当前位置:首页 » 存储配置 » 存储式测井系统

存储式测井系统

发布时间: 2022-10-16 01:12:48

① 测井数据处理系统简介

在1961年,Schlumberger公司首次使用计算机处理倾角测井数据,自此,西方国家开始利用计算机处理测井数据。我国从20世纪70年代初应用计算机处理测井数据及对测井方法进行理论研究,测井数字处理及软件的发展大致分为三个阶段。

20世纪70年代中到80年代末为第一阶段,主要是以引进、消化吸收和局部改造阶段。这一阶段的软件主要是单井批处理,没有图形显示能力,解释成果主要靠静电绘图仪出图完成。这一阶段的代表性处理方法如POR、SAND和CRA,至今仍在沿用。

20世纪90年代初到90年代中后期为第二阶段。这一阶段的主要特点是测井处理软件向Unix工作站转移,大多以Sun工作站作为测井数据处理的硬件平台。国内自主开发并且研制成功测井单井解释软件START1.0、Forward1.0工作站版,大型多井解释平台Cif2000。

20世纪90年代中后期到现在是第三阶段。随着微机性能的不断提高和Windows操作系统的日渐成熟,测井数据处理已进入工作站、微机并行阶段。就目前发展形势而言,工作站的优势体现在稳定可靠、适应多用户多任务窗口方面,而微机的优势则体现在方便灵活、适应单用户和少量任务窗口同时作业方面。这种并行现象还会在今后较长时间内继续下去。

7.1.1 国内外测井数据处理解释软件系统简介

伴随上面三个发展阶段,一批国内外有影响的测井资料处理解释软件逐渐完善成熟起来。在国内油田比较有影响的软件系统有:Schlumberger公司的GeoFrame、Atlas公司的eXpress、Paradigm公司的GeoLog以及国产软件Forward、CIFLog。

(1)GeoFrame测井解释处理系统

GeoFrame是美国斯伦贝谢公司的测井解释处理系统,运行于Unix工作站上,可以完成各种测井资料的处理分析工作,提供了数据库管理功能,依靠Oracle数据库管理各种测井数据及处理参数等信息。GeoFrame包括岩石物理分析软件包(P包)和井眼地质处理与解释软件包(G包)。GeoFrame可以处理单井资料,对多井处理也提供了许多工具,可以完成多井对比、解释处理工作;该软件价格较贵,处理多井速度并不理想。

(2)eXpress测井分析处理软件系统

eXpress可完成Atlas公司的Eclips-5700成像测井系统所有测井数据的处理与解释工作,同时也具有对其他测井资料的处理与解释能力。该系统集裸眼井分析和套管井分析于一体,运行于 Unix 工作站上,采用 OSF/Motif 窗口界面。eXpress 系统由文件管理、数据管理、数据处理、数据分析、绘图显示及打印等部分组成。

目前,我国引进了大量 Eclips - 5700 成像测井系统,eXpress 软件在油田得到了广泛应用; 该软件主要针对单井进行处理,无多井解释处理能力。

( 3) Geolog 测井资料处理和分析系统

Geolog 软件主要存储和处理井眼数据,应用图形显示和分析技术提供从地质模型的建立到岩石物理属性解释的一套综合解决方案。它可以评价复杂岩性地层,多井、多层段测井资料处理解释分析,人机交互地层对比、地层解释,建立多种要求的多井地层对比图件。Geolog 提供了一套功能强大、易学易用的开发工具包,用户可以方便地开发自己的处理模块。Geolog 软件可以在 Windows NT、Sun 或 SGI 平台上运行。Geolog 具有灵活的数据库,任何与井有关的数据都可以存人 Geolog 数据库。Geolog 所有模块都是在统一的数据库支持下运行的,Geolog 软件的主要特色是将测井、地质、地震相结合。

( 4) Forward 测井评价系统

Forward ( Formation Oil & Gas Reservior Well-logging Analysis & Research &Development) 是由中国石油油气勘探部测井软件项目组和中国石油大学 ( 北京) 石油勘探数据中心研制开发,是我国第一套商业化功能比较齐全的测井评价软件。

Forward 测井软件可以安装在 SUN 工作站及微机等硬件平台上,支持网络系统,该软件平台集成了国内石油测井界多年的软件成果,包括数据管理、预处理、解释评价、成果输出和联机在线帮助等多个模块。Forward 将测井数据处理、地质分析、岩心分析资料等多功能集中于同一个 “综合常规处理”窗,能同时提供 POR、CRA、SAND、PROTN、CLASS 等多种分析程序,可以方便灵活的选择需要的程序进行数字处理。

目前的主流版本为 Forward 2. 71。近几年,又开发成功了 Forward. net 版本,该软件除了能够实现原 Forward 2. 71 版本的功能外,还可以实现核磁共振、声电成像、阵列声波等测井新技术的处理,尤其在多井数据管理、数据批处理、数据提取、多井对比和分析以及连井剖面、等值线等地质图件的绘制方面具有较大的优势。

( 5) CIFLog 一体化测井网络平台

一体化测井网络平台 ( CIFLog) 是由中国石油勘探开发研究院联合中国石油所属测井部门共同研发的,是国家油气重大专项的重要标志性成果。CIFLog 是全球首个基于Java-NetBeans 前沿计算机技术建立的第三代测井处理解释系统,具有跨 Windows、Linux和 Unix 三大操作系统,真 64 位环境运行,将裸眼测井与套管井测井解释评价完全集成并提供元素俘获能谱测井等高端处理技术。CIFLog 入选 2010 年中国石油科技十大进展。

该软件是目前国内惟一一家同时支持工作站、微机、局域网和 Internet 互联网环境,提供从单井解释、成像处理到多井评价全部过程。该平台引入广义测井曲线概念,采用Cif 格式作为软件的数据格式,它们是整个软件平台的理论基础和技术核心。CIFLog 包括单井解释、火山岩解释、碳酸盐岩解释、低电阻率碎屑岩解释、水淹层解释、生产测井解释和国产重大装备配套处理解释等 7 大应用系统。在单井解释系统中,除了包括全套常规处理程序以外,还包括阵列感应、偶极子声波、声电成像、核磁共振、元素俘获能谱、过套管电阻率等测井新技术的处理解释方法。同时,提供对全部国产成像测井装备处理解释的软件支持,包括 MCI 电成像、MIT 阵列感应、AFIT 阵列感应、MPAL 多极子阵列声波、PAAT 相控声波和 ARI 远探测声波等。

7. 1. 2 测井数据处理系统总流程

测井数据处理系统是以统一的数据库管理为基础,以测井信息为主,并充分利用地震、地质、钻井、试井等信息,运用各种现代技术解决勘探开发问题的硬件与软件总成,总体结构如图 7. 1. 1 所示。

图 7. 1. 1 测井资料处理系统总体结构

( 1) 测井数据输入与格式转换

测井数据处理常用的原始输入信息有: ① 测井曲线图,首先用数字化仪把模拟曲线转换为数字量后才能输入计算机; ② 存放于磁带 ( 或磁盘) 的数据,此类数据从磁带机或磁盘机读入; ③ 直接由终端输入的表格数据; ④ 由井场或异地经卫星传送的数据。相应地,测井软件常用的输入外设有数字化仪、磁带机与网络等。

( 2) 测井数据的预处理

在使用测井数据之前,有必要对其进行编辑和校正,如单位转换、深度对齐、曲线修改和拼接、曲线平滑、环境校正、斜井校正、测井数据标准化等。

( 3) 辅助程序或工具模块

包括使用各类交会图或直方图进行有目的的信息分析,如质量控制、岩性分析、参数选择等; 使用统计分析等通用程序包对数据进行特征分析,为用户提供各种数学运算。

( 4) 数据处理

包括使用各种分析程序求单井地层参数,利用测井、地质应用程序解决单井中的各种地质问题。根据各单井分析结果及地区信息进行多井分析或油 ( 气) 藏描述。

( 5) 成果显示与输出

测井解释的最终成果和中间成果除在终端屏幕上显示外,还常以图形或表格的形式输出。相应地,输出设备一般有绘图仪、硬拷贝机、打印机等。另外,当一口井或一个地区的信息整理好后,按一定的要求进行归档,包括用磁带、磁盘、光盘等保存数据,也包括用数据表格、图形进行归档。

7. 1. 3 测井数据

测井信息过去主要以模拟曲线图的方式记录,随着测井技术和计算机技术的发展,测井信息已经直接记录在磁带、磁盘或光盘上。由于生产测井仪器的公司较多,不同时期发展的测井仪器类型多样,其相应的记录格式也多种多样。由于测井方法众多,测井数据的类型也多种多样,比如有的测井数据以深度为索引。

( 1) 测井数据记录格式

测井数据记录的格式有很多种。国外,最初 Atlas 公司常规测井的野外带采用 BIT 格式,处理常规测井资料时采用LA716 格式,地层倾角测井采用 3317 格式; Schlumberger 公司采用 LIS 和 DLIS 格式。在我国,最初广泛采用 Atlas 公司的数据记录格式———LA716 和BIT 格 式,现 在 大 多 采 用 LIS和文本格式,甚至各个测井采集系统设计自己的格式。

