当前位置:首页 » 存储配置 » mysql有哪些存储引擎

mysql有哪些存储引擎

发布时间: 2022-10-17 19:24:20

① mysql存储引擎及索引类型有哪些

MyISAM、InnoDB、Heap(Memory)、NDB 貌似一般都是使用 InnoDB的,mysql的存储引擎包括:MyISAM、InnoDB、BDB、MEMORY、MERGE、EXAMPLE、NDBCluster、ARCHIVE、CSV、BLACKHOLE、FEDERATED等,其中InnoDB和BDB提供事务安全表,其他存储引擎都是非事务安全表。最常使用的2种存储引擎:1.Myisam是Mysql的默认存储引擎,当create创建新表时,未指定新表的存储引擎时,默认使用Myisam。每个MyISAM在磁盘上存储成三个文件。文件名都和表名相同,扩展名分别是.frm(存储表定义)、.MYD(MYData,存储数据)、.MYI(MYIndex,存储索引)。数据文件和索引文件可以放置在不同的目录,平均分布io,获得更快的速度。2.InnoDB存储引擎提供了具有提交、回滚和崩溃恢复能力的事务安全。但是对比Myisam的存储引擎,InnoDB写的处理效率差一些并且会占用更多的磁盘空间以保留数据和索引。不知道是不是对你有帮助

② MySQL存储引擎是什么

MySQL有多种存储引擎,每种存储引擎有各自的优缺点,可以择优选择使用:
MyISAM、InnoDB、MERGE、MEMORY(HEAP)、BDB(BerkeleyDB)、EXAMPLE、FEDERATED、ARCHIVE、CSV、BLACKHOLE。

③ Mysql数据库3种存储引擎有什么区别

MySQL常见的三种存储引擎为InnoDB、MyISAM和MEMORY。其区别体现在事务安全、存储限制、空间使用、内存使用、插入数据的速度和对外键的支持。具体如下:

1、事务安全:

InnoDB支持事务安全,MyISAM和MEMORY两个不支持。

2、存储限制:

InnoDB有64TB的存储限制,MyISAM和MEMORY要是具体情况而定。

3、空间使用:

InnoDB对空间使用程度较高,MyISAM和MEMORY对空间使用程度较低。

4、内存使用:

InnoDB和MEMORY对内存使用程度较高,MyISAM对内存使用程度较低。

5、插入数据的速度:

InnoDB插入数据的速度较低,MyISAM和MEMORY插入数据的速度较高。

6、对外键的支持:

InnoDB对外键支持情况较好,MyISAM和MEMORY两个不支持外键。

三种引擎特点如下:

1、InnoDB存储引擎

InnoDB是事务型数据库的首选引擎,支持事务安全表(ACID),其它存储引擎都是非事务安全表,支持行锁定和外键,MySQL5.5以后默认使用InnoDB存储引擎。

InnoDB特点: 支持事务处理,支持外键,支持崩溃修复能力和并发控制。如果需要对事务的完整性要求比较高(比如银行),要求实现并发控制(比如售票),那选择InnoDB有很大的优势。

如果需要频繁的更新、删除操作的数据库,也可以选择InnoDB,因为支持事务的提交(commit)和回滚(rollback)。

2、MyISAM存储引擎

MyISAM基于ISAM存储引擎,并对其进行扩展。它是在Web、数据仓储和其他应用环境下最常使用的存储引擎之一。MyISAM拥有较高的插入、查询速度,但不支持事务,不支持外键。

MyISAM特点: 插入数据快,空间和内存使用比较低。如果表主要是用于插入新记录和读出记录,那么选择MyISAM能实现处理高效率。如果应用的完整性、并发性要求比较低,也可以使用

3、MEMORY存储引擎

MEMORY存储引擎将表中的数据存储到内存中,为查询和引用其他表数据提供快速访问

MEMORY特点: 所有的数据都在内存中,数据的处理速度快,但是安全性不高。如果需要很快的读写速度,对数据的安全性要求较低,可以选择MEMOEY。

它对表的大小有要求,不能建立太大的表。所以,这类数据库只使用在相对较小的数据库表。

(3)mysql有哪些存储引擎扩展阅读:

mysql其余不太常见的存储引擎如下:

1、BDB: 源自Berkeley DB,事务型数据库的另一种选择,支持COMMIT和ROLLBACK等其他事务特性

2、Merge :将一定数量的MyISAM表联合而成一个整体,在超大规模数据存储时很有用

3、Archive :非常适合存储大量的独立的,作为历史记录的数据。因为它们不经常被读取。Archive拥有高效的插入速度,但其对查询的支持相对较差

4、Federated: 将不同的Mysql服务器联合起来,逻辑上组成一个完整的数据库。非常适合分布式应用

5、Cluster/NDB :高冗余的存储引擎,用多台数据机器联合提供服务以提高整体性能和安全性。适合数据量大,安全和性能要求高的应用

6、CSV: 逻辑上由逗号分割数据的存储引擎。它会在数据库子目录里为每个数据表创建一个.CSV文件。这是一种普通文本文件,每个数据行占用一个文本行。CSV存储引擎不支持索引。

