磁光存储
1. 磁-光效应的背景及简介
磁光效应 是指处于磁化状态的物质与光之间发生相互作用而引起的各种光学现象。包括法拉第效应、克尔磁光效应、塞曼效应和科顿-穆顿效应等。这些效应均起源于物质的磁化,反映了光与物质磁性间的联系。 光与磁场中的物质,或光与具有自发磁化强度的物质之间相互作用所产生的各种现象,主要包括法拉第效应、科顿-穆顿效应、克尔磁光效应、塞曼效应和光磁效应,其中最为人所熟知的是磁光法拉第效应, 它指的是一束线偏振光通过某种透明介质时,透射光的偏振化方向与入射光的偏振化方向相比,转过了一个角度,通常把这个角度叫做法拉第转角.。
磁光存储技术是建立在磁光效应基础上的,与磁光存储技术直接相关的是磁光克尔效应。磁光信息记录在介质上以后,主要是利用磁光克尔效应读出信息。磁光克尔效应指的是一束线偏振光在磁化了的介质表面反射时,反射光将是椭圆偏振光,而以椭圆的长轴为标志的“ 偏振面” 相对于入射偏振光的偏振面旋转了一定的角度。这个角度通常被称为磁光克尔转角。 线偏振光透过放置磁场中的物质,沿着磁场方向传播时,光的偏振面发生旋转的现象。也称法拉第旋转或磁圆双折射效应,简记为MCB。一般材料中,法拉第旋转(用旋转角θF表示)和样品长度l、磁感应强度B有以下关系 θF=VlB,
V是与物质性质、光的频率有关的常数,称为费尔德常数。
因为磁场下电子的运动总附加有右旋的拉莫尔进动,当光的传播方向相反时,偏振面旋转角方向不倒转,所以法拉第效应是非互易效应。这种非互易的本质在微波和光的通信中是很重要的。许多微波、光的隔离器、环行器、开关就是用旋转角大的磁性材料制作的。利用法拉第效应,还可实现光的显示、调制等许多重要应用。 线偏振光入射到磁化媒质表面反射出去时,偏振面发生旋转的现象。也叫克尔磁光效应或克尔磁光旋转。这是继法拉第效应发现后,英国科学家J.克尔于1876年发现的第二个重要的磁光效应。
按磁化强度和入射面的相对取向,克尔磁光效应包括三种情况: 极向克尔效应, 即磁化强度 M 与介质表面垂直时的克尔效应; 横向克尔效应, 即 M 与介质表面平行, 但垂直于光的入 射面时的克尔效应; 纵向克尔效应, 即 M 既平行于 介质表面又平行于光入射面时的克尔效应(如下图所示).
在磁光存储技术中主要应用的是极向克尔效应。
极向和纵向克尔磁光旋转都正比于样品的磁化强度。通常极向克尔旋转最大、纵向次之。偏振面旋转的方向与磁化强度方向有关。横向克尔磁光效应中实际上没有偏振面的旋转,只是反射率有微小的变化,变化量也正比于样品的磁化强度。1898年P.塞曼等人证实了横向克尔磁光效应的存在。克尔磁光效应的物理基础和理论处理与法拉第效应的相同,只是前者发生在物质表面,后者发生在物质体内;前者出现于仅在有自发磁化的物质(铁磁、亚铁磁材料)中,后者在一般顺磁介质中也可观察到。它们都与介电张量非对角组元的实部、虚部有关。 塞曼效应是荷兰物理学家塞曼在 1896 年发现的。他发现,发光体放在磁场中时,光谱线发生分裂的现象。是由于外磁场对电子的轨道磁矩和自旋磁矩的作用,或使能级分裂才产生的。其中谱线分裂为2条(顺磁场方向观察)或3条(垂直于磁场方向观察)的叫正常塞曼效应;3条以上的叫反常塞曼效应(见塞曼效应)。
塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径。塞曼效应也可以用来测量天体的磁场。1908 年美国天文学家海尔等人利用塞曼效应,首次测量到了太阳黑子的磁场。 又称磁双折射效应,简记为MLB。科顿-穆顿效应是 1907 年科顿和穆顿发现的。。佛克脱在气体中也发现了同样效应,称佛克脱效应,它比前者要弱得多。当光的传播方向与磁场垂直时,平行于磁场方向的线偏振光的相速不同于垂直于磁场方向的线偏振光的相速而产生的双折射现象。其相位差正比于两种线偏振光的折射率之差,同磁场强度大小的二次方成正比