( 2) 测井数据类型

由于测井方法多种多样,测井数据类型也是多种多样。归纳起来有几种,如图 7. 1. 2。例如,常规测井曲线,其深度连续; 点测数据,如点测井斜方位数据,其深度不连续; 还有深度连续,在某一深度其数值随时间或者方位不同而不同,如声波波形数据、成像测井数据、核磁测井 T2分布或回波串; 还有深度离散,但是在某一深度上时间数连续的,如地层测试数据等; 此外,还有时间和深度均是离散的,如生产测井 ( 动态测井) 数据。

图 7. 1. 2 测井数据类型示意图

② 海相层系油气勘探测井系列的优化

3.4.2.1 现代测井技术发展主要特点

从20世纪90年代开始,在全球性科技发展浪潮推动下,测井技术进入一个高速发展期,主要标志是新一代成像测井投入商业性应用并日趋成熟。这一发展进程,大大提高了测井技术解决地质问题与工程问题的能力,进一步提高了在油气藏勘探和开发中的作用。现将其主要发展特点归结如下:

(1)形成四大测井技术系统:裸眼井测井、套管井测井、随钻测井和井间测井系统

1)裸眼井测井技术——新一代裸眼井测井技术是以阵列化、频谱、能谱化测量和二维及三维成像显示为主要特征,以全井眼微电阻率成像测井、核磁共振成像测井、阵列感应/阵列侧向成像测井为核心,包括偶极横波成像测井、综合岩性孔隙度测井、元素俘获测井、模块化动态地层测试器等井下仪器所组成的新型测井技术。最近推出的具有三维测量功能的扫描成像测井仪系列——电阻率、声波、核磁三种扫描测井仪,标志着成像测井技术又有新的发展。新一代裸眼井测井系统的主要特点是:

A.在技术上,成像测井实现了“地面采集成像化与多任务化,下井仪器阵列化与频谱、能谱化,数据传输遥测化,处理解释工作站化”。这样使得长期以来,作为表征地层地质特性的常规测井曲线,由原来把地层近似视为均质的平均化测量,发展为以“井”为对象的二维或三维空间测量,并对测量结果以具有三维模拟性质的二维可视图像进行显示,能对地层非均质性作出响应。

B.成像测井具有观测密度和方位覆盖率大的特点,有效信息大量增加,使得测井信息的反演更易接近目标。所提供的图像往往是地质现象的直观显示,大大缩短了测井信息与地质特性之间的距离,提高了分析地层非均质性能力、解释地质特征能力,以及人们有效理解、运用这些信息和数据的能力。

C.方位成像测井。微电阻率扫描、井眼超声波成像以及方位电阻率成像等测井的应用,突破了测井数据处理两个传统的基本假设,能够在地层为非成层和不具有旋转轴对称的状态下,获得可信的反演结果,从而能够较好应对地层非均质性和水平井钻探的挑战。

D.成为研究地层的非均质性和各向异性,应对复杂地层油气评价的有效手段,在裂缝性、砾岩体、低渗透、火成岩油藏与低电阻率油气层测井评价和油气藏发现,以及精细分析油藏地质特性、地质构造和沉积相等方面都有了突破性进展。

2)套管井测井技术。套管井电阻率测井、储层饱和度(脉冲中子)测井、元素俘获测井、过套管动态地层测试器以及新型综合岩性孔隙度测井和组合式生产测井仪(如CPLT、Flagship仪等),是组成新一代套管井测井的主要技术。众所周知,进行生产测井和油井采收状况动态监测,解决油井钻采中的工程问题,如固井质量评价、油井套管技术状况分析等,是套管井测井传统应用领域。新一代套管井测井技术的运用,特别是套管井电阻率测井研制成功,配套的新型传感器利用,促使套管井测井进入了“地层评价”这一新的应用领域,它的技术功能和作用有了明显提升。这样就能够在下套管的新井中,进一步取全资料;对于无法录取裸眼井测井资料的意外事故井,可以通过套管井测井进行地层评价;可以对老井重新评价识别漏掉的油气层和储量;可以定期开展时间推移测井,更有效地监测油气藏流体界面和饱和度动态变化等。

在生产测井这一领域,技术也有明显进步。常规生产测井传感器只能用在近垂直井中测量简单的两相流动、反映垂直或近垂直井中有限范围的流动方式。新型传感器,如“泡”流动成像仪、水流成像仪以及利用GHOST进行三相持率(持气、持油、持水率)测量等,则能克服上述缺点,不仅能提高精度、解决多相流问题,而且可用于大斜度井和水平井。

3)随钻测井技术。随钻测井的早期是通过测量井斜、方位,为钻井提供几何导向,属于随钻测井的雏形,为随钻测量(MWD)阶段。20世纪80年代中期,随钻自然伽马和电阻率仪器的问世,随钻测井(LWD)主要用于简单的地质导向。随着随钻电阻率仪和孔隙度仪的发展,逐步提高随钻地层评价和地质导向的效果,即通过监测水平井与上、下界面的距离,控制水平井在油层中的钻进方向。随钻测井虽然分辨率没有电缆测井高,但能够获得钻进过程中地层的原始信息,因此能在泥浆侵入地层和井眼变得不规则之前,更确切反映地层特性。新一代传感器,如钻头电阻率成像仪、方位密度中子仪等的运用,标志着随钻测井技术进入一个新的发展阶段,主要有以下特点:

A.探头更趋近于钻头处或以钻头作为电极,增强探测和实时导向功能。

B.成像化。可进行井下倾角实时处理,进一步提高分析地层特性能力。

C.实现方位测量。可对地层参数进行方位测量和显示,以提高地质导向准确性。如方位密度中子仪,可对井眼中不同区间密度、中子测量进行平均,提供井眼上、下独立测量值。

D.配套化。具有测量多种电阻率、密度、中子、声波、自然伽马等配套功能,在困难地理条件下(如深海、沙漠腹地、沼泽),用以替代普通电缆测井。

4)井间测井技术——井间测井技术应用是当代测井技术的重大突破,其重要意义就在于实现“井间”地层与油藏特性的直接测量,进一步解决在油藏研究中,“井孔”与“井间”信息不平衡问题,从而提高油藏研究和横向预测的有效性,并将从根本上改变测井技术横向探测能力不足的固有弱点。从而把发现油气藏与描述油气藏特性能力,提高到一个新的高度。目前开发的井间测井技术主要是井间电磁成像系统(井间电阻率成像测井)和井间地震测井,因此人们普遍认为,这些技术一旦达到实用阶段,将会引起油藏研究革命性变化。因为这就意味着测井技术的两个基本系列——电阻率与孔隙度系列,可直接运用于井间的测量。井间电磁成像系统是将发射器和接收器分别置于两口井中,接收由发射器发射并经地层传播的电磁波。反演后获得有关井间地层电阻率的分布信息,从而实现井间电阻率直接测量。和井间地震相比,井间电磁测量结果对井间地层特性和流体性质的变化更为敏感。所提供的井间电阻率成像,可用于研究井间油藏构造、砂体展布和裂缝发育方向;能够比较清楚地描述井间的油、气、水层分布,指示水驱及热采波及前沿和方向,分析井间剩余油分布,从而可提高油田滚动勘探和开发调整中钻探高效井成功率;优化油田开发方案和提高采收率。

井间电磁成像测井目前已在美国、加拿大以及中东地区等投入现场应用,所提供的“油藏”规模下的井间电阻率,在追踪注水、注蒸汽(稠油热采)应用中均见到较好效果。1998年11月至2004年4月,胜利油田与EMI公司合作,分别在胜利油区孤岛、埕东油田的8对井中,成功地进行了16个井次系统现场试验。测量是在对于井间电磁技术很有难度的条件下进行的,一是地层为典型的低电阻率剖面,地层背景电阻率仅为1.5~2Ω·m;二是进行穿透一层和二层金属套管系统试验。取得在典型低电阻率剖面中、井间距分别达433.6m(裸眼井—裸眼井)和300m(裸眼井—金属套管井)、260m(金属套管井—金属套管井)重复性好、精度高的完整测量数据。反演得到的井间电阻率成像图,在分析井间油、水、气分布、砂体展布方面也见到较好地质效果。

(2)测井信息的采集逐步实现高集成度的阵列化、成像化、频谱化和网络化

应对各向异性、多元储集空间、裂缝、薄互层等复杂油气藏的勘探和开发,是推动成像测井发展和应用的动力。成像测井问世以后,逐步发展了一批具有阵列化、成像化、频谱化测量特点的井下仪器系列,实现如下的成像方式:

A.井壁成像(方位成像):利用旋转型探头进行扫描,获得井壁图像。

B.径向成像:利用多个探头组合(阵列及交叉阵列)的大信息量采集,获得有较强垂向分辨能力、不同探测深度的径向成像图,以了解储层在径向上的地质特性及各向异性,如分析储层沿径向方向的饱和度剖面。

