当前位置:首页 » 存储配置 » 氨存储模型

氨存储模型

发布时间: 2022-10-05 04:11:43

1. 氨气的空间结构模型是怎样的

氨气的空间结构模型是

三角锥形

如图所示:

2. 氨气的空间结构模型是怎样的

氮原子有5个价电子,其中有3个未成对,当它与氢原子化合时,每个氮原子可以和3个氢原子通过极性共价键结合成氨分子,氨分子里的氮原子还有一个孤对电子。
氨分子的空间结构是三角锥型,极性分子

3. 氨水存储与供应系统有哪些设备

咨询记录 · 回答于2021-12-25

4. 氨是什么东西拜托各位大神

氨氨: [ān] [ㄢˉ] 郑码:MYWZ,U:6C28,GBK:B0B1 五笔:RNPV 笔画数:10,部首:气,笔顺编号:3115445531 参考词汇: ammonia 化学式:NH3 电子式:如右图 三维模型一、结构:氨分子为三角锥形分子,是极性分子。N原子以sp3杂化轨道成键。 二、物理性质:氨气通常情况下是有刺激性气味的无色气体,极易溶于水,易液化,液氨可作制冷剂。以700:1的溶解度溶于水。 摩尔质量:17.0306 CAS: 7664-41-7 密度:0.6942 熔点:-77.73 °C 沸点:-33.34 °C 在水中溶解度:89.9 g/100 mL, 0 °C 偶极距:1.42 D 三、主要化学性质: 1、NH3遇HCl气体有白烟产生,可与CL2反应。 2、氨水可腐蚀许多金属,一般若用铁桶装氨水,铁桶应内涂沥青。 3、氨的催化氧化是放热反应,产物是NO,是工业制硝酸的重要反应,NH3也可以被氧化成N2。 4、NH3能使湿润的红色石蕊试纸变蓝。 电离方程式 在水中产生少量氢氧根离子,是弱碱. 四、主要用途:NH3用于制氮肥(尿素、碳铵等)、HNO3、铵盐、纯碱,还用于制合成纤维、塑料、染料等。 五、制法: 1.合成氨的工艺流程 (1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ① 一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下: CO+H2O→H2+CO2 ΔH =-41.2kJ/mol 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ② 脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。 粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。 一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4 ③ 气体精制过程 经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。 目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下: CO+3H2→CH4+H2O ΔH=-206.2kJ/mol CO2+4H2→CH4+2H2O ΔH=-165.1kJ/mol (3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下: N2+3H2→2NH3(g) ΔH=-92.4kJ/mol 2.合成氨的催化机理 热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显着的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。上述反应途径可简单地表示为: xFe + N2→FexN FexN +〔H〕吸→FexNH FexNH +〔H〕吸→FexNH2 FexNH2 +〔H〕吸FexNH3→xFe+NH3 在无催化剂时,氨的合成反应的活化能很高,大约335 kJ/mol。加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126 kJ/mol~167 kJ/mol,第二阶段的反应活化能为13 kJ/mol。由于反应途径的改变(生成不稳定的中间化合物),降低了反应的活化能,因而反应速率加快了。 3.催化剂的中毒 催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。 催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永久性中毒两种。例如,对于合成氨反应中的铁催化剂,O2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。 4.我国合成氨工业的发展情况 解放前我国只有两家规模不大的合成氨厂,解放后合成氨工业有了迅速发展。1949年全国氮肥产量仅0.6万吨,而1982年达到1021.9万吨,成为世界上产量最高的国家之一。 近几年来,我国引进了一批年产30万吨氮肥的大型化肥厂设备。我国自行设计和建造的上海吴泾化工厂也是年产30万吨氮肥的大型化肥厂。这些化肥厂以天然气、石油、炼油气等为原料,生产中能量损耗低、产量高,技术和设备都很先进。 5.化学模拟生物固氮的研究 目前,化学模拟生物固氮的重要研究课题之一,是固氮酶活性中心结构的研究。固氮酶由铁蛋白和钼铁蛋白这两种含过渡金属的蛋白质组合而成。铁蛋白主要起着电子传递输送的作用,而含二个钼原子和二三十个铁和硫原子的钼铁蛋白是络合N2或其他反应物(底物)分子,并进行反应的活性中心所在之处。关于活性中心的结构有多种看法,目前尚无定论。从各种底物结合物活化和还原加氢试验来看,含双钼核的活性中心较为合理。我国有两个研究组于1973—1974年间,不约而同地提出了含钼铁的三核、四核活性中心模型,能较好地解释固氮酶的一系列性能,但其结构细节还有待根据新的实验结果精确化。 国际上有关的研究成果认为,温和条件下的固氮作用一般包含以下三个环节: ①络合过程。它是用某些过渡金属的有机络合物去络合N2,使它的化学键削弱;②还原过程。它是用化学还原剂或其他还原方法输送电子给被络合的N2,来拆开N2中的N—N键;③加氢过程。它是提供H+来和负价的N结合,生成NH3。 目前,化学模拟生物固氮工作的一个主要困难是,N2络合了但基本上没有活化,或络合活化了,但活化得很不够。所以,稳定的双氮基络合物一般在温和条件下通过化学还原剂的作用只能析出N2,从不稳定的双氮络合物还原制出的NH3的量相当微少。因此迫切需要从理论上深入分析,以便找出突破的途径。 固氮酶的生物化学和化学模拟工作已取得一定的进展,这必将有力地推动络合催化的研究,特别是对寻找催化效率高的合成氨催化剂,将是一个有力的促进。 氨 药物名称: 氨 药物别名: 暂无 英文名称: Ammonia 药物说明: 稀氨溶液〔典〕(Dilute Ammonia Solution):每100ml中含氨10g,为无色的澄清液体;有刺激性特臭,呈碱性反应。对昏迷、麻醉不醒者,嗅入本品有催醒作用。亦用于手术前医生手的消毒,每次用本品25ml,加温开水5L稀释后供用。 主要成分: 暂无 性状特征: 暂无 功能主治: 吸入或口服本品,可刺激呼吸道或胃粘膜,反射性兴奋呼吸和循环中枢。昏迷、醉酒者吸入氨水有苏醒作用,对昏厥者作用较好。外用配成25%搽剂作为刺激药,尚有中和酸的作用,用于昆虫咬伤等。 用法用量: 暂无 不良反应: 暂无 注意事项: 暂无 五、卫生标准 MAC(NH3)=30mg/m3 , 44.11ppm; STEL(NH3)=35ppm IDLH(NH3)=300PPM ERPG 浓度(ppm) 危害 ERPG1 25 引起刺激作用 ERPG2 200 可引起永久性损伤 ERPG3 1000 可致死