当光的传播方向与外磁场方向垂直时,媒质对偏振方向不同的两种光的吸收系数也可不同。这就是磁的线偏振光的二向色性,称磁线二向色性效应,简记为MLD。
MCD、MLB、MLD的物理起因、宏观表述及量子力学处理都与法拉第效应类同(实际上可同时完成)。MLB和MLD通常比MCB和MCD要弱得多,但它们与磁场强度(磁化强度)的二次方成正比。因此对这些效应的测量除能得到物质中能级结构的信息外,还能用于微弱磁性变化(单原子层的磁性)的研究。 磁光记录是近年来发展起来的高新技术,是存储技术的一大飞跃发展。磁光记录是目前最先进的信息存储技术,它兼有磁记录和光记录两者的优点,磁光记录兼有光记录的大容量和磁记录的可重写性。磁光记录利用磁光克尔效应对记录信号进行读出。
2. 磁光存储材料有哪些
稀土非晶合金
稀土磁光存储材料
磁光存储是一种磁记录,它是通过光加热和施加反磁场在稀土非晶合金的垂直磁化膜上,产生磁畴利用该磁畴进行信息的写入,另一个方面利用克尔(Kerr)效应等将磁光效应读出。
由磁光存储材料制得的磁光盘是对磁带、磁盘的发展。磁盘的问题是存储密度小,存储时与磁头的距离应尽量小;光盘的缺点是不能进行改写等,而磁光盘可以弥补这些缺点又兼备两者的长处。其特点是可以进行非接触存储、改写及更换盒式存储器等。
3. 磁介质储存设备是什么
利用磁能方式存储信息的设备如:硬盘、软盘(已经淘汰)、磁带、磁芯存储器、磁泡存储器(磁泡存储器在1970年代出现,但是在1980年代硬盘价格急剧下降的情况下未能获得商业上的成功。),U盘。
磁介质是由于磁场和事物之间的相互作用,使实物物质处于一种特殊状态,从而改变原来磁场的分布。这种在磁场作用下,其内部状态发生变化,并反过来影响磁场分布的物质,称为磁介质。磁介质在磁场作用下内部状态的变化叫做磁化。
在磁场作用下表现出磁性的物质。物质在外磁场作用下表现出磁性的现象称为磁化。所有物质都能磁化,故都是磁介质。按磁化机构的不同,磁介质可分为抗磁体、顺磁体、铁磁体、反铁磁体和亚铁磁体五大类。
在无外磁场时抗磁体分子的固有磁矩为零,外加磁场后,由于电磁感应每个分子感应出与外磁场方向相反的磁矩,所产生的附加磁场在介质内部与外磁场方向相反,此性质称为抗磁性。
顺磁体分子的固有磁矩不为零,在无外磁场时,由于热运动而使分子磁矩的取向作无规分布,宏观上不显示磁性。在外磁场作用下,分子磁矩趋向于与外磁场方向一致的排列。
所产生的附加磁场在介质内部与外磁场方向一致,此性质称为顺磁性。介质磁化后的特点是在宏观体积中总磁矩不为零,单位体积中的总磁矩称为磁化强度。
实验表明,磁化强度与磁场强度成正比,比例系数χm称为磁化率。抗磁体和顺磁体的磁性都很弱,即cm很小,属弱磁性物质。
抗磁体的cm为负值,与磁场强度无关,也不依赖于温度。顺磁体的cm为正值,也与磁场强度无关,但与温度成反比,即 cm =C/T,C称为居里常数,T为热力学温度,此关系称为居里定律。
(3)磁光存储扩展阅读:
储存设备存储过程:
存储过程是由流控制和SQL语句书写的过程,这个过程经编译和优化后存储在数据库服务器中,应用程序使用时只要调用即可。在ORACLE中,若干个有联系的过程可以组合在一起构成程序包。
存储过程是利用SQL Server所提供的Transact-SQL语言所编写的程序。Transact-SQL语言是SQL Server提供专为设计数据库应用程序的语言。
它是应用程序和SQL Server数据库间的主要程序式设计界面。它好比Oracle数据库系统中的PL-SQL和Informix的数据库系统结构中的Informix- 4GL语言。