C.井周分区成像:利用聚焦方法,探测井周不同扇体、不同径向距离的地层特性。

D.井间成像:将发射器和接收器分别置于相邻的井中,反演后获得有关井间地质特性的分布信息。

E.谱分析成像:利用能谱、频谱、波谱等直观成像显示,描述地层特性。

今后的发展趋势是进一步提升阵列化、成像化、频谱化仪器的集成度及其探测性能,并向网络化方向发展。

(3)从传统的一维测量向三维测量发展,开辟三维岩石物理学的研究时代

成像测井是对油气藏表征和数值模拟技术发展的有力推动。油藏表征与油藏数值模拟技术,实质上是用随机技术来描述“确定性”油藏的概率性分析,包括建立一维“井”模型—二维“层”模型—三维“体”模型,其精度主要取决于对地层非均质性的分析和对“不确定性”因素的预测。应该指出,制作油藏一维“井”模型,从本质上讲是三维问题。由于传统测井理论是建立在均匀无限空间、各向同性介质基础之上,只有在均质地层中才能服从地层是“呈层状并与井轴呈对称性分布”的基本假设,因而普通电缆测井则把这一问题的解决仅局限于一维和二维。随着油气勘探、开发对象日趋复杂,非均质储层已成为当前及今后的重要勘探目标,也进一步挑战了测井理论关于“地层呈层状并与井轴呈对称性分布”的基本假设。而成像测井系统的应用,特别新一代三维扫描测井仪系列的应用,不仅能重现井眼及其周围地层的三维特点,而且意味着“三维岩石物理”研究的起步。新一代成像测井精细分析油藏地质特性的能力,铸就它成为三维油藏表征与数值模拟的主体技术。

然而应该指出,现阶段投入应用的成像测井主体技术,还不完全是真正意义的三维空间测量,但三维空间测量必然是今后发展趋势,目前正在推出的电阻率、核磁共振、声波扫描测井系列以及井间测井技术,就是这一发展趋势的体现。因此可以预料,随着三维空间测量测井技术的实现,将预示着三维岩石物理学研究时代的到来,并进一步推动测井理论、方法的更新与发展。

(4)裸眼、套管与井间测井系统的有机组合,实现油气藏的“四维”动态监测

随着套管井电阻率测井的突破,以及储层饱和度测井、元素俘获测井、过套管动态地层测试器、组合式生产测井仪等新一代套管井测井技术的进一步优化,促使套管井测井技术由动态监测和解决油井钻采中工程问题的传统应用领域,进入了“地层评价”这一新的应用领域,技术功能和作用有了明显提升。这一发展趋势将会进一步强化,特别是随着井间测井技术趋于成熟,将大大提高测井技术的空间探测能力,并与裸眼井测井技术形成三方面的有机组合,逐步实现油气藏动态地质特性、油气井采收状况和工程状态的“四维”动态监测:

A.油气藏静态—动态分析,包括二次和三次采油的油气藏描述和数值模拟。

B.水淹状况和饱和度的“四维”监测。

C.采收率的标定和动态监测。

D.油气井生产“四维”动态监测。

E.固井质量静态—动态监测。

F.油气井套管工程状态“四维”动态监测等。

(5)测井地质和工程应用覆盖油气田勘探、开发的全过程

事实上,现代测井技术的应用已经覆盖油田勘探与开发的全过程,成为当今油气资源评价和油藏管理的关键技术手段,以及钻井和采油工程设计、施工、质量评价的高效益技术手段。这一趋势又将随着今后测井技术的发展而进一步扩展和提升。主要有:

A.油气资源评价:油气层评价、产能预测和储量计算。

B.地质研究:构造分析、沉积学研究、裂缝及其分布格局、地应力分析和横向预测。

C.油藏工程:油气藏静态与动态描述、不同开发阶段的油气藏数值模拟、水淹状况和剩余饱和度分析、采收率标定和动态分析以及油气藏管理过程的优化。

D.钻井工程:水平井与大斜度井的地质导向、确定和建立上覆地层压力,孔隙压力、坍塌压力、破裂压力梯度剖面、进行岩石的可钻性和井眼稳定性分析、为钻井与钻井液的优化设计提供科学依据、井身质量监控、固井质量评价。

E.采油工程:岩石力学强度分析、优化油气井防砂与压裂设计、建立温度与压力剖面及其监测、油气井注入剖面与生产(产液、产气)剖面的动态监测、油气井套管工程状态动态监测、油气井管理过程的优化。

总之这一发展进程,正在改变人们对测井技术及其传统作用的固有概念,从内涵和外延大大丰富了对其现今作用的认识,并重新形成对其未来作用具有开拓性的设想。知识迅猛增长与快速更新是信息时代的基本特征,其结果将会造成领域专家知识的不足。因此随着测井技术的迅猛发展,石油工业上游领域的专家,特别是测井专家自身,都面临着一个再学习的问题,都有一个重新认识测井现今与未来作用的任务。而这一发展趋势,将推动90年代完成数控阶段的我国测井技术,向成像测井阶段发展。

3.4.2.2 新一代成像测井技术及其作用

(1)微电阻率扫描成像测井

地层微电阻率扫描成像测井是一种重要的井壁成像方法,它利用多极板上的多排纽扣电极向井壁地层发射电流,由于电极接触的岩石成分、结构及所含流体的不同,由此引起电流的变化,并反映了井壁各处岩石电阻率的变化,据此形成电阻率的井壁二维成像。斯仑贝谢公司的FMI是目前电成像系列中最先进的一种,该仪器有4个主极板和4个辅助极板(翼板),每一个极板和翼板有两排电极,每排有12个电极共计192个电极,在井眼中,井壁覆盖率达到80%,纵向分辨率为0.2 in(5mm),探测深度为1~2in。

地层微电阻率扫描成像测井主要应用于:

A.地质构造解释:确定地层产状、识别断层、不整合、牵引、褶皱等。

B.沉积学解释:识别层理类型、砾石颗粒大小、结构、判断古水流方向、识别滑塌变形、进行沉积单元划分、判断砂体加厚方向等。

C.裂缝识别和地层孔隙结构分析:识别高角度裂缝、低角度裂缝、钻井诱导缝、节理、缝合线、溶蚀缝、溶蚀孔洞、气孔等,确定裂缝产状及发育方向,划分裂缝段,可对裂缝参数进行定量评价,分析原生和次生孔隙的匹配程度。

D.地应力方向确定:根据井眼崩落和诱导缝的方向,确定现今主应力方向。

E.薄层解释:准确划分砂泥岩薄互层及有效厚度。

(2)核磁共振测井

核磁共振测井的商业性应用,是20世纪90年代测井学科的一个重大技术成就。原子核的磁性与外加磁场的相互作用,是核磁共振技术的物理基础。现代核磁其振测井则是以氢核作为目标核,通过调节核磁测井仪的工作频率,探测地层中氢核的核磁共振特性。目前主要是探测氢核的横向弛豫和扩散弛豫过程,通过测量揭示岩石的孔隙流体性质及其流动特性,定量提供地层孔隙度的组合和渗透率、孔隙尺寸分布等储层参数,以及有关孔隙流体性质的信息。其测井响应既取决于氢元素在地层孔隙中的赋存状态和丰度,又与地层的孔隙结构和流体性质有关,但一般不受岩石骨架矿物成分的影响。

核磁共振测井主要应用于:

A.提供准确的孔隙度和渗透率等岩石物理参数。包括地层总孔隙度、有效孔隙度、自由流体、毛管束缚水孔隙度和渗透率等岩石物理参数。

B.分析储层的孔隙结构。T2分布的形态指示了储层孔隙结构分布、分析孔隙尺寸大小和复杂储集空间的类型等。

C.有效划分储层。核磁共振测井提供的有效孔隙度、束缚流体孔隙度、自由流体孔隙度,以及T2分布可以直观显示储层与非储层。

D.识别流体性质。利用双TW双TE测量方式和标准T2谱形态分布,有助于识别岩性和复杂储层的流体性质。

E.估算原油黏度和扩散系数。利用双TE测井资料的扩散分析方法,估算原油黏度和扩散系数。

(3)偶极横波成像测井

偶极横波成像测井技术是为了解决单极声波测井在软地层中无法测量横波这一难题,同时也为了进一步提高测量精度而提出的。它是把新一代偶极技术与最新发展的单极技术结合在一起,提供了当今测量地层纵波、横波和斯通利波的最好方法。只要在适当发射频率下,无论大井眼井段还是非常慢速的地层中都能得到较好的测量结果,另外探测深度也相应有所增加。

偶极横波成像测井主要应用于:

A.岩性识别。主要是利用纵横波速度比、泊松比等参数,确定地层的岩性。

B.识别气层和气-水界面。根据偶极阵列声波资料得出的纵横波速度比及其他岩石力学参数,可比较有效识别气层与气-水界面。

C.判断裂缝发育井段、类型,分析裂缝储层的渗流特性。利用纵、横、斯通利波的幅度衰减直观地判断裂缝发育带,分析裂缝有效性。

D.地层各向异性分析。在裂缝性地层或构造应力不平衡的非裂缝性地层中,根据快横波和慢横波的检测,可以分析地层的各向异性大小、方向及其影响因素,并确定现今最大水平主应力的方向、大小。

