周期不仅对于指令执打有着重要的意义,而且机器周期也是单片机定时器和计数器的时间基准。例如一个单片机选择了12MHz晶振,那么当定时器的数值加1时,实际经过的时间就是1us,这就是单片机的定时原理。

❷ 单片机为什么没有振荡电路不能工作

没有震荡电路无法产生时钟,所以单片机没有震荡电路就不能工作。
单片机属于数字电路范畴,是由若干个门电路和触发器组成的,时钟序列是单片机必不可少的。
无论是单片机还是计算机的CPU,都要有一个一步一步工作的触发信号,这个信号就要靠震荡器来完成,早期的单片机都是使用外部独立的震荡电路提供时钟,后期的单片机内部包含震荡驱动电路外接晶振,再后期的单片机内部包含温度矫正的RC震荡器。
单片机或计算机是靠计量震荡脉冲数来计算时间的,因此震荡电路需要很高的精度才能保证日期时钟的准确性,一般达到5PPM的精度就能满足普通的要求,不需要实时时钟的电路,20PPM精度即可。

❸ 单片机中时钟、晶振分别是起什么作用的

晶振用来提供时钟频率,时钟频率决定了单片机执行的快慢。没有晶振,就没有时钟周期,没有时钟周期,就无法执行程序代码,单片机就无法工作。

单片机工作时,是一条一条地从RoM中取指令,然后一步一步地执行。单片机访问一次存储器的时间,称之为一个机器周期,这是一个时间基准。一个机器周期包括12个时钟周期。如果一个单片机选择了12MHz晶振,它的时钟周期是1/12us, 它的一个机器周期是12X (1/12)us,也就是1us。


(3)单片机访问一次存储器的时间扩展阅读

每个单片机系统里都有晶振,全程是叫晶体震荡器,在单片机系统里晶振的作用非常大,他结合单片机内部的电路,产生单片机所必须的时钟频率,单片机的一切指令的执行都是建立在这个基础上的,晶振的提供的时钟频率越高,那单片机的运行速度也就越快。

晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。

❹ 51单片机里状态周期有什么意义

51单片机里状态周期有什么意义
荡器输出的震荡脉冲经2分频称为内部时钟信号,用作单片机内部各功能部件按序协调工作的控制
信号;其周期成为时钟周期,也称为状态周期。
CPU执行一条指令的时间称为指令周期。
指令周期以机器周期为单位,例如单周期指令、双周期指令。8051系列单片机除乘法指令、除法
指令是4周期指令外,其余都是单周期指令和双周期指令。若用12MHz晶振,则单周期指令和双周期指令的执行时间分别为1us和2us,乘法指令和除法指令为4us。

转自:《51单片机C语言创新教程》温子祺等着

匿名  <span class="tm">5-20 10:05</span>
</p>
<div class="b bt2"><div class="bt bg1 ft"><img alt="其他答案" height="16" src="/static/img/ico2.gif" width="16"/>其他答案</div></div>
<p class="ft p1">晶振与单片机周期

单片机工作时,是一条一条地从RoM中取指令,然后一步一步地执行。单片机访问一次存储器的时间,称之为一个机器周期,这是一个时间基准。—个机器周期包括12个时钟周期。如果一个单片机选择了12MHZ晶振,它的时钟周期是1/12us,也是一个晶振周期。它的一个机器周期是12×(1/12)us,也就是1us。

机器周期不仅对于指令执行有着重要的意义,而且机器周期也是单片机定时器和计数器的时间基准。例如一个单片机选择了12MHZ晶振,那么当定时器的数值加1时,实际经过的时间就是1us,这就是单片机的定时原理。

时钟周期

时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。

在一个时钟周期内,CPU仅完成一个最基本的动作。对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250ns。由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。但是,由于不同的计算机硬件电路和器件的不完全相同,所以其所需要的时钟周频率范围也不一定相同。我们学习的8051单片机的时钟范围是1.2MHz-12MHz。

在8051单片机中把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。

机器周期

在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。完成一个基本操作所需要的时间称为机器周期。一般情况下,一个机器周期由若干个S周期(状态周期)组成。8051系列单片机的一个机器周期同6个S周期(状态周期)组成。前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。

指令周期

指令周期是执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期数也不同。对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。
通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。

