服务器虚拟化存储
Ⅰ 怎么理解服务器虚拟化
理解:
服务器虚拟化:又称网络虚拟架构,是指将一台物理的计算机软件环境分割为多个独立分区,每个分区均可以按照需求模拟出一台完整计算机的技术。
服务器虚拟化是使用虚拟化软件在一个硬件服务器上虚拟化多个虚拟服务器。每个虚拟机服务器都有自己的操作系统,提供自己的服务,这些服务彼此直接相关,互不影响。它就像一个单独的服务器在使用。

(1)服务器虚拟化存储扩展阅读:
服务器虚拟化的特点:
1、分区:
将物理服务器进行虚拟化后。使得在一个物理服务器上同时运行多操作系统,每个操作系统单独运行在一台虚拟机,通过在多个虚机之间划分系统资源以满足使用需求,显然,这将提高服务器的利用效率。
2、隔离:
由于在硬件层实现了虚拟机之间的故障和安全隔离,因而因操作系统或应用软件带来的安全问题能够更好地进行隔离,更好地保证安全性。而且通过高级资源调控还能动态地保证不同虚机的性能。
3、封装:
运行的每个虚机都被封装为文件,这样在移动和复制虚机时就如同移动和复制文件一样简单,提高管理和部署的便利。
4、硬件独立性:
虚拟机可以在异构硬件安装和移动,基于虚拟化技术,可以在AMD或Intel架构的服务器上进行不同操作系统的安装和移动,可以更好地整合现有的异构硬件资源来提高使用效率和节约投资。
Ⅱ 什么是虚拟化技术虚拟化技术有哪些分类和方法
要了解详情,请加我的号,或照片上有我的照片,我们私聊。x0dx0a 可以免费试用的哦!!!!!!!!!x0dx0a自从虚拟化提出以后,至今虚拟化技术分类有很多,方法也有很多,下面来一起了解下什么是虚拟化技术,及分类和方法。x0dx0a 当今发达国家在设计、制造、加工技术等方面已经达到相当自动化的水平,其产品设计普遍采用CAD、CAM、CAE和计算机仿真等手段,企业管理也已采用了科学的规范化的管理方法和手段,目前其主要从制造系统自动化方面寻找出路,为此提出了一系列新的制造系统,如敏捷制造、并行工程、计算机集成制造系统等。近些年,从虚拟机的大量部署到成功案例逐渐涌现,越来越多的制造企业开始关注虚拟化技术给优化IT基础架构,推动业务创新带来的启发,希望将其与业务相结合,找到掌握新技术、革新先进制造系统和先进制造模式的方法。虚拟化目前应用于制造业信息化主要体现在IT整合和节约成本,在其他方面很少,而实际上由于虚拟化技术的特点,其应用价值可以在远程办公、虚拟制造、工业控制等制造业相关领域都能得到体现。本文主要对虚拟化技术及其在制造业的应用现状进行综述,提出虚拟化在制造业的应用框架,为相关人员提供该领域的应用研究进展与发展趋势方面的介绍。x0dx0a 1 虚拟化技术x0dx0a 虚拟化是指为运行的程序或软件营造它所需要的执行环境,在采用虚拟化技术后,程序或软件的运行不再独享底层的物理计算资源,它只是运行在一个完全相同的物理计算资源中,而底层的影响可能与之前所运行的计算机结构完全不同。虚拟化的主要目的是对IT基础设施和资源管理方式的简化。虚拟化的消费者可以是最终用户、应用程序、操作系统、访问资源或与资源交互相关的其他服务。由于虚拟化能降低消费者与资源之间的耦合程度,消费者不再依赖于资源的特定实现,因此在对消费者的管理工作影响最小的基础上,可以通过手工、半自动、或者服务级协定(SLA)等来实现对资源的管理。x0dx0a 1.1 虚拟化的分类x0dx0a 从虚拟化的目的来看,虚拟化技术主要分为以下几个大类:x0dx0a (1)平台虚拟化(Platform Virtualization),它是针对计算机和操作系统的虚拟化,又分成服务器虚拟化和桌面虚拟化。服务器虚拟化是一种通过区分资源的优先次序,并将服务器资源分配给最需要它们的工作负载的虚拟化模式,它通过减少为单个工作负载峰值而储备的资源来简化管理和提高效率。桌面虚拟化是为提高人对计算机的操控力,降低计算机使用的复杂性,为用户提供更加方便适用的使用环境的一种虚拟化模式。平台虚拟化主要通过CPU虚拟化、内存虚拟化和I/O接口虚拟化来实现。x0dx0a (2)资源虚拟化(Resource Virtualization),针对特定的计算资源进行的虚拟化,例如,存储虚拟化、网络资源虚拟化等。