参考资料来源:网络-磁介质
参考资料来源:网络-储存设备
4. 磁储存与光储存哪个好 优缺点各是什么
光盘拥有数据存取速度比较快,通用性好等优点,不过也有容量太小,发热量大,启动慢,如果用来录制影像则不适合后期编辑等缺点
硬盘作为目前高端主流机型的储存介质,拥有的最大优势就是大容量存储,可以满足长时间拍摄要求,不足这处是硬盘的稳定性有待提高,并且录制影像的画质不如磁带的储存格式,不适合进行后期编辑
5. 显示器采用的记录介质是什么材料
在磁光存储光技术中使用记录信息的介质是:磁性材料。
磁光存储的原理及特点
在磁光记录的记录过程中,是用激光照射从而使局部升温来实现的。由于温度上升,被照射部位的矫顽力下降。然后通过外部磁场的作用在这个矫顽力下降的部位进行磁记录激光 的光斑用镜头聚焦而成,光斑直径可小到亚微米的程度。所以,磁光盘作为记录介质,再和 垂直磁光膜结合起来应用,就可以实现高密度记录。
记录信息读出(重放)的过程是:用形 成直线偏光的激光照射记录介质,其反射光的偏光面与磁化方向相对应,互相向反方向旋转。 这种重放过程就是利用克尔磁光效应来实现的。
在磁光记录过程中,无论记录还是重放,都要用激光,而这也正是光盘普遍采用的方法 光盘大致有3类,即只读型、迫记型和可改写型。
1、只读型光盘,正如大家所知道的CD或LD;那样,是以凹凸的形式事先将音乐或图像信 息记录下来,用户只能重放这些信息。
2、追记型光盘,用户虽然能够记录信息,但不能更写所记录的内容。它是作为文件资料 或外部存贮装置使用的。
3、可改写型光盘,即可擦可录型光盘,用户不仅能记录信息,而且可将原来记录的内容 抹掉,重新记录新的信息。
6. 光存储的原理是什么,谁知道
光盘存储原理
光盘存储技术是利用激光在介质上写入并读出信息。这种存储介质最早是非磁性的,以后发展为磁性介质
。在光盘上写入的信息不能抹掉,是不可逆的存储介质。用磁性介质进行光存储记录时,可以抹去原来写
入的信息,并能够写入新的信息,可擦可写反复使用。
1.非磁性介质存储原理
有一类非磁性记录介质,经激光照射后可形成小凹坑,每一凹坑为一位信息。这种介质的吸光能力强、熔
点较低,在激光束的照射下,其照射区域由于温度升高而被熔化,在介质膜张力的作用下熔化部分被拉成
一个凹坑,此凹坑可用来表示一位信息。因此,可根据凹坑和未烧蚀区对光反射能力的差异,利用激光读
出信息。
工作时,将主机送来的数据经编码后送入光调制器,调制激光源输出光束的强弱,用以表示数据1和0;再
将调制后的激光束通过光路写入系统到物镜聚焦,使光束成为1大小的光点射到记录介质上,用凹坑代表1
,无坑代表0。读取信息时,激光束的功率为写入时功率的1/10即可。读光束为未调制的连续波,经光路
系统后,也在记录介质上聚焦成小光点。无凹处,入射光大部分返回;在凹处,由于坑深使得反射光与入
射光抵消而不返回。这样,根据光束反射能力的差异将记录在介质上的“1”和“0”信息读出。图2.1是
光存储器写入和读出原理框图。
图2.1光存储器写入和读出原理框图
制作时,先在有机玻璃盘基上做出导向沟槽,沟间距约1.65 ,同时做出道地址、扇区地址和索引信息等,
然后在盘基上蒸发一层碲硒膜。系统中有两个激光源,一个用于写入和读出信息,另一个用于抹除信息。
碲硒薄膜构成光吸收层,当激光照射膜层接近熔化而迅速冷却时,形成很小的晶粒,它对激光的反射能力
比未照射区的反射能力小的多,因而可根据反射光强度的差别来区分是否已记录信息。
图2.2可擦除光盘结构示意图
记录信息的抹除可采用低功率的激光长时间照射记录信息的部位来进行。由于激光介质的光照明“热处理