简单地说,没有晶振,就没有时钟周期,没有时钟周期,就无法执行程序代码,单片机就无法工作
参考资料:绿竹别其三分景 红梅正报万家春 春回大地

❺ 访问一次内存储器所花的时间称为

一次独立的 读或写 称为访问时间或读写时间
两次 读或写称为访问周期

❻ 请问单片机晶振电路中两个电容的作用是什么

单片机晶振电路中两个电容(负载电容)的作用是把电能转换成其他形式的能。如果没这两个电容的话,振荡部分会因为没有回路而停振。电路不能正常工作了。

负载频率不同决定振荡器的振荡频率不同。标称频率相同的晶振,负载电容不一定相同。因为石英晶体振荡器有两个谐振频率,一个是串联揩振晶振的低负载电容晶振:另一个为并联揩振晶振的高负载电容晶振。

所以,标称频率相同的晶振互换时还必须要求负载电容一致,不能冒然互换,否则会造成电器工作不正常。

电动机能把电能转换成机械能,电阻能把电能转换成热能,电灯泡能把电能转换成热能和光能,扬声器能把电能转换成声能。电动机、电阻、电灯泡、扬声器等都叫做负载。

晶体三极管对于前面的信号源来说,也可以看作是负载。对负载最基本的要求是阻抗匹配和所能承受的功率。

(6)单片机访问一次存储器的时间扩展阅读

单片机能正常工作的必要条件之一就是时钟电路,所以单片机就很需要晶振。通过一定的外接电路来,可以生成频率和峰值稳定的正弦波。

而单片机在运行的时候,需要一个脉冲信号,做为自己执行指令的触发信号,可以简单的想象为:单片机收到一个脉冲,就执行一次或多次指令。

单片机工作时,是一条一条地从RoM中取指令,然后一步一步地执行。单片机访问一次存储器的时间,称之为一个机器周期,这是一个时间基准。

—个机器周期包括12个时钟周期。如果一个单片机选择了12兆赫兹晶振,它的时钟周期是1/12us,它的一个机器周期是12×(1/12)us,也就是1us。

晶振是给单片机提供工作信号脉冲的。这个脉冲就是单片机的工作速度。比如12兆晶振。单片机工作速度就是每秒12兆。单片机内部也有晶振。接外部晶振可以或得更稳定的频率。

❼ 请问谁知道什么是单片机的晶振........

简单地说,没有晶振,就没有时钟周期,没有时钟周期,就无法执行程序代码,单片机就无法工作。

单片机工作时,是一条一条地从RoM中取指令,然后一步一步地执行。单片机访问一次存储器的时间,称之为一个机器周期,这是一个时间基准。—个机器周期包括12个时钟周期。如果一个单片机选择了12MHz晶振,它的时钟周期是1/12us,它的一个机器周期是12×(1/12)us,也就是
1us。

MCS—51单片机的所有指令中,有一些完成得比较快,只要一个机器周期就行了,有一些完成得比较馒,得要2个机器周期,还有两条指令要4个机器周期才行。为了衡量指令执行时间的长短,又引入一个新的概念:指令周期。所谓指令周期就是指执行一条指令的时间。例如,当需要计算DJNZ指令完成所需要的时间时,首先必须要知道晶振的频率,设所用晶振为12MHz,则一个机器周期就是1us。而DJNZ指令是双周期指令,所以执行一次要2us。如果该指令需要执行500次,正好1000us,也就是1ms。

机器周期不仅对于指令执打有着重要的意义,而且机器周期也是单片机定时器和计数器的时间基准。例如一个单片机选择了12MHz晶振,那么当定时器的数值加1时,实际经过的时间就是1us,这就是单片机的定时原理。

❽ 单片机的时序 ,是怎么来的 是和晶振有关联么

单片机执行指令的过程就是顺序地从ROM程序存储器中取出指令一条一条的顺序执行然后进行一系列的微操作控制来完成各种指定的动作它在协调内部的各种动作时必须要有一定的顺序换句话说就是这一系列微操作控制信号在时间上要有一个严格的先后次序这种次序就是单片机的时序;
是与晶振有关的:
计算机每访问一次存储器的时间我们把它称为一个机器周期它是一个时间基准就象我们日常生活中使用的秒一样计算机中一个机器周期包括12个振荡周期什么是振荡周期一个振荡周期是多少时间振荡周期就是振荡源的周期也就是我们使用的晶振的时间周期一个12M的晶振它的时间周期是多少呢电子技术过的朋友应该不难算出T=1/f也就是1/12微秒那么使用12M晶振的单片机它的一个机器周期就应该等于12*1/12微秒也就是1S

❾ stm32单片机工作原理小灯

首先应该了解51单片机最小系统:51最小系统也称为51最小应用系统,是指用最少的元件组成的51单片机可以工作的系统。如图2.1.1所示,51最小系统一般应该包括:单片机、晶振电路、复位电路。

晶振电路的原理及组成,作用:

在单片机系统里晶振的作用非常大,他结合单片机内部的电路,产生单片机所必须的时钟频率,单片机的一切指令的执行都是建立在这个基础上的,晶振的提供的时钟频率越高,那单片机的运行速度也就越快。简单地说,没有晶振,就没有时钟周期,没有时钟周期,就无法执行程序代码,单片机就无法工作。单片机工作时,是一条一条地从RoM中取指令,然后一步一步地执行。单片机访问一次存储器的时间,称之为一个机器周期,这是一个时间基准。—个机器周期包括12时钟周期。如果一个单选择了12MHz晶振,它的时钟周期是1/12us,它的一个机器周期是12×(1/12)us,也就是1us。

组成:晶振, 负载电容, 内部电路

原理:石英晶体振荡器(简称晶振)通过震动给单片机提供时间,有了时间,就有了时序,就可以无差错的跑程序, 一般51最小系统用的是12MHZ的晶振, 比内部时钟6MHZ要精确许多。晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。 就像给单片机带上了时钟。两个30pF的电容。 起到起振和谐振作用。两个电容的取值都是相同的,或者说相差不 大,如果相差太大,容易造成谐振的不平衡,容易造成停振或者干脆不起振。

有一个高增益反相放大器(即振荡器),其输入端为芯片引脚XTAL1,其输出端为引脚XTAL2 。而在芯片的外部,XTAL1和XTAL2之间跨接晶体振荡器和微调电容,从而构成一个稳定的自激振荡器,这就是单片机的时钟电路。

复位电路的原理及作用:

复位电路是一种用来使电路恢复到起始状态的电路设备。一般情况:上电复位;在RST复位输入引脚上接一电容至VCC端,下接一个电阻到地即可。

原理:在控制系统中的作用是启动单片机开始工作。但在电源上电以及在正常工作时电压异常或干扰时,电源会有一些不稳定的因素,为单片机工作的稳定性可能带来严重的影响。因此,在电源上电时延时输出给芯片输出一复位信号。上复位电路另一个作用是,监视正常工作时电源电压。若电源有异常则会进行强制复位。复位输出脚输出低电平需要持续三个(12/fc s)或者更多的指令周期,复位程序开始初始化芯片内部的初始状态。等待接受输入信号。

为什么必须使用低电频点亮LED灯?

由于单片机的I/O口的结构决定了它灌电流能力较强,所以都采用低电平点亮led的方式。一般都采用低电平点亮LED,有一定的抗干扰作用。因为单片机的输出能力有限,如果都让管脚输出高电平来驱动器件的话,即使有上拉电阻,还是会造成单片机运行状态不稳定其实,采用低电平驱动LED,可以简化单片机接口的设计,如果采用接口元件,则高电平驱动和低电平驱动是同样的效果,另外,低电平驱动也简化了控制代码,避免了单片机上电复位时端口置高电平后对led的影响。

需注意:

程序中的while(1)语句去掉之后仍然可以执行操作的原因是因为:在后面的程序中已经有了LED=0,即规定了驱动LED灯的是低电频

所以即使去掉了也可以执行。

在最后画出了如下电路图之后。在仿真软件上protues确实可以点亮。但实际上这是不可以实现的。主要是因为在io端口EA为片外程序存储器选择输入端。该引脚为低电平时,使用片外程序存储器,为高电平时,使用片内程序存储器。所以需要将这一端口街上电源。使其访问片内的程序存储器

❿ 什么是时钟静镇

单片机 晶振 是单片机内部电路产生单片机所需的时钟频率的部件,单片机晶振提供的时钟频率越高,那么单片机运行速度就越快,单片接的一切指令的执行都是建立在单片机晶振提供的时钟频率。
目录
• 单片机晶振的原理
• 单片机晶振的必要性
• 单片机晶振的检测
• 单片机晶振的作用
• 单片机晶振的常见问题