E.岩石力学参数计算,进行井眼稳定性分析和压裂高度预测等。

(4)阵列感应/阵列侧向成像测井

20世纪90年代以来,国外各大公司吸收了几种新型感应/侧向测井仪的优点,研制出具有更优探测性能的阵列感应/阵列侧向成像测井仪。它们都具有高分辨率、探测深度和分辨率相匹配的特点;具有软件聚焦的功能;具有5~6个独立、探测深度依次递增的阵列组合,其中感应成像测井仪可提供垂直分辨率分别为1ft、2ft、4ft,探测深度分别为10in、20in、30in、60in、90in和120in的视电阻率数据。阵列侧向成像测井可以得到6条探测深度不同的视电阻率曲线,形成径向电阻率成像,大大提高了测井分析储层径向特性和求解地层真电阻率的能力。一般来说,阵列感应主要适用于低电阻率剖面,阵列侧向则适用于高电阻率剖面。

阵列感应/阵列侧向成像测井主要应用于:

A.划分渗透层。根据泥浆滤液侵入地层的驱替状况,划分渗透性地层和分析储层可采程度。

B.评价储层流体性质,确定受污染状况。

C.描述地层电阻率及侵入剖面径向变化。通过反演得到原状地层、侵入带电阻率、冲洗带与过渡带半径,描述地层电阻率径向变化和提供饱和度径向成像图。

D.薄层评价。准确地测量出薄层电阻率,有效识别层内的非均质性,有利于薄油气层的识别。

(5)模块化动态地层测试器

模块化动态地层测试器是新一代的电缆地层测试装置,改进的探测器采用模块化结构,以应对不同应用需求。特别是石英压力传感器,可快速、准确响应地层压力和温度的变化;泵排模块的应用,可采集原状地层的PVT流体样品;并能直接测量地层径向和垂向渗透率等,从而大大增强仪器直接测压、取样和分析储层特性的功能。

模块化动态地层测试器主要应用于:

A.测量地层压力剖面,计算地层压力梯度、压力系数、流体密度等参数。

B.估算地层径向和垂向渗透率。

C.快速评价油气层,确定或预测气-油-水界面。

D.预测储层产能。根据压力测试和取样样品分析数据,估计油层生产能力。

E.地质与工程应用。在多井评价中可以研究油藏特征、井间连通性;在地质研究工作中用于沉积相分析和进一步认识构造;在开发区块进行油层动用情况和潜力分析;在钻井工程方面可以结合声波、密度测井资料合理确定安全的泥浆比重等。

(6)地层元素俘获能谱测井

元素俘获能谱测井(ECS)是用中子激发直接探测地层俘获伽马射线,从俘获伽马射线能谱中获得有关硅、钙、铁、硫、钛、钆等地层元素含量的信息,从而进一步计算出地层中各种矿物的类型和含量。主要应用于:

A.岩性识别和储层评价。确定矿物和岩性,可准确计算岩石含量和特殊矿物。提供不受井眼影响的准确的泥质含量,为更准确计算孔隙度提供条件。

B.沉积相研究。准确识别石膏和钙质,为沉积相的判断提供指相矿物。清楚显示沉积旋回变化,为划分地层提供依据。

C.烃源岩研究。精确测出钙的含量,减少把薄互层钙质或膏质胶结层误判为烃源岩的可能性。准确提供无有机质影响的干岩石骨架体积,为利用综合体积法计算烃源岩提供重要参数。

总之,随着现代测井技术特别是成像测井技术的应用,塔河、东部及南方海相碳酸盐岩复杂油气藏的勘探实践以及海相层系前瞻性研究工作的开展,多方面提升了对碳酸盐岩油气藏的认识和评价能力,具体表现在:纵向上可识别碳酸盐岩储集的主要类型;准确提供剖面的孔隙度数值;可对裂缝进行定性和定量描述;利用核磁共振测井标定孔隙的大小分布;分析裂缝与溶蚀孔洞分布关系;特别是在碳酸盐岩气藏的流体识别有了比较大的进展。

3.4.2.3 海相层系测井系列的优选

(1)优选测井系列的基本原则

分析了以碳酸盐岩为主体的海相储层地质特性、评价难度以及现代测井技术发展特点与作用,就能形成对测井系列选择与优化的更明确思路。

1)有针对性地分析常规测井系列。电阻率与孔隙度系列,在海相储层评价中的适应性,明确其功能和作用。核心是进一步明确各种常规测井技术在储层有效性评价和流体性质识别的能力和存在的局限性,为优化常规测井系列提供直接依据。

2)加强新一代成像测井技术的应用。加大现代测井技术应用力度,主要是加强成像测井及其关键技术的应用如微电阻率扫描、偶极横波、核磁共振成像测井等,有针对性在新区、新领域的探井、复杂油气藏的探井和开发井、油气藏研究和动态监测的关键井和观察井,取全取准配套测井资料,为单井精细解释和油气藏研究提供坚实的资料基础。

3)生产测井的早期介入。在勘探阶段应选择一定的探井或评价井,进行生产测井,搞清油气藏流体的产出剖面,并验证储层划分标准,提高复杂油气藏测井评价的可信度,为计算储量提供重要依据。

4)形成探井油气层快速评价的测井系列,提高海相探井的解释成功率。核心是解决海相复杂储层流体性质识别这一关键难题,主要是有针对性增加一些具有直观、快速显示储层流体性质的测井仪器方法,如模块化动态地层测试器、旋转式井壁取心器与现场核磁共振分析仪相结合等,形成完整的疑难探井快速评价测井系列。即以常规和成像测井、岩心和录井资料,对储层有效性和油气水作出判识,优选目标层位,以模块化动态地层测试器进行验证,快速评价油气层和油气藏类型,达到缩短发现油气藏的周期,提高勘探效率和效益。

5)在综合分析的基础上,针对储层特点,提出优化、配套和规范的测井系列。

(2)优选测井系列的技术目标

1)提高单井解释可信度,充分利用现有的测井与其他“井筒”技术,搞清每一口探井主要地质特性,核心是正确识别和划分气、油、水层,尽量做到使每一口探井的完井决策不留遗憾。

2)通过一口或几口探井和评价井的精细解释,基本搞清油气藏基本特性,实现对储层和油气藏的整体评价。

(3)碳酸盐岩海相层系的测井系列

在探井和评价井中,形成以三电阻率、三孔隙度和自然伽马(或能谱)等常规测井为基础,微电阻率成像、核磁共振、多极子阵列声波、地层元素俘获能谱测井和阵列侧向测井为核心的完整测井系列。

③ 如何查询存储式测井仪器技术现状

无电缆存储式测井技术是为了适应目前水平井、大斜度井等复杂井逐渐增多而相应发展的新型测井技术.测井时,系统利用钻具受井眼条件影响较小的特点,将下井仪器悬挂在钻具(保护套)内,通过钻具输送至目的层段,利用泥浆循环将仪器泵出保护套,起钻同时

④ 测井仪器设备

煤炭系统自1985年引进五套美国MT-Ⅲ数字测井系统后,很长一段时间没有再引进国外先进的测井仪器和测井技术。直至2009年初,中煤地质工程总公司在国内首家引进一套美国蒙特(Moumt-Sopris)仪器公司生产的Matrix数控测井系统。目前国内生产煤炭测井仪器厂家主要有北京中地英捷物探仪器研究所、渭南煤矿设备仪器厂、上海地质仪器厂和重庆地质仪器厂。从测井参数方法方面看,上述厂家生产的测井仪器均可完成煤炭测井的补偿密度、自然伽马、视电阻率、三侧向电阻率、自然电位、声波时差、井径、井斜、井温等项目,基本满足《煤炭地球物理测井规范》的要求。北京中地英捷物探仪器研究所为开展煤层气和其他测井工作,还研发和生产一批新方法仪器,主要包括补偿中子、双侧向、微球形聚焦、套管接箍、双井径、声波变密度、声幅、流量、磁化率等测井仪器,测井方法较全。

1.PSJ-2型轻便数字测井系统

本仪器由北京中地英捷物探仪器研究所生产,是目前我国煤田地质勘探测井的主要设备,具有体积小、重量轻、选用范围广,可广泛用于煤田、水文、冶金及桩基勘测、工程地质等领域。该测井系统主要由笔记本电脑、针式打印机、数字采集记录仪、绞车控制器、绞车和测井探管组成。测井探管包括声速、密度三侧向、井温井液电阻率、电测电极系、连续孔斜检测、双井径检测、双侧向、补偿中子、磁定位自然伽马、桩基孔检测等十多种,组合程度高、方法齐全。测量方法为声波时差、声幅、补偿密度、井径、自然伽马、三侧向电阻率、激发极化率、井斜、双井径、双侧向、补偿中子、磁定位等。