5. 氨气的vsepr模型是正四面体吗

铵根离子为正四面体构型(与甲烷构型相同), N 处于正四面体的中心, H 处于正四面体的四个顶点,键角均为109度28分。
所有的N-H键均为西格玛键,仅管配位键形成过程与其它三对键不同,但形成后的N-H配位键与其它三对键处于同等地位,对铵根离子的空间构型没有影响。

6. 氨的化学分子式是啥

化学式:NH3
电子式:如右图
三维模型一、结构:氨分子为三角锥型分子,是极性分子.N原子以sp3杂化轨道成键.
二、物理性质:氨气通常情况下是有刺激性气味的无色气体,极易溶于水,易液化,液氨可作致冷剂.
三、主要化学性质:
1、NH3遇Cl2、HCl气体或浓盐酸有白烟产生.
2、氨水可腐蚀许多金属,一般若用铁桶装氨水,铁桶应内涂沥青.
3、氨的催化氧化是放热反应,产物是NO,是工业制HNO3的重要反应,NH3也可以被氧化成N2.
4、NH3是能使湿润的红色石蕊试纸变蓝的气体.
四、主要用途:NH3用于制氮肥(尿素、碳铵等)、HNO3、铵盐、纯碱,还用于制合成纤维、塑料、染料等.