7、BlackHole :黑洞引擎,写入的任何数据都会消失,一般用于记录binlog做复制的中继

④ MySQL简单介绍——换个角度认识MySQL

1、InnoDB存储引擎
Mysql版本>=5.5 默认的存储引擎,MySQL推荐使用的存储引擎。支持事务,行级锁定,外键约束。事务安全型存储引擎。更加注重数据的完整性和安全性。
存储格式 : 数据,索引集中存储,存储于同一个表空间文件中。
InnoDB的行锁模式及其加锁方法: InnoDB中有以下两种类型的行锁:共享锁(读锁: 允许事务对一条行数据进行读取)和 互斥锁(写锁: 允许事务对一条行数据进行删除或更新), 对于update,insert,delete语句,InnoDB会自动给设计的数据集加互斥锁,对于普通的select语句,InnoDB不会加任何锁。
InnoDB行锁的实现方式: InnoDB行锁是通过给索引上的索引项加锁来实现的,如果没有索引,InnoDB将通过隐藏的聚簇索引来对记录加锁。InnoDB这种行锁实现特点意味着:如果不通过索引条件检索数据,那么InnoDB将对表中的所有记录加锁,实际效果跟表锁一样。
(1)在不通过索引条件查询时,InnoDB会锁定表中的所有记录。
(2)Mysql的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果使用相同的索引键,是会出现冲突的。
(3)当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,但都是通过行锁来对数据加锁。
优点:
1、支持事务处理、ACID事务特性;
2、实现了SQL标准的四种隔离级别( 原子性( Atomicity )、一致性( Consistency )、隔离性(Isolation )和持续性(Durability ));
3、支持行级锁和外键约束;
4、可以利用事务日志进行数据恢复。
5、锁级别为行锁,行锁优点是适用于高并发的频繁表修改,高并发是性能优于 MyISAM。缺点是系统消耗较大。
6、索引不仅缓存自身,也缓存数据,相比 MyISAM 需要更大的内存。
缺点:
因为它没有保存表的行数,当使用COUNT统计时会扫描全表。

使用场景:
(1)可靠性要求比较高,或者要求事务;(2)表更新和查询都相当的频繁,并且表锁定的机会比较大的情况。
2、 MyISAM存储引擎
MySQL<= 5.5 MySQL默认的存储引擎。ISAM:Indexed Sequential Access Method(索引顺序存取方法)的缩写,是一种文件系统。擅长与处理,高速读与写。
功能:
(1)支持数据压缩存储,但压缩后的表变成了只读表,不可写;如果需要更新数据,则需要先解压后更新。
(2)支持表级锁定,不支持高并发;
(3)支持并发插入。写操作中的插入操作,不会阻塞读操作(其他操作);
优点:
1.高性能读取;
2.因为它保存了表的行数,当使用COUNT统计时不会扫描全表;
缺点:
1、锁级别为表锁,表锁优点是开销小,加锁快;缺点是锁粒度大,发生锁冲动概率较高,容纳并发能力低,这个引擎适合查询为主的业务。
2、此引擎不支持事务,也不支持外键。
3、INSERT和UPDATE操作需要锁定整个表;
使用场景:
(1)做很多count 的计算;(2)插入不频繁,查询非常频繁;(3)没有事务。
InnoDB和MyISAM一些细节上的差别:
1、InnoDB不支持FULLTEXT类型的索引,MySQL5.6之后已经支持(实验性)。
2、InnoDB中不保存表的 具体行数,也就是说,执行select count() from table时,InnoDB要扫描一遍整个表来计算有多少行,但是MyISAM只要简单的读出保存好的行数即可。注意的是,当count()语句包含 where条件时,两种表的操作是一样的。
3、对于AUTO_INCREMENT类型的字段,InnoDB中必须包含只有该字段的索引,但是在MyISAM表中,可以和其他字段一起建立联合索引。
4、DELETE FROM table时,InnoDB不会重新建立表,而是一行一行的删除。
5、LOAD TABLE FROM MASTER操作对InnoDB是不起作用的,解决方法是首先把InnoDB表改成MyISAM表,导入数据后再改成InnoDB表,但是对于使用的额外的InnoDB特性(例如外键)的表不适用。
6、另外,InnoDB表的行锁也不是绝对的,如果在执行一个SQL语句时MySQL不能确定要扫描的范围,InnoDB表同样会锁全表。