存储虚拟化是指把操作系统有机地分布于若干内外存储器,两者结合成为虚拟存储器。网络资源虚拟化最典型的是网格计算,网格计算通过使用虚拟化技术来管理网络上的数据,并在逻辑上将其作为一个系统呈现给消费者,它动态地提供了符合用户和应用程序需求的资源,同时还将提供对基础设施的共享和访问的简化。当前,有些研究人员提出利用软件代理技术来实现计算网络空间资源的虚拟化,如Gaia,Net Chaser[21],Spatial Agent。x0dx0a (3)应用程序虚拟化(Application Virtualization),它包括仿真、模拟、解释技术等。Java 虚拟机是典型的在应用层进行虚拟化。基于应用层的虚拟化技术,通过保存用户的个性化计算环境的配置信息,可以实现在任意计算机上重现用户的个性化计算环境。服务虚拟化是近年研究的一个热点,服务虚拟化可以使业务用户能按需快速构建应用的需求,通过服务聚合,可屏蔽服务资源使用的复杂性,使用户更易于直接将业务需求映射到虚拟化的服务资源。现代软件体系结构及其配置的复杂性阻碍了软件开发生命周期,通过在应用层建立虚拟化的模型,可以提供最佳开发测试和运行环境。x0dx0a (4)表示层虚拟化。在应用上与应用程序虚拟化类似,所不同的是表示层虚拟化中的应用程序运行在服务器上,客户机只显示应用程序的UI界面和用户操作。表示层虚拟化软件主要有微软的Windows 远程桌面(包括终端服务)、Citrix Metaframe Presentation Server和Symantec PcAnywhere等。x0dx0a 1.2 虚拟化的方法x0dx0a 通常所说的虚拟化主要是指平台虚拟化,它通过控制程序隐藏计算平台的实际物理特性,为用户提供抽象的、统一的、模拟的计算环境。通常虚拟化可以通过指令级虚拟化和系统级虚拟化来实现。x0dx0a 1.2.1 指令级虚拟化方法x0dx0a 在指令集层次上实现虚拟化,即将某个硬件平台上的二进制代码转换为另一个平台上的二进制代码,实现不同指令集间的兼容,也被称作“二进制翻译”。二进制翻译是通过仿真来实现的,即在一个具有某种接口和功能的系统上实现另一种与之具有不同接口和功能的系统。二进制翻译的软件方式,它可以有3 种方式实现:解释执行、静态翻译、动态翻译。x0dx0a 近年来,最新的二进制翻译系统的研究主要在运行时编译、自适应优化方面,由于动态翻译和执行过程的时间开销主要包括四部分:即磁盘访问开销、存储访问开销、翻译和优化开销、目标代码的执行开销,所以要提高二进制翻译系统的效率主要应减少后3个方面的开销。目前典型的二进制翻译系统主要有Daisy/BOA、Crusoe、Aeries、IA-32EL、Dynamo 动态优化系统和JIT编译技术等。x0dx0a 1.2.2 系统级虚拟化方法x0dx0a 系统虚拟化是在一台物理机上虚拟出多个虚拟机。从系统架构看,虚拟机监控器(VMM)是整个虚拟机系统的核心,它承担了资源的调度、分配和管理,保证多个虚拟机能够相互隔离的同时运行多个客户操作系统。系统级虚拟化要通过CPU虚拟化、内存虚拟化和I/O虚拟化实现。x0dx0a (1)CPU虚拟化x0dx0a CPU虚拟化为每个虚拟机提供一个或多个虚拟CPU,多个虚拟CPU分时复用物理CPU,任意时刻一个物理CPU只能被一个虚拟CPU使用。VMM必须为各虚拟CPU合理分配时间片并维护所有虚拟CPU的状态,当一个虚拟CPU的时间片用完需要切换时,要保存当前虚拟CPU的状态,将被调度的虚拟CPU的状态载入物理CPU。X86 的CPU虚拟化方法主要有:二进制代码动态翻译(dynamic binary translation)、半虚拟化(para-virtualization)和预虚拟化技术。为了弥补处理器的虚拟化缺陷,现有的虚拟机系统都采用硬件辅助虚拟化技术。CPU虚拟化需要解决的问题是:①虚拟CPU的正确运行,虚拟CPU正确运行的关键是保证虚拟机指令正确执行,各虚拟机之间不互相影响,即指令的执行结果不改变其他虚拟机的状态,目前主要是通过模拟执行和监控运行;②虚拟CPU的调度。