7. 化学问题,求教高人,有关NH3的空间构型。

氨气是三角锥形,我们可以与甲烷做个对比,甲烷是正四面体,C在正四面体体心,H在4个顶角,而氨气只有三个H,所以是本来处于体心的N成为了顶角,而构成的三角锥形的体心则没有了原子。

8. 氨气的VSEPR模型是什么VSEPR模型是什么 如题

VSEPR英文全称Valence Shell Electron Pair Repulsion.VSEPR中文名称价层电子对互斥模型,用以预测简单分子或离子的立体结构.这种理论模型后经吉列斯比(R.J,Gillespie)和尼霍尔姆(Nyholm)在20世纪50年代加以发展,定名为价层电子对互斥模型,简称VSEPR,
NH3四面体分子→SP3杂化
3个键对,1个孤对分子为三角锥型

9. 氨水要怎么保存

储存注意事项:储存于阴凉、干燥、通风处。远离火种、热源。防止阳光直射。保持容器密封。应与酸类、金属粉末等分开存放。露天贮罐夏季要有降温措施。分装和搬运作业要注意个人防护。搬运时要轻装轻卸,防止包装及容器损坏。运输按规定路线行驶,勿在居民区和人口稠密区停留。

工业氨水是含氨25%~28%的水溶液,氨水中仅有一小部分氨分子与水反应形成一水合氨,是仅存在于氨水中的弱碱。氨水凝固点与氨水浓度有关,常用的(wt)20%浓度凝固点约为-35℃。与酸中和反应产生热。有燃烧爆炸危险。比热容为4.3×10³J/kg·℃(10%的氨水)。

(9)氨存储模型扩展阅读

1、实验室用途

氨水是实验室重要的试剂,主要用作分析试剂,中和剂,生物碱浸出剂,铝盐合成和弱碱性溶剂。用于铝盐合成和某些元素(如铜、镍)的检定和测定,用以沉淀出各种元素的氢氧化物。

2、军事用途

作为一种碱性消毒剂,用于消毒沙林类毒剂。常用的是10%浓度的稀氨水(密度0.960),冬季使用浓度则为20%。

3、工业用途

毛纺、丝绸、印染等工业用于洗涤羊毛、呢绒、坯布,溶解和调整酸碱度,并作为助染剂等。 有机工业用作胺化剂,生产热固性酚醛树脂的催化剂,无机工业用于制选各种铁盐。

10. 氨气的空间构型是什么

三角锥型的立体结构。

NH3中N原子成3个σ键,有一对未成键的孤对电子,杂化轨道数为4,采取sp3型杂化杂化,孤对电子对成键电子的排斥作用较强,N-H之间的键角小于109°28′,所以氨气分子空间构型是三角锥形。

氨气在常温下加压即可使其液化(临界温度132.4℃,临界压力11.2兆帕,即112.2大气压)。沸点-33.5℃。也易被固化成雪状固体。熔点-77.75℃。溶于水、乙醇和乙醚。在高温时会分解成氮气和氢气,有还原作用。有催化剂存在时可被氧化成一氧化氮。

氨气存储禁忌

要做好日常运行、检查及维护保养工作,保证特种设备及其附件安全使用。

要认真落实安全生产责任制,不断完善和严格执行各项安全管理制度,清除各类安全隐患,确保生产安全。

要定期开展自查自改和应急专项演练,加强应急值守,切实提升应急处置能力。

以上内容参考网络-氨气

热点内容
苹果手机视频怎么加密 发布:2024-05-05 06:22:08 浏览:918
java反编译工具使用方法 发布:2024-05-05 06:00:38 浏览:217
恋人源码 发布:2024-05-05 05:53:33 浏览:166
安卓平板用什么助手好 发布:2024-05-05 05:51:09 浏览:775
java语义分析 发布:2024-05-05 05:32:39 浏览:754
我的世界服务器房型 发布:2024-05-05 05:31:16 浏览:702
pythonwhere 发布:2024-05-05 05:30:22 浏览:441
免费加密隐身侠 发布:2024-05-05 05:07:54 浏览:613
我的世界模组服务器推荐手机版 发布:2024-05-05 05:02:49 浏览:818
pr默认存储 发布:2024-05-05 04:29:31 浏览:553