1.索引概述
利用关键字,就是记录的部分数据(某个字段,某些字段,某个字段的一部分),建立与记录位置的对应关系,就是索引。索引的关键字一定是排序的。索引本质上是表字段的有序子集,它是提高查询速度最有效的方法。一个没有建立任何索引的表,就相当于一本没有目录的书,在每次查询时就会进行全表扫描,这样会导致查询效率极低、速度也极慢。如果建立索引,那么就好比一本添加的目录,通过目录的指引,迅速翻阅到指定的章节,提升的查询性能,节约了查询资源。
2.索引种类
从索引的定义方式和用途中来看:主键索引,唯一索引,普通索引,全文索引。
无论任何类型,都是通过建立关键字与位置的对应关系来实现的。索引是通过关键字找对应的记录的地址。
以上类型的差异:对索引关键字的要求不同。
关键字:记录的部分数据(某个字段,某些字段,某个字段的一部分)。
普通索引,index:对关键字没有要求。
唯一索引,unique index:要求关键字不能重复。同时增加唯一约束。
主键索引,primary key:要求关键字不能重复,也不能为NULL。同时增加主键约束。
全文索引,fulltext key:关键字的来源不是所有字段的数据,而是从字段中提取的特别关键词。
PS:这里主键索引和唯一索引的区别在于:主键索引不能为空值,唯一索引允许空值;主键索引在一张表内只能创建一个,唯一索引可以创建多个。主键索引肯定是唯一索引,但唯一索引不一定是主键索引。
3.索引原则
如果索引不遵循使用原则,则可能导致索引无效。
(1)列独立
如果需要某个字段上使用索引,则需要在字段参与的表达中,保证字段独立在一侧。否则索引不会用到索引, 例如这条sql就不会用到索引:select * from A where id+1=10;
(2)左原则
Like:匹配模式必须要左边确定不能以通配符开头。例如:select * from A where name like '%小明%' ,不会用到索引,而select * from A where name like '小明%' 就可以用到索引(name字段有建立索引),如果业务上需要用到'%小明%'这种方式,有两种方法:1.可以考虑全文索引,但mysql的全文索引不支持中文;2.只查询索引列或主键列,例如:select name from A where name like '%小明%' 或 select id from A where name like '%小明%' 或 select id,name from A where name like '%小明%' 这三种情况都会用到name的索引;
复合索引:一个索引关联多个字段,仅仅针对左边字段有效果,添加复合索引时,第一个字段很重要,只有包含第一个字段作为查询条件的情况才会使用复合索引(必须用到建索引时选择的第一个字段作为查询条件,其他字段的顺序无关),而且查询条件只能出现and拼接,不能用or,否则则无法使用索引.
(3)OR的使用
必须要保证 OR 两端的条件都存在可以用的索引,该查询才可以使用索引。
(4)MySQL智能选择
即使满足了上面说原则,MySQL也能弃用索引,例如:select * from A where id > 1;这里弃用索引的主要原因:查询即使使用索引,会导致出现大量的随机IO,相对于从数据记录的第一条遍历到最后一条的顺序IO开销,还要大。
4.索引的使用场景
(1)索引检索:检索数据时使用索引。
(2)索引排序: 如果order by 排序需要的字段上存在索引,则可能使用到索引。
(3)索引覆盖: 索引拥有的关键字内容,覆盖了查询所需要的全部数据,此时,就不需要在数据区获取数据,仅仅在索引区即可。覆盖就是直接在索引区获取内容,而不需要在数据区获取。例如: select name from A where name like '小明%';
建立索引索引时,不能仅仅考虑where检索,同时考虑其他的使用场景。(在所有的where字段上增加索引,就是不合理的)
5.前缀索引
前缀索引是建立索引关键字一种方案。通常会使用字段的整体作为索引关键字。有时,即使使用字段前部分数据,也可以去识别某些记录。就比如一个班级里,我要找王xx,假如姓王的只有1个人,那么就可以建一个关键字为'王'的前缀索引。语法:Index `index_name` (`index_field`(N))使用index_name前N个字符建立的索引。
6.索引失效
(1) 应尽量避免在 where 子句中使用 != 或 > 操作符,否则将引擎放弃使用索引而进行全表扫描;
(2) 应尽量避免在 where 子句中使用 or 来连接条件,如果一个字段有索引,一个字段没有索引,将导致引擎放弃使用索引而进行全表扫描;
(3) 应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描;
(4)应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描;如select id from t where num/2 = 100;
(5) 应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描;如:select id from t where substring(name,1,3) = ’abc’ ;
(6)应尽量避免在where子句中对字段进行类型转换,这将导致引擎放弃使用索引而进行全表扫描; 如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,如select id from t where id = 1;如果id字段在表设计中是varchar类型,那么即使id列上存的是数字,在查询时也一定要用varchar去匹配,sql应改为select id from t where id = '1';
(7)应尽量避免在where子句中单独引用复合索引里非第一位置的索引;