2.TYSC-3Q型数字测井仪

本仪器由渭南煤矿设备仪器厂生产,是轻型车载或散装煤田勘探测井设备,具有综合化、轻便化和多参数的特点,便于拆卸搬运,还适用于金属、工程和水文地质勘探。该测井系统主要由计算机、针式打印机、测井控制面板、绞车控制器、绞车和测井探管组成。测井探管包括声速、密度三侧向、井温井液电阻率、电测电极系四种,测量方法为声波时差、密度、井径、自然伽马、三侧向电阻率、电位电阻率、自然电位、梯度电阻率、激发极化率、井温、井液电阻率。

3.JHQ-2D型数字测井系统

本仪器由上海地质仪器厂生产,是专为地质、煤田、水文、冶金、核工业行业而设计,具有重量轻、操作维修简单、可连接井下探管种类多、抗震、耐温、耐湿、可靠性高等特点。该系统主要由笔记本电脑、打印机、绘图仪、综合测井仪、电测面板、绞车控制器、绞车和测井探管组成。测井探管包括三侧向、磁三分量、声速、放射性密度、井温井液电阻率、数字井径仪、高精度测斜仪、电极系、磁化率、流量仪、闪烁辐射仪。探管种类多、组合程度较低。测量方法为三侧向电阻率、磁三分量、声速、密度、井温、井液电阻率、井径、井斜、自然电位、视电阻率、磁化率、流量、自然伽马。

4.JQS-1智能工程测井系统

本仪器由重庆地质仪器厂生产,具有设备轻便、功能齐全、图形清晰、直观(全中文菜单)、用户界面良好等特点。主要由笔记本电脑、打印机、智能工程测井系统主机、绞车控制器、绞车和测井探管组成,测井探管包括声波、双源距密度贴壁组合、井温井液电阻率、中子组合、磁化率、多道能谱、井径等,探管种类多,组合程度较高。测量方法为近接收、时差、密度、自然伽马、视电阻率、井径、井温、井液电阻率、中子、磁化率、自然伽马能谱。

但上述所有厂家生产的仪器,在工作性能稳定性、仪器刻度、校正和数据定量方面均存在一定的不足,有待进一步完善。

5.美国MT-Ⅲ数字测井系统

本测井系统由美国蒙特(Moumt-Sopris)仪器公司于1985年生产,具有测井方法多、探管组合程度高、工作稳定可靠,刻度计算量板齐全等特点,主要用于煤田,也适用于水文、工程、热源及浅油层等测井。因引进年限长,配件少、方法面板多、故障较多。地面仪器主要由计算机、四笔记录仪、方法面板、绞车控制器、数字格式器、绞车等组成;下井探管有6种,分别为密度组合仪、中子组合仪、声波仪、井温柔仪、电测仪、产状仪;测量方法有补偿密度、聚焦电阻率、自然伽马、井径、中子—热中子、自然电位、0.4m电位电阻率、接地电阻、声波时差、声幅、全波列、井温、井液电阻率、激发极化率、1.6m电位电阻率、1.8m梯度电阻率、井斜、微侧向等。

6.美国Matrix数控测井系统

该系统由美国蒙特(Moumt-Sopris)仪器公司于2009年初生产,在煤炭测井界属最先进、最可靠的测井仪器。测井方法齐全、配置合理,主要由采集面板、计算机、绞车和多种井下探头组成完整的测井体系,在丰富的测井采集软件支持、控制下,进行测井数据采集、显示、存盘、打印等工作,由软件取代了硬件的很多功能,大大增强了仪器工作的可靠性,减少仪器故障率。该系统使用国际通用的Well cad软件来管理、处理和解释测井数据,并可方便地与物探、地质等数据交换拼接。下井仪器最大外径40mm,设计可测井深2000m,完全适合煤炭、煤层气、金属、水文等领域测井。除了配备有可以测量补偿密度、补偿声波、补偿中子、深中浅电阻率、微侧向、自然伽马、自然电位、井径、井斜、井温、声波全波列、声波变密度、声幅、套管接箍、双感应、磁化率、流量等方法的测井仪器外;还配备有先进的声波全波列测井仪和超声波成像测井仪。应用声波全波列测井仪可直接测量纵波速度、横波速度或者从全波列中获取横波速度,计算更准确的岩煤层力学性质。应用超声波成像测井仪可以测量提供大量有效可视的钻孔岩体定量数据,形成反映孔壁特征的二维孔壁展开图像、三维孔壁柱状图、钻孔节理裂隙统计极点图和玫瑰花图,直接应用于测算地应力场、识别裸眼井壁裂缝、判断岩层岩性、确定岩层产状等,具有直观、清晰、可视性的特点,在工程勘察、油气、煤炭、煤层气等测井领域有着广阔的应用前景。

石油系统测井仪器的测井方法最全,技术先进,工作性能较好,但因井下仪器外径一般为89mm,最小外径为70mm,而且仪器采样间隔、源距均较大,一般不适宜煤炭测井。

⑤ 井温测井

井温测井(或称温度测井、热测井),是一种热学方法,它使用带有温度传感器的下井仪器测量井内温度(通常是井液温度)及其沿井轴或井周的空间分布,其方法及仪器比较简单,但仍是一种广泛应用的重要测井方法。

我国温度测井起步于1954年,在四川石油钻井中工作中首次应用。20世纪60年代,我国开始在煤矿和水文勘查钻井中使用温度测井方法,并逐步在各领域广泛应用。20世纪80年代初开始,地矿、石油、核工业、地震、中科院等部门有关单位研制生产了多种型号的数字井温仪,包括多点测温、连续测温、存储式测温以及连续井温梯度测量等类型。使用了铠装铂电阻、半导体或石英晶体等新型传感器,测量精度达±(0.01~0.1)℃。近年来,微差井温梯度测量和径向微差井温测量技术也在我国得到应用。

4.3.1 井温测井基本原理

地球内部具有强大热能,通过火山喷发、温泉涌出和岩石传导等途径向外散热。在地球表面常温层以下,地温随深度加大而增高。通常把地表常温层以下每向下加深100m所升高的温度称为地热增温率或地温梯度。对于一个局部地区,在正常条件下热场分布一般是稳定的,但其地温梯度值可能与平均地温梯度有差别,如我国华北平原约为1~2℃/hm,大庆油田可达5℃/hm。据实测,地球表层的平均地温梯度约为3℃/hm;海底的平均地温梯度为4~8℃/hm,大陆为0.9~5℃/hm。

如果在井内温度测量发现地温梯度或径向温度分布有明显的异常变化则可判断为井下发生异常情况。

为了反映井内温度分布,研制了多种类型的井温仪,但其测量原理是相同的。井温仪的传感器多采用热敏电阻组成的惠更斯电桥,把井内温度变化转换成电桥输出的电压变化送至地面进行记录。

图4.3.1是井温仪测量原理图,其井下部分是惠更斯测量电桥。其中R2、R4是电桥的两个固定臂,用温度系数β较低的康铜(β=5×10-6)丝制成,其阻值为R2=R4=R0;另外两个臂R1=R3=R0+ΔR,R1和R3是电桥中的灵敏臂,是用高温度系数的铂金(β=3.89×10-3)丝制成,铂金丝对温度变化十分敏感,只要温度稍有变化,其电阻值就随之变化。

图4.3.1 井温仪测量原理图

电桥测量时,首先在某一起始温度T0下,使电桥M、N输出端没有输出,此时R1=R2=R3=R4=R0,ΔR=0,这是电桥平衡状态。当井内温度变化时,由于固定臂的β小,则仍可认为R2=R4=R0,而β大的灵敏臂的电阻R1=R3=R0+ΔR,这样电桥失去平衡,在输出端M、N有电位差ΔUMN输出,ΔUMN的大小与温度的变化ΔT成正比,即:

地球物理测井教程

式中:c为仪器常数;I为供电电流。井内温度T为:

地球物理测井教程

上式中T0、c可通过仪器校验求得,只要测出MN两点的电位差ΔUMN,即可以记录到一条随井深变化的井温曲线。

根据上述原理,针对所需要解决的问题,可选用不同的井温仪。如梯度井温仪测量主要反映井内温度梯度变化情况;微差井温仪测量的是井轴上一定间距两点间温度变化情况,由于用较大比例记录,能较清楚地显示井内局部温度的变化。为了确保井温曲线质量,测井前必须进行仪器常数、起始温度和时间常数的标定工作,并且选择最佳测速进行测量。应当特别指出的是,温度测井要在所有测井中最先测量,以避免仪器和电缆运动破坏原始的热场分布。

根据热源不同,井温测井可以分为自然热场法和人工热场法。但是,在实际测温过程中测量的几乎全是人工热场,只有在井液与地层之间的温度已经达到稳定状态时测量,才有可能测量到自然热场。