虚拟CPU的调度是指由VMM决定当前哪一个虚拟CPU实际在物理CPU上运行,保证虚拟机之间的隔离性、虚拟CPU的性能、调度的公平。虚拟机环境的调度需求是要充分利用CPU资源、支持精确的CPU分配、性能隔离、考虑虚拟机之间的不对等、考虑虚拟机之间的依赖。常见的CPU调度算法有BVT、SEDF、CB等。x0dx0a (2)内存虚拟化x0dx0a VMM通常采用分块共享的思想来虚拟计算机的物理内存。VMM将机器的内存分配给各个虚拟机,并维护机器内存和虚拟机内存之间的映射关系,这些内存在虚拟机看来是一段从地址0 开始的、连续的物理地址空间。在进行内存虚拟化后,内存地址将有机器地址、伪物理地址和虚拟地址三种地址。在X86 的内存寻址机制中,VMM能够以页面为单位建立虚拟地址到机器地址的映射关系,并利用页面权限设置实现不同虚拟机间内存的隔离和保护。为了提高地址转换的性能,X86 处理器中加入TLB,缓存已经转换过的虚拟地址,在每次虚拟地址空间切换时,硬件自动完成切块TLB。为了实现虚拟地址到物理地址的高效转换,通常采取复合映射的思想,通过MMU半虚拟化和影子页表来实现页表的虚拟化。虚拟机监控器的数据不能被虚拟机访问,因此需要一种隔离机制,这种隔离机制主要通过修改客户操作系统或段保护来实现。内存虚拟化的优化机制,包括按需取页、虚拟存储、内存共享等。x0dx0a (3)I/O虚拟化x0dx0a 由于I/O设备具有异构性强,内部状态不易控制等特点,VMM系统针对I/O设备虚拟化有全虚拟化、半虚拟化、软件模拟和直接I/O访问等设计思路。近年来,更多的学者将I/O虚拟化的研究放在共享的网络设备虚拟化研究,提出将IOVM结构映射到多核心服务器平台。I/O设备除了增加吞吐量和固有的并行数据流、联系串行特性以及基于分组的协议外,还应该考虑到传统的PCI 兼容的PCI Express的硬件,建立相应的总线适配器,以弥补象单一主机无专门的驱动程序时的需要。有些研究人员专注于外存储虚拟化的研究,提出让存储虚拟化系统上的SCSI目标模拟器运行在SAN上,存储动态的目标主机的物理信息,并使用映射表方法来修改SCSI命令地址,使用位图的技术来管理可用空间等思想。存储虚拟化系统应提供诸如逻辑卷大小、各种功能、数据镜像和快照,并兼容集群主机和多个操作系统。由于外存储虚拟化能全面提升存储区域网络的服务质量,而带外虚拟化与带内虚拟化相比具有性能高和扩展性好等优点,通过运用按序操作、Redo日志以及日志完整性鉴别,设计基于关系模型的磁盘上虚拟化元数据组织方式,可以形成一致持久的带外虚拟化系统。x0dx0a 1.3 虚拟化的管理x0dx0a 虚拟化的管理主要指多虚拟机系统的管理,多虚拟机系统是指在对多计算系统资源抽象表示的基础上,按照自己的资源配置构建虚拟计算系统,其主要包括虚拟机的动态迁移技术和虚拟机的管理技术。x0dx0a (1)虚拟机之间的迁移x0dx0a 将虚拟化作为一种手段管理现有的资源和加强其在网络计算的利用率,通过构建分布式可重构的虚拟机,必要时在物理服务器运行时迁移服务。通过移动代理技术、分布式虚拟机等提高资源利用率和服务可用性,通过寻找服务最优的策略在可重构和分布式虚拟机上迁移。为了将虚拟机运行的操作系统与应用程序从一个物理结点迁移到另外一个运行结点,同时保持客户操作系统和应用程序不受干扰,有些研究者提出以数据为中心的可迁移的虚拟运行环境,使得用户操作环境实现异地迁移、无缝重构;x0dx0a 也有研究人员提出程序执行环境的动态按需配置机制。在跨物理服务器迁移虚拟机,进行自动化的虚拟服务器的管理,必须考虑高层次的服务质量要求和资源管理成本。有些研究人员提出了通过管理程序控制的方法,以支持移动IP的实时迁移虚拟机在网络上,使虚拟机实时迁移其分布计算资源,从而改善迁移性能,降低网络恢复延迟,提供高可靠性和容错。有些研究机构通过设计一个通用的硬件抽象层,实现多个虚拟机的移植,具有高效率执行环境中的移动设备。虚拟机的迁移步骤一般有启动迁移、内存迁移、冻结虚拟机、虚拟机恢复执行。x0dx0a (2)虚拟机的管理x0dx0a 对于多虚拟机来说,一个非常重要的方面是减少用户对动态的和复杂的物理设备的管理和维护,通过软件和工具来实现任务管理。