join 的两种算法:BNL 和 NLJ
NLJ(Nested Loop Join)嵌套循环算法;以如下 SQL 为例:
select * from t1 join t2 on t1.a=t2.a
SQL 执行时内部流程是这样的:
1. 先从 t1(假设这里 t1 被选为驱动表)中取出一行数据 X;
2. 从 X 中取出关联字段 a 值,去 t2 中进行查找,满足条件的行取出;
3. 重复1、2步骤,直到表 t1 最后一行循环结束。
这就是一个嵌套循环的过程,如果在被驱动表上查找数据时可以使用索引,总的对比计算次数等于驱动表满足 where 条件的行数。假设这里 t1、t2都是1万行,则只需要 1万次计算,这里用到的是Index Nested-Loops Join(INLJ,基于索引的嵌套循环联接)。
如果 t1、t2 的 a 字段都没有索引,还按照上述的嵌套循环流程查找数据呢?每次在被驱动表上查找数据时都是一次全表扫描,要做1万次全表扫描,扫描行数等于 1万+1万*1万,这个效率很低,如果表行数更多,扫描行数动辄几百亿,所以优化器肯定不会使用这样的算法,而是选择 BNL 算法;
BNLJ(Block Nested Loop Join)块嵌套循环算法;
1. 把 t1 表(假设这里 t1 被选为驱动表)满足条件的数据全部取出放到线程的 join buffer 中;
2. 每次取 t2 表一行数据,去 joinbuffer 中进行查找,满足条件的行取出,直到表 t2 最后一行循环结束。
这个算法下,执行计划的 Extra 中会出现 Using join buffer(Block Nested Loop),t1、t2 都做了一次全表扫描,总的扫描行数等于 1万+1万。但是由于 joinbuffer 维护的是一个无序数组,每次在 joinbuffer 中查找都要遍历所有行,总的内存计算次数等于1万*1万。另外如果 joinbuffer 不够大放不下驱动表的数据,则要分多次执行上面的流程,会导致被驱动表也做多次全表扫描。

BNLJ相对于NLJ的优点在于,驱动层可以先将部分数据加载进buffer,这种方法的直接影响就是将大大减少内层循环的次数,提高join的效率。
例如:
如果内层循环有100条记录,外层循环也有100条记录,这样的话,每次外层循环先将10条记录放到buffer中,内层循环的100条记录每条与这个buffer中的10条记录进行匹配,只需要匹配内层循环总记录数次即可结束一次循环(在这里,即只需要匹配100次即可结束),然后将匹配成功的记录连接后放入结果集中,接着,外层循环继续向buffer中放入10条记录,同理进行匹配,并将成功的记录连接后放入结果集。后续循环以此类推,直到循环结束,将结果集发给client为止。
可以发现,若用NLJ,则需要100 * 100次才可结束,BNLJ则需要100 / block_size * 100 = 10 * 100次就可结束,大大减少了循环次数。

JOIN 按照功能大致分为如下三类:
JOIN、STRAIGHT_JOIN、INNER JOIN(内连接,或等值连接):取得两个表中存在连接匹配关系的记录。
LEFT JOIN(左连接):取得左表(table1)完全记录,即是右表(table2)并无对应匹配记录。
RIGHT JOIN(右连接):与 LEFT JOIN 相反,取得右表(table2)完全记录,即是左表(table1)并无匹配对应记录。
注意:mysql不支持Full join,不过可以通过UNION 关键字来合并 LEFT JOIN 与 RIGHT JOIN来模拟FULL join。
mysql 多表连接查询方式,因为mysql只支持NLJ算法,所以如果是小表驱动大表则效率更高;反之则效率下降;因此mysql对内连接或等值连接的方式做了一个优化,会去判断join表的数据行大小,然后取数据行小的表为驱动表。
INNER JOIN、JOIN、WHERE等值连接和STRAIGHT_JOIN都能表示内连接,那平时如何选择呢?一般情况下用INNER JOIN、JOIN或者WHERE等值连接,因为MySQL 会按照"小表驱动大表的策略"进行优化。当出现需要排序时,才考虑用STRAIGHT_JOIN指定某张表为驱动表。

两表JOIN优化
a.当无order by条件时,根据实际情况,使用left/right/inner join即可,根据explain优化 ;
b.当有order by条件时,如select * from a inner join b where 1=1 and other condition order by a.col;使用explain解释语句;
1)如果第一行的驱动表为a,则效率会非常高,无需优化;
2)否则,因为只能对驱动表字段直接排序的缘故,会出现using temporary,所以此时需要使用STRAIGHT_JOIN明确a为驱动表,来达到使用a.col上index的优化目的;或者使用left join且Where条件中不含b的过滤条件,此时的结果集为a的全集,而STRAIGHT_JOIN为inner join且使用a作为驱动表。注:使用STRAIGHT_JOIN虽然不会using temporary,但也不是一定就能提高效率,如果a表数据远远超过b表,那么有可能使用STRAIGHT_JOIN时比原来的sql效率更低,所以怎么使用STRAIGHT_JOIN,还是要视情况而定。