单片机晶振的原理
• 晶振一般采用三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路中,其中Cv是用来调节振荡频率,一般用变容二极管 加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后。其中Co,C1,L1,RR是晶体的等效电路。
分析整个振荡槽路可知,利用Cv来改变频率是有限的:决定振荡频率的整个槽路C=Cbe,Cce,Cv三个串联后和Co并联再和C1串联。可以看出:C1越小,Co越大,Cv变化时对整个槽路的作用就越小。因而能“压控”的频率范围也越小。实际上,由于C1很小(1E-15量级),Co不能忽略(1E-12量级,几PF)。所以,Cv变大时,降低槽路频率的作用越来越小,Cv变小时,升高槽路频率的作用却越来越大。这一方面引起压控特性的非线性,压控范围越大,非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却越来越小,最后导致停振。通过晶振的原理图你应该大致了解了晶振的作用以及工作过程了吧。采用泛音次数越高的晶振,其等效C1就越小;因此频率的变化范围也就越小。
单片机晶振的必要性
• 简单地说,没有晶振,就没有时钟周期,没有时钟周期,就无法执行程序代码,单片机就无法工作。
单片机工作时,是一条一条地从RoM中取指令,然后一步一步地执行。单片机访问一次存储器的时间,称之为一个机器周期,这是一个时间基准。—个机器周期包括12个时钟周期。如果一个单片机选择了12MHZ晶振,它的时钟周期是1/12us,它的一个机器周期是12×(1/12)us,也就是1us。
MCS—51单片机的所有指令中,有一些完成得比较快,只要一个机器周期就行了,有一些完成得比较馒,得要2个机器周期,还有两条指令要4个机器周期才行。为了衡量指令执行时间的长短,又引入一个新的概念:指令周期。所谓指令周期就是指执行一条指令的时间。例如,当需要计算DJNZ指令完成所需要的时间时,首先必须要知道晶振的频率,设所用晶振为12MHZ,则一个机器周期就是1us。而DJNZ指令是双周期指令,所以执行一次要2us。如果该指令需要执行500次,正好1000us,也就是1ms。
机器周期不仅对于指令执打有着重要的意义,而且机器周期也是单片机定时器和计数器的时间基准。例如一个单片机选择了12MHZ晶振,那么当定时器的数值加1时,实际经过的时间就是1us,这就是单片机的定时原理。
单片机晶振的检测
• 用万用表测量晶体振荡器是否工作的方法:测量两个引脚电压是否是芯片工作电压的一半,比如51单片机的工作电压是+5V则是否是2.5V左右。另外如果用镊子碰晶体另外一个脚,这个电压有明显变化,证明是起振了的。
单片机晶振的作用
• 单片机晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。
晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。
在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。
单片机晶振的常见问题
• 1,PIC单片机振荡电路中如何选择晶体?
对于一个高可靠性的系统设计,晶体的选择非常重要,尤其设计带有睡眠唤醒,往往用低电压以求低功耗的系统,这是因为低供电电压使提供给晶体的激励功率减少,造成晶体起振很慢或根本就不能起振,这一现象在上电复位时并不特别明显,原因时上电时电路有足够的扰动,很容易建立振荡,在睡眠唤醒时,电路的扰动要比上电时小得多,起振变得很不容易,在振荡回路中,晶体既不能过激励,容易振到高次谐波上,也不能欠激励不容易起振,晶体的选择至少必须考虑、谐振频点、负载电容、激励功率、温度特性长期稳定性。
2,如何判断电路中晶振是否被过分驱动?
电阻RS常用来防止晶振被过分驱动,过分驱动晶振会渐渐损耗减少晶振的接触电镀这将引起频率的上升,可用一台示波器检测,OSC,输出脚,如果检测一非常清晰的正弦波且正弦波的上限值和下限值都符合时钟输入需要,则晶振未被过分驱动,相反,如果正弦波形的波峰,波谷两端被削平,而使波形成为方形,则晶振被过分驱动,这时就需要用电阻RS来防止晶振被过分驱动,判断电阻RS值大小的最简单的方法就是串联一个5k或10k的微调电阻,从0开始慢慢调高,一直到正弦波不再被削平为止,通过此办法就可以找到最接近的电阻RS值。
3,晶振电路中如何选择电容?
(1)C1,C21,因为每一种晶振都有各自的特性,所以最好按制造厂商所提供的数值选择外部元器件。
(2)在许可范围内,C1,C2值越低越好,C值偏大虽有利于振荡器的稳定,但将会增加起振时间。
(3)应使C2值大于C1值,这样可使上电时,加快晶振起振。

热点内容
交通银行怎么登陆不了密码 发布:2024-05-17 13:54:48 浏览:543
安卓如何自动连接无线 发布:2024-05-17 13:53:51 浏览:262
python的urlparse 发布:2024-05-17 13:44:20 浏览:769
linux命令全称 发布:2024-05-17 12:07:54 浏览:110
ftpnas区别 发布:2024-05-17 12:06:18 浏览:949
512g存储芯片价格 发布:2024-05-17 12:04:48 浏览:963
脚本运行周期 发布:2024-05-17 11:39:09 浏览:809
阿里云服务器怎么配置发信功能 发布:2024-05-17 11:37:24 浏览:313
编程中的变量 发布:2024-05-17 11:33:06 浏览:777
加密视频怎么解密 发布:2024-05-17 11:02:52 浏览:572