4.3.2 井温测井的应用

实测井温测井曲线如图4.3.2所示,温度曲线用TEMP表示,温度随着井深的增大而增大。

井温测井广泛用于基础地学研究、油气开发、地热勘查、水文及矿井设计等各个领域。

1)在基础地学研究中,井温测井是获得深部地温梯度和计算热流值的主要手段。

2)在油气田开发中,井温测井被用来确定注水井中的吸水层位;利用天然气层被钻穿时气体膨胀的吸热效应寻找天然气层;确定套管外水泥返回高度,评价检查固井质量;评价酸化、裂化效果。

3)在地热勘查中,利用热水层的温度异常寻找热水层,并用来研究地热分布及热储结构。

4)在水文钻井中,温度测井被用来划分含水层位和分析补给关系。

5)在固体矿产中,它是某些固体矿产建井设计或安全措施所需地下温度数据的重要来源。

图4.3.2 井温测井曲线图

⑥ 造成测井系统CCL延迟的原因是什么

延迟的原因有2个。
首先是记录点延迟,因为二者记录点的不重合造成的,伽马的记录点在探头处,CCL的记录点在线圈处,二者有一定距离,也就是说同一时间测量的GR和CCL分别对应不同深度,但显示时需要把同深度的测量值放在一起,所以需要把某一条曲线做深度平移,平移距离就是伽马探头和ccl线圈的距离,这是可以在地面量出来的。
第二个延迟成为电子延迟,是地面系统处理过程产生的误差,不同测井系统是不同的,但这种误差通常很小,可以忽略不计。
精确确定仪器的延迟值的唯一方法就是地面试验。在地面找2跟套管,接箍处安置一个刻度用的小型伽马源,在服务表中设定延迟为零,然后拖动仪器测量,比较接箍在CCL和GR曲线上的距离,这个距离就是该仪器在该测井系统的延迟值。最后,根据我的经验,延迟和测井速度无关。

⑦ 什么是测井解释系统以及其作用

. Forward 版本2.5、2.7、 .NET 平台Windows 简介:真正的多用户测井处理系统,多级安全保护措施,抛弃传统的以方法为核心的设计思路,采用以井为对象为核心的处理方案,使处理流程与人工解释方法更接近。 2 WellCAD 版本 3.1、4.0 平台 Windows 简介:WellCAD是一款基于井眼数据管理的强有力的交互式PC机数据管理工具软件,是目前市场上同类型功能最强的井筒应用工具。 Wellcad软件是由一批在石油行业和与石油直接相关行业比如地球物理、岩石矿物学、地质工艺及石油地质工业丰富的工作经验的专家和员工开发的。该软件具有强有力的图形功能和处理能力及专业化的钻井记录文件分析功能,能够满足石油地质学家科研及各个层次石油地质工作者的需要,能够生成标准化的井眼数据处理成果和职业化图表报告,适用于井筒原始资料的处理及后期综合解释。 3. Geolog 版本6.4 简介:聚类分折、定量回归由多种地震属性计算物性。 4. LogPlot 版本 2005 平台 Windows 简介: LogPlot 是一个用于石油, 地球物理等领域的十分灵活方便的测井绘图软件. 可以安装在手提式电脑上到现场工作, 用户可以只有很少的经验, 但却可在短时间内做出大量的测井记录, 并且可以用软件中的造井工具来显示一个或多个井位.用户还可以建立自己的样板, 或应用软件中已有的样板。 5. LESA 5.0 测井评估分析系统 版本 5.0 平台 Windows 简介:Digital Formation的测井评估分析软件,可应用于裸眼井及套管井测井分析,支持LAS和LBS格式。可以解释大部分裸眼井测井,从单个孔隙度测井最小值到现代组合测井。该解释结合了着名服务公司采用特殊工具的测井结果。 6. GAEA WinLog 版本 4.33 平台 Windows 简介:能够非常快速容易的创建钻井日志和测井曲线的工具。WinLoG非常直观,容易上手,界面与Office程序类似。日志和曲线的显示就是打印的效果。所有的日志和曲线在上面点击后都可以编辑。用Access数据库来存储数据信息,所以你可以很容易的将数据用在其他程序中。 GeoFrame、eXpress、DPP、Drill View、Geo-Steering Screen

⑧ 中国测井技术的发展与现状是什么

中国测井技术的现状是测井解释处于较国外领先地位,但测井设备仪器主要处于仿造阶段,如西安仪器厂仿造MAX500的EILOG,环鼎仿造CSU的HH2530,胜利测井仿造5700的胜利6000,就仿造技术来说,个人认为胜利仿造的胜利6000和环鼎的HH2530仪器稳定性较好,西安仪器厂仿造的EILOG功能比较强大。目前测井技术的总体发展思路是由数字化向多维、成像方向发展。电缆传输向井下存储、无线方式发展。

⑨ 测井在天然气水合物勘探与评价中的应用

陆敬安

(广州海洋地质调查局 广州 510760)

作者简介:陆敬安,男,(1970—),博士,高级工程师,主要从事综合地球物理资料解释工作。

摘要 测井是水合物深入勘探阶段—钻探阶段的必要手段,已得到较好应用。文章综合介绍和分析了ODP204航次、加拿大西北马更些河三角洲地区Mallik 5L-38井、IODP311航次及日本南海海槽等较新的水合物钻探调查的测井方法与技术,重点分析了核磁测井、电磁波测井及偶极横波测井等测井新技术在水合物勘探与评价中的应用,对测井方法在水合物勘探中存在的问题进行了讨论。

关键词 天然气水合物 测井方法 测井解释

1 前言

测井方法在油气藏勘探和开发过程中得到了广泛的应用,由于水合物的发现与研究相对较晚,测井方法在天然气水合物中勘探中的应用也只是随着钻探工作的开展而有了应用的空间。由于天然气水合物存在于合适的温压条件环境中,一旦脱离该条件,水合物即分解。因此,能够在原位地层压力和温度条件下测量地层物理特性的测井方法对发现和研究天然气水合物来说是其它的勘探方法所不能替代的(高兴军等,2003)。到目前为止,已有的水合物钻孔勘探中几乎都使用了测井方法,如危地马拉的570号钻孔、ODP164航次(Paull,C.K.,Matsumoto,2000)、State Ellien-2及日本南海海槽天然气水合物钻探、ODP204航次、Mallik 5 L-38井及IODP311航次等。测井方法对含水合物沉积层的识别起到了良好的效果。在水合物钻探过程中,一个井场往往要钻几口井,分别用于随钻测井、钻探取芯及电缆测井等。随钻测井方法与电缆测井是在钻井的不同阶段进行的,同样的测井方法原理基本相同。根据以往的情况分析,不是所有的水合物钻探都使用了随钻测井。作为测井工作的一部分及为了全面了解水合物测井方法及其特点,本文将分别加以介绍。

2 测井方法概述

2.1 随钻测井

天然气水合物钻探中随钻测井(LWD)的主要目的之一是为了确定合适的取芯位置。通常随钻测井与随钻测量(MWD)同时进行。LWD和MWD仪器测量不同的参数,MWD仪器位于紧邻钻头之上的钻环中,用于测量井下钻探参数(如钻头重量、扭矩等)。LWD和MWD仪器的差别是LWD数据被记录到井下内存当中并在仪器到达海面之后取出数据,而MWD数据是通过钻杆内的流体以调制压力波(或泥浆脉冲)的形式传输并进行实时监控。在LWD和MWD两种仪器联合使用的情况下,MWD仪器可同时将两种数据向井上传输。在最新的水合物钻探中,日本南海海槽的天然气水合物钻探、ODP204航次及IODP311航次使用了LWD测井,所使用的仪器名称及其输出参数见表1。

表1 天然气水合物随钻测井和随钻测量方法Table1 The LWD&MWD tools description used for gas hydrate logging

204航次中使用的LWD和MWD仪器有钻头电阻率仪(RAB)、能量脉冲MWD仪、核磁共振仪(NMR-MRP)及可视中子密度仪(VND),如图1 所示,图中GVR6 为可视地层电阻率仪,包括深、中、浅电阻率及环带电阻率和自然伽玛五种测量。这是NMRMRP仪器首次用于ODP航次。不同的测井方法组合在不同的测井场合有不同的名称,如在日本的天然气水合物钻探中,密度与中子组合在一起称为CDN、伽马射线和电阻率组合称为CDR,尽管名称存在差异,但其测量的物理参数是一致的。

LWD测量被安排在钻孔之后及钻探或取芯作业所引起的负面效应之前进行。由于钻探和测量相距的时间较短,相对于电缆测井而言钻井液对井壁的侵入处于轻微阶段。

图1 ODP204航次使用的随钻测井及随钻测量仪器串

(图中数字单位为米,从钻头最底部算起)

Fig.1 LWD&MWD Tools Used in ODP204

(The unit of the number is meter and starts from the bottom)

LWD设备由电池提供电源并使用可擦写/编程的只读存储器芯片来存储测井数据。LWD仪器以等时间间隔的方式开展测量并与钻井架上监控时间和钻探深度的系统同步。钻探之后,LWD仪器被收上来下载数据。井上和井下时钟的同步能够使得将时-深数据与井下时间测量数据合并成一个深度测量的数据文件。最终的深度测量数据被传送到船上的实验室进行整理和解释。