在使用left join(或right join)时,应该清楚的知道以下几点:
(1). on与 where的执行顺序
ON 条件(“A LEFT JOIN B ON 条件表达式”中的ON)用来决定如何从 B 表中检索数据行。如果 B 表中没有任何一行数据匹配 ON 的条件,将会额外生成一行所有列为 NULL 的数据,在匹配阶段 WHERE 子句的条件都不会被使用。仅在匹配阶段完成以后,WHERE 子句条件才会被使用。它将从匹配阶段产生的数据中检索过滤。
所以我们要注意:在使用Left (right) join的时候,一定要在先给出尽可能多的匹配满足条件,减少Where的执行。
(2).注意ON 子句和 WHERE 子句的不同
即使右表的数据不满足ON后面的条件,也会在结果集拼接一条为NULL的数据行,但WHERE后面的条件不一样,右表不满足WHERE的条件,左表关联的数据也会被过滤掉。
(3).尽量避免子查询,而用join
往往性能这玩意儿,更多时候体现在数据量比较大的时候,此时,我们应该避免复杂的子查询。

(1)in 和 not in 要慎用,如:select id from t where num in(1,2,3)对于连续的数值,能用 between 就不要用 in:select id from t where num between 1 and 3很多时候用 exists 代替 in 是一个好的选择:select num from a where num in(select num from b)用下面的语句替换:select num from a where exists(select 1 from b where num=a.num)
(2)Update 语句,如果只更改1、2个字段,不要Update全部字段,否则频繁调用会引起明显的性能消耗,同时带来大量日志。
(3)join语句,MySQL里面的join是用小表去驱动大表,而由于MySQL join实现的原理就是做循环,比如left join就是对左边的数据进行循环去驱动右边的表,左边有m条记录匹配,右边有n条记录那么就是做m次循环,每次扫描n行数据,总扫面行数是m*n行数据。左边返回的结果集的大小就决定了循环的次数,故单纯的用小表去驱动大表不一定的正确的,小表的结果集可能也大于大表的结果集,所以写join的时候尽可能的先估计两张表的可能结果集,用小结果集去驱动大结果集.值得注意的是在使用left/right join的时候,从表的条件应写在on之后,主表应写在where之后.否则MySQL会当作普通的连表查询;
(4)select count(*) from table;这样不带任何条件的count会引起全表扫描,并且没有任何业务意义,是一定要杜绝的;
(5)select * from t 这种语句要尽量避免,使用具体的字段代替*,更有实际意义,需要什么字段就返回什么字段;
(6)数据量大的情况下,limit要慎用,因为使用limit m,n方式分页时,mysql每次都是查询前m+n条,然后舍弃前m条,所以m越大,偏移量越大,性能就越差。比如:select * from A limit 1000000,20这钟,查询效率就会非常低,当分页的页数大于一定的数量之后,就可以换种方式来分页:select * from A a join (select id from A limit 1000000,20) b on a.id=b.id;

⑤ mysql有哪些存储引擎

(一)MyISAM
它不支持事务,也不支持外键,尤其是访问速度快,对事务完整性没有要求或者以SELECT、INSERT为主的应用基本都可以使用这个引擎来创建表。
每个MyISAM在磁盘上存储成3个文件,其中文件名和表名都相同,但是扩展名分别为:
.frm(存储表定义)
MYD(MYData,存储数据)
MYI(MYIndex,存储索引)

(二)InnoDB
InnoDB存储引擎提供了具有提交、回滚和崩溃恢复能力的事务安全。但是对比MyISAM的存储引擎,InnoDB写的处理效率差一些并且会占用更多的磁盘空间以保留数据和索引。

(三)MEMORY
memory使用存在内存中的内容来创建表。每个MEMORY表实际对应一个磁盘文件,格式是.frm。MEMORY类型的表访问非常快,因为它到数据是放在内存中的,并且默认使用HASH索引,但是一旦服务器关闭,表中的数据就会丢失,但表还会继续存在。
默认情况下,memory数据表使用散列索引,利用这种索引进行“相等比较”非常快,但是对“范围比较”的速度就慢多了。因此,散列索引值适合使用在"="和"<=>"的操作符中,不适合使用在"<"或">"操作符中,也同样不适合用在orderby字句里。如果确实要使用"<"或">"或betwen操作符,可以使用btree索引来加快速度。
存储在MEMORY数据表里的数据行使用的是长度不变的格式,因此加快处理速度,这意味着不能使用BLOB和TEXT这样的长度可变的数据类型。VARCHAR是一种长度可变的类型,但因为它在MySQL内部当作长度固定不变的CHAR类型,所以可以使用。