”使晶粒长大,使其恢复到未记录信息时的初始晶相状态,故对激光的发射率也提高到记录信息前的状态
。
2. 磁性介质存储原理
磁光盘是在光盘的基片上镀上一层矫顽力很大的,具有垂直磁化特性的磁性材料薄膜制成。当在磁记录介
质表面上施加强度小于其室温矫顽力Hi 的磁物时,不发生磁通翻转,故不能记录信息。若用激光照射此
介质后,则在被照射处温度上升,矫顽力下降为Hc′。如果这时再对记录介质施以外加弱磁场Hr(Hc′
磁光存储信息的再生如图2.4所示。图中由激光源发出的激光经过起偏器、半反镜和聚光镜照射在盘上,
行成小于1 的光点。同样,照射区温度上升,矫顽力下降,在照射区形成的磁场使该区磁化。当信息再生
时,照射在磁化区的激光束反射光经半反镜、检偏器到光检测器上读出信息。
关于图片,请参见参考资料:
http://www.clubbenq.com.cn/BBS/Board/LabelList.aspx?TopicID=367963
7. 磁性储存与光储存哪个储存更久 优缺点各是什么
仅从理论上说,光储存能够储存得更久!因为磁性存储材料的磁性会随着时间流逝而逐渐减弱.
磁性存储:优点是存储特别方便,能够很容易的将磁信号转化为电信号进行信息计算与传输.缺点是此种材料必须完全密封,不能有灰尘进入,还有就是不能永久存储.
光储存材料:优点是在理论上能够永久存储,缺点是这种存储材料极易受摩擦等外部作用而损坏.
8. 磁储存与光储存哪个好 优缺点各是什么
磁存储易保存,但存储能力不如光存储介质,光存储保存寿命较长,质量小,但介质更易易损坏,目前的光存储技术还不完善,容量不如磁存储.
从发展前景上看,光存储前景更广扩,不可估量,而磁存储目前只是完善和提高容量了,没有太多可挖掘的东西了
9. 在磁光存储光技术中使用记录信息的介质是什么
在磁光存储光技术中使用记录信息的介质是:磁性材料。
磁光存储的原理及特点
在磁光记录的记录过程中,是用激光照射从而使局部升温来实现的。由于温度上升,被照射部位的矫顽力下降。然后通过外部磁场的作用在这个矫顽力下降的部位进行磁记录激光 的光斑用镜头聚焦而成,光斑直径可小到亚微米的程度。所以,磁光盘作为记录介质,再和 垂直磁光膜结合起来应用,就可以实现高密度记录。
记录信息读出(重放)的过程是:用形 成直线偏光的激光照射记录介质,其反射光的偏光面与磁化方向相对应,互相向反方向旋转。 这种重放过程就是利用克尔磁光效应来实现的。
在磁光记录过程中,无论记录还是重放,都要用激光,而这也正是光盘普遍采用的方法 光盘大致有3类,即只读型、迫记型和可改写型。
1、只读型光盘,正如大家所知道的CD或LD;那样,是以凹凸的形式事先将音乐或图像信 息记录下来,用户只能重放这些信息。
2、追记型光盘,用户虽然能够记录信息,但不能更写所记录的内容。它是作为文件资料 或外部存贮装置使用的。
3、可改写型光盘,即可擦可录型光盘,用户不仅能记录信息,而且可将原来记录的内容 抹掉,重新记录新的信息。
10. 光储存的磁性介质存储原理
磁光盘是在光盘的基片上镀上一层矫顽力很大的,具有垂直磁化特性的磁性材料薄膜制成。当在磁记录介质表面上施加强度小于其室温矫顽力Hi 的磁物时,不发生磁通翻转,故不能记录信息。若用激光照射此介质后,则在被照射处温度上升,矫顽力下降为Hc′。如果这时再对记录介质施以外加弱磁场Hr(Hc′
磁光存储信息的再生如图2.4所示。
图中由激光源发出的激光经过起偏器、半反镜和聚光镜照射在盘上,行成小于1 的光点。同样,照射区温度上升,矫顽力下降,在照射区形成的磁场使该区磁化。当信息再生时,照射在磁化区的激光束反射光经半反镜、检偏器到光检测器上读出信息。