2.2 电缆测井

电缆测井对天然气水合物储层的精确定量评价起非常重要的作用。由于天然气水合物储层的电阻率及声波速度明显偏高,因此电阻率测井和声波测井是识别天然气水合物的有效方法。另外,精确的评价天然气水合物储层还需要结合其它测井方法进行综合评价。天然气水合物钻探中使用过的电缆测井方法见表2,这些测井方法的详细介绍可在有关书籍和文件中找到。一些较新的测井技术,如FMI、DSI、EPT、CMR等测井方法在ODP204航次(Tréhu,A.M.,Bohrmann,2003)、Mallik 5L-38及日本南海海槽天然气水合物的识别和评价过程中发挥了重要作用。

表2 天然气水合物电缆测井方法Table2 The wireline logging methods for gas hydrate exploration

续表

表2中大部分测井仪为204航次使用的方法,EPT在Mallik 5L-38井中首次使用,日本南海海槽的天然气水合物钻井勘探中使用了CMR仪(Takashi UCHIDA,Hailong LU,2004)。

3 水合物测井评价

天然气水合物储层测井评价的关键问题之一是建立合适的储层评价模型(手冢和彦,2003)。根据岩心观察,天然气水合物在沉积物中的分布主要有以下几种情形(王祝文等,2003):分散胶结物、节状、脉状及块状。永久冻土带及海洋天然气水合物的储层模型如图2所示。模型共分四类,其中永久冻土带两类:冻土层内及冻土层下,二者的区别为在冻土层之下,流体部分含自由水,而在冻土层内部流体部分含冰成分;海洋天然气水合物也分两类:一类为流体部分含自由水,另一类为流体部分含游离气。在ODP204航次及日本的南海海槽水合物钻探中使用模型C对测井资料进行解释,而在Mallik井中则使用的是模型A。模型A和C均是基于常规油气评价的双水模型提出的。

由于天然气水合物具有独特的化学成分及特殊的电阻率和声学特性,因此,通过了解天然气水合物储层的这些特征应有可能获得天然气水合物饱和度及沉积孔隙度(陈建文,2002;王祝文等,2003),这也是两个最难确定的储层参数。钻井是获取孔隙度及烃饱和度的重要数据来源。本质上,目前大部分的天然气水合物测井评价技术还是定性的,且借用的是未经证实的石油工业使用的测井评价方法。为了证明标准的石油测井评价技术在评价天然气水合物储层中的有效性,还需要进行大量的实验室和现场测量。由于天然气水合物以不同的方式影响每种孔隙度测量方法,因此可通过对比不同的孔隙度测量技术来估计天然气水合物的数量。

图2 永久冻土及海洋天然气水合物储层模型

Fig.2 The reservoir models for permafrost and marine gas hydrate

3.1 孔隙度评价

天然气水合物储层的孔隙度评价所利用的测井数据主要包括电阻率测井、密度测井、声波测井、中子测井、核磁共振测井等与地层孔隙密切相关的地层物理响应,同时还辅以自然电位、自然伽玛、岩心分析等数据来进行的。有关文献已经对部分常规测井方法的应用作了介绍,这里仅介绍较新的测井手段及其解释方法。

3.2 饱和度评价

(1)电磁波传播测井

电磁波传播测井仪只在 Mallik 5L-38井中使用过(S.R.Dallimore,T.S.Collett,2005),电磁波传播测井的垂向分辨率高于5cm,用来测量天然气水合物的原位介电特性,据此计算天然气水合物的饱和度。天然气水合物储集带的平均介电常数为9,在5到20之间变化;带内的平均电阻率超过5Ω·m,当仪器的工作频率为1.1GHz时,电阻率在2Ω·m到10Ω·m之间变化。电磁波传播测井仪同时输出传播时间及信号衰减两个参数。地层的介电常数及电导率可由下式计算(Y.-F.Sun,D.Goldberg,2005):

南海地质研究.2006

南海地质研究.2006

式中:tpl为慢度或传播时间,单位ns/m;a为衰减量,单位为db/m;εr为相对介电常数,无量纲;σ为电导率,单位为西门子/s,c(=0.3m/ns)为真空中光的速度。

Y.F.Sun及D.Goldberg等采用等效介质方法并假定含天然气水合物地层的多相系统可近似为连续、均质及各向同性介质,认为含天然气水合物介质的等效磁导率为1,其介电常数及体积密度遵从下面的体积平均混合规则:

南海地质研究.2006

南海地质研究.2006

南海地质研究.2006

式中,φa为第a种成分的体积百分比,ρa和εa分别是第a种成分的密度和介电常数,ρ和εr分别为体密度及体介电常数。这里假定孔隙性介质仅包含三种组分:固体颗粒、天然气水合物及水。从而上面的公式可以简化为:

ρ=(1-φ)ρs+φShρh+φ(1-Sh)ρw (6)

南海地质研究.2006

式中,φ为总孔隙度,Sh为天然气水合物的饱和度,ρs、ρh及ρw分别为固体颗粒、天然气水合物及水的密度,εrs、εrh及εrw分别为固体颗粒、天然气水合物及水的介电常数。在已知每种组分的密度和介电参数情况下,就可依据介电和密度测井由上面的方程计算出含天然气水合物地层的孔隙度和水合物饱和度。

图3所示为电磁波传播测井在Mallik 5 L-38井中含水合物层的传播时间与电阻率图。从图中可以看出,电磁波传播时间曲线与声波传播时间曲线具有相似的趋势,但其分辨率更高。右边的电阻率曲线道上,电磁波传播电阻率的分辨率也明显高于感应电阻率。

图4为根据电磁波传播测井求出的地层孔隙度及天然气水合物饱和度。图中中子孔隙度的数值偏高,这是由于中子孔隙度测量的含氢指数不仅与游离态的氢有关,还与束缚水中的氢有关。由于电磁波传播测井具有较高的垂向分辨率,因此其在揭示含天然气水合物层的细微结构方面拥有独特的能力。

(2)声波测井

与不含天然气水合物的沉积层相比,含有天然气水合物的沉积层呈现出相对较高的纵波和横波速度。目前已提出了许多不同的速度模型来预测天然气水合物对弹性波速度的影响,如时间平均方程、等效介质理论、孔隙填充模型、胶结理论、加权方程及改进的Biot-Gassmann理论(BGTL)等。以下介绍BGTL的基本理论及应用效果。

根据纵横波速度的如下关系式:

Vs=VpGα(1-φ)n (8)

式中,Vp为纵波速度,Vs为横波速度,α为骨架物质的Vs/Vp比值,n的值取决于不同的压力和固结程度,φ为孔隙度,G为取决于骨架物质的参数,Lee(2003)推导出了下面的剪切模量μ:

南海地质研究.2006

其中,

南海地质研究.2006

式中的kma、μma、kfl及β分别为骨架的体积模量、骨架的剪切模量、流体的体积模量及Biot系数。

Biot-Gassmann理论给出了沉积物体积模量的计算方法:

k=kma(1-β)+β2M (11)

饱和水的沉积物的弹性波速度可由下式依据弹性模量计算:

南海地质研究.2006

图3 电磁波传播测井曲线与声波及感应电阻率曲线的对比

(其中声波传播时间、电磁波传播时间较低段及电阻率显示高阻值段为水合物层)

Fig.3 The comparison of logging curves between EPT,acoustic and inction

(The depth interval between 906.5~925meters is the gas hydrate zone)

式中ρ为地层的密度。

对于松软岩石或未固结的沉积物,采用如下的Biot系数

南海地质研究.2006

对于坚硬或固结的地层,采用Biot系数为

β=1-(1-φ)3.8 (14)

Lee(2003)建议采用下面的方程计算n值:

图4 电磁波传播测井计算出的地层孔隙度及天然气水合物饱和度

Fig.4 The porosity and gas hydrate saturation calculated from by EPT logging

南海地质研究.2006

式中,p为差分压力(MPa),m代表固结或压实对速度的影响。实际问题中,∂φ/∂p很少知道,上式中的m很难直接应用。测量数据分析表明固结沉积物的m值为4~6,未固结沉积物的m值为1~2。

参数G用于补偿当骨架为富含粘土的砂岩时实测值与预测值之间的差异。对于泥质砂岩,G值为:

南海地质研究.2006

其中,Cv为粘土含量百分比。对于含天然气水合物沉积有如下的求取G的方程:

南海地质研究.2006

式中Ch为孔隙空间中天然气水合物的浓度。Lee(2002)指出含天然气水合物沉积的n=1及G=1。由于这些参数是在没有考虑速度发散的情况下在超声频率范围由速度获得的,因此参数n和G可以认为是用来拟合测量数据的自由调节参数。图5为根据纵波速度及NMR孔隙度求出的天然气水合物浓度对比图。