四)MERGE
merge存储引擎是一组MyISAM表的组合,这些MyISAM表结构必须完全相同,MERGE表中并没有数据,对MERGE类型的表可以进行查询、更新、删除的操作,这些操作实际上是对内部的MyISAM表进行操作。对于对MERGE表进行的插入操作,是根据INSERT_METHOD子句定义的插入的表,可以有3个不同的值,first和last值使得插入操作被相应的作用在第一个或最后一个表上,不定义这个子句或者为NO,表示不能对这个MERGE表进行插入操作。可以对MERGE表进行drop操作,这个操作只是删除MERGE表的定义,对内部的表没有任何影响。MERGE在磁盘上保留2个以MERGE表名开头文件:.frm文件存储表的定义;.MRG文件包含组合表的信息,包括MERGE表由哪些表组成,插入数据时的依据。可以通过修改.MRG文件来修改MERGE表,但是修改后要通过flushtable刷新。

⑥ MySQL存储引擎类型有哪些

mysql的存储引擎有两个
在MySQL 5.1之前的版本中,默认的存储引擎是MyISAM,
在MySQL 5.5之后的版本中,默认的存储引擎是InnoDB

⑦ mysql存储引擎类型有哪些

1、MyISAM

使用这个存储引擎,每个MyISAM在磁盘上存储成三个文件。

(1)frm文件:存储表的定义数据

(2)MYD文件:存放表具体记录的数据

(3)MYI文件:存储索引

frm和MYI可以存放在不同的目录下。MYI文件用来存储索引,但仅保存记录所在页的指针,索引的结构是B+树结构。下面这张图就是MYI文件保存的机制:

从这张图可以发现,这个存储引擎通过MYI的B+树结构来查找记录页,再根据记录页查找记录。并且支持全文索引、B树索引和数据压缩。

支持数据的类型也有三种:

(1)静态固定长度表

这种方式的优点在于存储速度非常快,容易发生缓存,而且表发生损坏后也容易修复。缺点是占空间。这也是默认的存储格式。

(2)动态可变长表

优点是节省空间,但是一旦出错恢复起来比较麻烦。

(3)压缩表

上面说到支持数据压缩,说明肯定也支持这个格式。在数据文件发生错误时候,可以使用check table工具来检查,而且还可以使用repair table工具来恢复。

有一个重要的特点那就是不支持事务,但是这也意味着他的存储速度更快,如果你的读写操作允许有错误数据的话,只是追求速度,可以选择这个存储引擎。

2、InnoDB

InnoDB是默认的数据库存储引擎,他的主要特点有:

(1)可以通过自动增长列,方法是auto_increment。

(2)支持事务。默认的事务隔离级别为可重复度,通过MVCC(并发版本控制)来实现的。

(3)使用的锁粒度为行级锁,可以支持更高的并发;

(4)支持外键约束;外键约束其实降低了表的查询速度,但是增加了表之间的耦合度。

(5)配合一些热备工具可以支持在线热备份;

(6)在InnoDB中存在着缓冲管理,通过缓冲池,将索引和数据全部缓存起来,加快查询的速度;

(7)对于InnoDB类型的表,其数据的物理组织形式是聚簇表。所有的数据按照主键来组织。数据和索引放在一块,都位于B+数的叶子节点上;

当然InnoDB的存储表和索引也有下面两种形式:

(1)使用共享表空间存储:所有的表和索引存放在同一个表空间中。

(2)使用多表空间存储:表结构放在frm文件,数据和索引放在IBD文件中。分区表的话,每个分区对应单独的IBD文件,分区表的定义可以查看我的其他文章。使用分区表的好处在于提升查询效率。

对于InnoDB来说,最大的特点在于支持事务。但是这是以损失效率来换取的。

3、Memory

将数据存在内存,为了提高数据的访问速度,每一个表实际上和一个磁盘文件关联。文件是frm。

(1)支持的数据类型有限制,比如:不支持TEXT和BLOB类型,对于字符串类型的数据,只支持固定长度的行,VARCHAR会被自动存储为CHAR类型;

(2)支持的锁粒度为表级锁。所以,在访问量比较大时,表级锁会成为MEMORY存储引擎的瓶颈;

(3)由于数据是存放在内存中,一旦服务器出现故障,数据都会丢失;

(4)查询的时候,如果有用到临时表,而且临时表中有BLOB,TEXT类型的字段,那么这个临时表就会转化为MyISAM类型的表,性能会急剧降低;

(5)默认使用hash索引。

(6)如果一个内部表很大,会转化为磁盘表。

在这里只是给出3个常见的存储引擎。使用哪一种引擎需要灵活选择,一个数据库中多个表可以使用不同引擎以满足各种性能和实际需求,使用合适的存储引擎,将会提高整个数据库的性能

⑧ 什么是MySQL存储引擎

MySQL 可能是最着名的 关系数据库管理系统 (RDBMS),作为一款免费开源软件开发,最初由 MYSQL AB 公司提供支持,但现在归 Oracle 所有。

在 MySQL 中,用于表的“存储引擎”决定了数据的处理方式。有几种可用的存储引擎,但最常用的是 InnoDB MyISAM

在本文中,我们将了解它们的显着特征以及它们之间的主要区别。

在本教程中,您将学习:

在我们讨论两个主要 MySQL 存储引擎之间的特性和区别之前,先来了解一下什么是存储引擎?

存储引擎,也称为“ 表处理程序 ”,基本上是解释和管理与数据库表的 SQL 查询相关的操作的数据库部分。

在最新版本的 MySQL 中,可以使用“ 可插拔 ”架构来组织和管理存储引擎,存在多种存储引擎,但最常用的两个是 InnoDB MyISAM

要获得我们正在使用的数据库中可用存储引擎的列表,我们所要做的就是发出一个简单的 SQL 查询,因此我们需要做的第一件事就是打开一个 MySQL 交互式提示并使用数据库用户登录及其密码:

如果登录成功,提示将变为mysql>,在这里,我们可以运行我们的 SQL 查询来可视化可用的存储引擎:

执行查询后,我们应该获得类似于以下内容的结果:

在上表中,作为查询结果生成,我们可以通过查看Support每行列中的值轻松了解支持哪些存储引擎,“YES”值表示存储引擎可用,否则“NO”。相反,同一列中的“DEFAULT”值表示相应的引擎(在本例中为 InnoDB)是服务器使用的默认引擎。

Transactions ”和“ Savepoints ”列中存在的值分别表示存储引擎是否支持事务和回滚。正如我们通过查看表可以看到的,只有 InnoDB 引擎可以。

关于存储引擎的信息存在于“ INFORMATION_SCHEMA ”数据库的“ ENGINES ”表中,因此我们也可以发出标准的“SELECT”查询来获取我们需要的数据:

我们将获得与上面看到的相同的结果。

让我们看看两个最常用的存储引擎 InnoDB 和 MyISAM 之间的主要特性和区别是什么。

正如我们已经说过的, InnoDB 是自 MySQL 以来的默认存储引擎5.5。

此存储引擎的一些主要功能如下:

对事务的支持提供了一种安全的方式来执行多个查询以保持数据一致。

当多个修改数据的操作被执行并且我们想要确保它们只有在所有操作都成功并且没有错误发生时才有效时,我们想要使用事务。

典型的处理方式是启动事务并执行查询:如果出现错误,则执行回滚,否则提交更改。

当使用 InnoDB 数据锁定发生在行级别时,因此在事务期间锁定的数据量是有限的。

InnoDB 有两种类型的锁:

一个共享锁允许谁拥有它读取该行的交易,而一个排它锁允许交易执行其修改行的操作,所以要更新或删除数据。

当一个事务在某行上获得共享锁,而另一个事务需要相同的锁类型时,立即授予;但是,如果第二个事务在同一行上请求排他锁,它将不得不等待。

如果第一个事务持有该行的排他锁,则第二个事务将不得不等待该锁被释放以获得共享锁或排他锁。

外键是一个非常重要的特性,因为它们可用于基于表之间的逻辑关系来强制执行数据完整性。想象一下,我们的数据库中有三个表(假设它被称为“testdb”):一个user包含现有用户的job表,一个注册所有可用作业的user_job表,以及一个用于表示用户和用户之间存在的多对多关系的表。作业(一个用户可以有多个作业,多个作业可以与同一个用户关联)。

该user_job表就是所谓的连接表或关联表,因为它的唯一目的是表示用户-工作关联。该表有两列,一个叫user_id和其他job id。表中会存在两个外键约束,强制执行以下规则:user_id列中的值只能引用表id列中的值,列中的user值job_id必须引用表id列中的现有值job.