图5 由纵波求出的天然气水合物浓度及由NMR求出的天然气水合物饱和度

Fig.5 The gas hydrate saturation calculated from P-wave and NMR

根据分析结果可知,当采用声波数据估计天然气水合物浓度时,P波速度优于S波速度,主要原因是当采用P波速度时与BGTL中的n和G参数有关的误差较小;另外,在纯砂岩层段,NMR孔隙度测井估计的天然气水合物浓度值略高于由P波速度估计的数值。

(3)核磁共振测井

核磁共振测井在描述天然气水合物沉积方面起着重要作用。如果与密度孔隙度测量结合起来,可能是获取天然气水合物饱和度的最简单同时也是最可靠的手段。核磁共振测井仪仅对孔隙空间中的液态水有响应,对天然气水合物没有响应。计算储层孔隙度和天然气水合物饱和度的公式如下:

南海地质研究.2006

南海地质研究.2006

式中,水的氢指数HIw≅1,甲烷水合物的NMR视氢指数HIh=0。水的密度ρw=1.0g/cm3,天然气水合物的密度ρh=0.91g/cm3,砂岩骨架的密度ρma=2.65g/cm3,Ph为天然气水合物的NMR极化校正值,仅与HIh伴生出现。λ=0.054,因此

南海地质研究.2006

声波和电阻率测井求出的饱和度在大部分层段是一致的,而在1003~1006m、1014~1020m之间,三种方法给出了三种不同的结果。而核磁共振方法与另两种确定的方法得到的结果不一致,造成这种不一致的原因目前尚不得而知,有待于进一步分析。

3.3 地层应力分析

图6 1088m深度处天然气水合物层段发散曲线

图6中a)图分别为快横波偶极挠曲波(红色)、慢横波偶极挠曲波(深蓝色)、低频单极斯通利波(淡蓝色)及高频单极斯通利波(绿色);b)图为相应的平均谱特征。

Fig.6 The dispersion curves from the gas hydrate interval at a depth of 1088m

a)The dispersion curves for the fast shear dipole-flexural(red),the slow shear dipole-flexural(dark blue),the low frequency monopole stoneley(light blue)and high frequency monopole stoneley(green);b)Average spectral characteristics

交叉偶极声波测井数据提供了描述地层横向各向异性的条件。传统的处理是在时间域进行的,得到的是地层各向同性或各向异性特征(Lee,M.W.,2002)。声波各向异性既可以是内在的,也可以是应力诱导的。最近的研究表明交叉偶极测井数据的频域处理可以将内在各向异性与应力诱导的各向异性区分开。交叉偶极测井数据的频域处理还使得对地层横波慢度的径向变化描述成为可能,对交叉偶极挠曲波的慢度频域分析还表明低频部分的探测深度达到六倍的井孔半径,可探测到原状岩石,而高频部分的偶极挠曲波则可以穿透一倍井孔半径的深度,探测到机械损坏区。高频测量数据偏离均质、各向同性模型则是机械破坏的指示。分析偶极发散曲线可以估计机械破坏区的深度。

声波数据的处理分两步进行:①慢度及各向异性分析,及②发散曲线分析。

图6及图7所示分别为含天然气水合物层及水填充的各向异性层段的发散曲线。曲线发散分析是了解声波波形数据的有效方法。在低频段,挠曲波穿透能力深至地层并可探测到远场应力;在高频段,挠曲波探测靠近井周的应力。图6a的纵波首波慢度大约为300us/m,它是非扩散型的且最大激发频率超过8 kHz。斯通利波慢度为850us/m,同时含有淡蓝色及绿色的点,表明低频和高频单极激发都能产生斯通利波。两条正交的偶极挠曲波发散曲线相互重叠。这是在垂直于井孔的平面内地层为各向同性的关键指示。

图7 1112.8m深度处水填充各向异性层段发散曲线

Fig.7 Dispersion curves from the water-filled anisotropic interval at a depth of 1112.8m

a)The dispersion curves for the fast shear dipole-flexural(red),the slow shear dipoleflexural(dark blue),the low frequency monopole stoneley(light blue)and high frequency monopole stoneley(green);(b)Average spectral characteristics

图7a所示与图6a所示具有明显的不同,即它是各向异性层。偶极挠曲波清楚显示出在低频段的各向异性特征。地层的快横波慢度约为900us/m,而慢横波约为1100us/m。这指示出了22%的各向异性。与含天然气水合物层段相比,纵波数据高度发散。

4 结论

测井技术在天然气水合物勘探的高级阶段是必不可少的工具,其对天然气水合物储层参数的精确评价对计算天然气水合物的储量至关重要,并为天然气水合物的开采提供准确的层位定位及基础数据。测井方法的发展日新月异,数据解释的精度也不断提高,在利用测井技术研究天然气水合物储层时仍限于移植油气评价方法,由于天然气水合物在地层中具有不同于油气的赋存状态,对于这样做的合理性还有待于深入的研究。根据以上研究成果得出以下结论:

1)电磁波传播测井由于具有较高的垂向分辨率,对于较薄的地层显示出较其它测井方法具有精细评价饱和度的优势;

2)核磁共振测井反映的是自由流体所占的孔隙空间,有利于详细评价自由水、束缚水及水合物所占的空间,但有关核磁测井的精细解释尚需建立在实验分析的基础上;

3)偶极声波测井对预测地层各向异性及应力分布有良好的效果;

4)另外,还应开展对天然气水合物样品的实验室研究,以便对测井解释结果进行刻度。

参考文献及参考资料

陈建文.2002.天然气水合物及其实测的地球物理测井特征,18(9):28~29

高兴军,于兴河,李胜利,段鸿彦.2003.地球物理测井在天然气水合物勘探中的应用,地球科学进展,18(4):305~311

手冢和彦,等.2003.天然气水合物的测井解析,海洋地质动态,19(6):21~23

王祝文,李舟波,刘菁华.2003.天然气水合物的测井识别和评价,23(2):97~102

王祝文,李舟波,刘菁华.2003.天然气水合物评价的测井响应特征,物探与化探,27(1):13~17

Lee M.W.2003.Velocity ratio and its application to predicting velocities:United States Geological Survey,Bulletin 2197,15p

Lee,M.W.2002.Biot-Gassmann theory for velocities of gas hydrate-bearing sediments,Geophysics,V.67,1711~1719

Paull C K,Matsumoto R,Wallace P J,and Dillon,W P(Eds.).2000.Proceedings of the Ocean Drilling Program,Scientific Results,Vol.164

S.R.Dallimore and T.S.Collett(ed.).2005.Geological Survey of Canada Bulletin 585,Scientific results from the Mallik 2002 Gas Hydrate Proction Research Well Program,Mackenzie Delta,Northwest Territories,Canada

Takashi UCHIDA,Hailong LU*,Hitoshi TOMARU**and the MITI Nankai Trough Shipboard Scientists,Subsurface Occurrence of Natural Gas Hydrate in the Nankai Trough Area:Implication for Gas Hydrate Concentration RESOURCE GEOLOGY,Vol.54,No.1,35~44,2004

Tréhu A M,Bohrmann G,Rack F R,Torres M E,et al.2003.Proceedings of the Ocean Drilling Program,Initial Reports Volume 204

Y.-F.Sun,D.Goldberg,Analysis of electromagnetic propagation tool response in gas-hydrate-bearing formations,in Scientific Results from the Mallik 2002 Gas Hydrate Prodction Research Well Program,Mackenzie Delta,Northwest Territories,Canada,(ed.)S.R.Dallimore and T.S.Collett;Geological Survey of Canada,Bulletin 585,8p

The Application of Well Logging To Exploration And Evaluation of Gas Hydrates

Lu Jingan

(Guangzhou Marine Geological Survey,Guangzhou,510760)

Abstract:Well logging is the indispensable approach when the exploration of gas hydrates step into drilling and good results has been illustrated.The paper briefly introces and construes the well logging technologies employed in the exploration of gas hydrates of Mallik 5 L-38,IODP311 and MITI Nankai-trough well.The emphasis lies in the analysis of the application of NMR,EPT and DSI logging to exploration and evaluation of gas hydrates.Also some issues ring the well log interpretation of gas hydrates are discussed.

Key Words:Gas hydrates Well logging methods Well logging interpretation

热点内容
电脑栏目缓存后变成空白页了 发布:2025-05-14 09:10:30 浏览:740
c语言的软件是什么 发布:2025-05-14 09:09:13 浏览:801
php微信支付教程视频教程 发布:2025-05-14 08:59:59 浏览:203
存储服务器分类 发布:2025-05-14 08:39:01 浏览:646
xz文件解压软件 发布:2025-05-14 08:28:43 浏览:970
lua脚本学习 发布:2025-05-14 08:20:55 浏览:714
python文件删除一行 发布:2025-05-14 08:06:58 浏览:722
如何下载奥特曼高级化3安卓版 发布:2025-05-14 07:47:31 浏览:346
qml文件修改后编译未生效 发布:2025-05-14 07:31:00 浏览:331
内到内算法 发布:2025-05-14 07:29:11 浏览:34