这将强制执行完整性,因为仅允许现有用户和作业的 ID 存在于关联表中。删除涉及表中一个或多个关联的用户或作业user_job也是不允许的,除非为相应的外键设置了CASCADE DELETE规则。在这种情况下,当删除用户或作业时,它们所涉及的关系也将被删除。

MyISAM 曾经是默认的 MySQL 存储引擎,但已被 InnoDB 取代。使用此引擎时,数据锁定发生在表级别,因此执行操作时锁定的数据更多。

与 InnoDB 不同,MyISAM 不支持事务回滚和提交,因此必须手动执行回滚。MyISAM 和 InnoDB 之间的另一个很大区别是前者不支持外键。MyISAM 更简单,并且在对有限数据集进行读取密集型操作时可能具有优势(有争议)。

在表上使用 MyISAM 时,会设置一个标志,指示该表是否需要修复,例如在突然关闭之后。稍后可以使用适当的工具执行表修复。

如何知道特定表使用了什么存储引擎?我们所要做的就是发出一个简单的查询。

例如,要知道user我们在前面的例子中提到的表使用了什么存储引擎,我们将运行:

注意上面的查询我们使用了G,为了让查询结果垂直显示,优化空间。执行查询后,我们将获得以下结果:

在这种情况下,通过查看“Engine”列中存储的值,我们可以清楚地看到该表使用的是“InnoDB”引擎。获取相同信息的另一种方法是INFORMATION_SCHEMA.TABLES直接查询表:

上面的查询将只返回表使用的引擎:

如果我们稍微更改查询,我们可以获得数据库中所有表名的列表以及它们使用的引擎:

如果我们要为一个表设置一个特定的存储引擎,我们可以在创建时指定它。例如,假设我们正在创建job表,并且出于某种原因我们想要使用 MyISAM 存储引擎。我们将发出以下 SQL 查询:

相反,如果我们想要更改用于已存在表的存储引擎,我们只需要使用ALTERSQL 语句。假设我们要将上一个示例中创建的“job”表所使用的存储引擎更改为 InnoDB;我们会运行:

在本教程中,我们学习了什么是数据库存储引擎,并且我们看到了两个最常用的 MySQL 引擎的主要特性: InnoDB MyISAM

我们看到了如何检查哪些引擎可用、哪些引擎用于表以及如何使用 SQL 查询设置和修改表引擎。

⑨ MySQL存储引擎

InnoDB的数据文件本身就是主索引文件。而MyISAM的主索引和数据是分开的。辅助索引data域存储相应记录主键的值而不是地址。

innoDB是聚簇索引,数据挂在逐渐索引之下。

是 MySQL 默认的事务型存储引擎, 只有在需要它不支持的特性时,才考虑使用其它存储引擎

实现了四个标准的隔离级别,默认级别是可重复读(REPEATABLE READ)。在可重复读隔离级别下,通过多版本并发控制(MVCC)+ 间隙锁(Next-Key Locking)防止幻影读。

主索引是聚簇索引,在索引中保存了数据,从而避免直接读取磁盘,因此对查询性能有很大的提升。

内部做了很多优化,包括从磁盘读取数据时采用的可预测性读、能够加快读操作并且自动创建的自适应哈希索引、能够加速插入操作的插入缓冲区等。

支持真正的在线热备份。其它存储引擎不支持在线热备份,要获取一致性视图需要停止对所有表的写入,而在读写混合场景中,停止写入可能也意味着停止读取。

以B+树作为索引结构,叶节点的数据域存放数据记录的地址。主索引和辅助索引在结构上没有区别,只是主索引要求key唯一,而辅助索引的key可以重复。

MyISAM中索引检索的算法为首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。

设计简单,数据以紧密格式存储。对于只读数据,或者表比较小、可以容忍修复的操作,则依然可以使用它。

提供了大量的特性,包括压缩表、空间数据索引等。

不支持事务

不支持行级锁,只能对整张表加锁,读取时会对需要读到的所有表加共享锁,写入时则对表加排它锁。但在表有读取操作的同时,也可以往表中插入新的记录,这被称为并发插入(CONCURRENT INSERT)。

可以手工或者自动执行检查和修复操作,但是和事务恢复以及崩溃恢复不同,可能导致一些数据丢失,而且修复操作是非常慢的。

如果指定了 DELAY_KEY_WRITE 选项,在每次修改执行完成时,不会立即将修改的索引数据写入磁盘,而是会写到内存中的键缓冲区,只有在清理键缓冲区或者关闭表的时候才会将对应的索引块写入磁盘。这种方式可以极大地提升写入性能,但是在数据库或者主机崩溃时会造成索引损坏,需要执行修复操作。

热点内容
java人才 发布:2025-05-14 12:29:10 浏览:647
如何打开软密码 发布:2025-05-14 12:28:55 浏览:426
七牛存储待遇 发布:2025-05-14 12:27:20 浏览:420
C语言a35a4a5 发布:2025-05-14 11:53:48 浏览:812
android隐藏item 发布:2025-05-14 11:43:56 浏览:327
javawebeclipse编译 发布:2025-05-14 11:35:24 浏览:937
可编程控制器试题 发布:2025-05-14 11:25:32 浏览:121
dsp混合编程 发布:2025-05-14 11:23:10 浏览:250
mysql添加存储过程 发布:2025-05-14 11:23:01 浏览:882
房车旅游自媒体有脚本吗 发布:2025-05-14 11:18:18 浏览:127