当前典型的多虚拟机服务器管理软件是Virtual Infrastructure,它通过Virtual Center管理服务器的虚拟机池,通过VMotion完成虚拟机的迁移,通过VMFS管理多虚拟机文件系统。其次,Parallax 是针对Xen 的多虚拟机管理器,它通过采用消除写共享,增强客户端的缓存等方式并利用模板映像来建立整个系统;同时使用快照(snapshot)以及写时复制(-on-write)机制来实现块级共享,并使用副本来保证可用性。虚拟机监控器直接控制parallax 使用的物理盘,它们运行物理设备驱动器,并给虚拟磁盘镜像VDI 的本地虚拟机提供一个普通的块接口。x0dx0a 2 虚拟化在制造业信息化中的应用x0dx0a 2.1 虚拟化在制造业信息化中的应用框架x0dx0a 当今制造业正朝着精密化、自动化、柔性化、集成化、网络化、信息化和智能化的方向发展,在这种趋势下,诞生了许多先进制造技术和先进制造模式。这些先进制造技术和先进制造模式要求现有的IT基础设施能提供更高的计算服务水平,因此在制造业信息化中,需要建立以虚拟化为导向的资源分配体系结构,提供客户驱动的服务管理和计算风险管理,维持以服务水平协议(SLA)为导向的资源分配体系。虚拟化在制造业信息化中主要用于集中IT管理、应用整合、工业控制、虚拟制造等。x0dx0a 处在最底层的是制造业企业的虚拟计算资源池(VirtualCluster),它由多台物理服务器(PhysicsMachine)形成,各物理服务器上运行着虚拟化软件(VMM),虚拟化软件上运行着完成各种任务需求的虚拟机,虚拟计算资源池的虚拟化管理软件(VMS)为IT环境提供集中化、操作自动化、资源优化的功能,可以快速部署向导和虚拟机模板。虚拟计算资源池中的虚拟机将不同类型的客户操作系统(Guest OS)和运行其上的数据层、服务层应用程序(App)封装在一起,形成一个企业协同设计制造的完整系统,为表示层的用户提供多种形态的数据处理和显示功能。在图1 的框架中,虚拟计算资源池的动态资源调度(DRS)模块可以跨越物理机不间断地监控资源利用率,并根据反映业务需要和不断变化的优先级的预定规则,在多个虚拟机之间分配可用资源。在制造业信息化中,集中IT管理、应用整合、工业控制、虚拟制造等多种应用需求都将以各种服务的形式被封装到了虚拟机中,例如制造任务协同服务、资源管理服务、信息访问服务、WWW服务、工业控制服务、应用系统集成服务、数据管理服务、高效能计算服务、工具集服务等;同时支撑所有应用需求的数据库也被封装到了虚拟机中,例如企业模型数据库、制造资源数据库、产品模型数据库、专业知识数据库、用户信息数据库等。虚拟化特有的优点使它能确保所有虚拟机中的关键业务连续可靠地运行。x0dx0a 2.2 虚拟化在制造业信息化应用框架中的作用x0dx0a 虚拟化在制造业信息化中的应用主要有:
Ⅲ 存储虚拟化方式有哪些,请分析它们的用途及优缺点
您好,很高兴能帮助您
主机级别的方案中通常只是虚拟化直连主机的存储,当然也有一些可以部署在一个SAN环境中的多台存储子系统上。
早先的存储虚拟化产品常用于简化内部磁盘驱动器和服务器外部直连存储的空间分配,以及支持应用集群。Veritas Volume Manager和Foundation Suite就是首批这类解决方案,这类方案使得存储扩展,以及为应用程序和文件服务器提供空间更为简单快速。
随着存储需求的增长远远超过直连存储所能提供的范围,存储虚拟化逐渐成为存储阵列中的一种容量提供方式。而容量持续增长以及诸如iSCSI等小型IT组织负担得起的共享存储技术的出现又使得存储虚拟化技术也融合进基于网络的设备和运行在通用硬件的软件里。
不过现今的服务器和桌面虚拟化技术兴起给存储虚拟化技术带来了新的生机,而基于主机的存储虚拟化技术正在逐渐回归。服务器虚拟化平台必需要基于共享存储体系架构来实现一些关键特性,比如VMware的vMotion和Distributed Resource Schele (DRS)。通过传统的SAN架构自然可以实现这种共享存储体系架构,不过越来越多的IT组织开始寻求更简单的方式来实现共享存储。基于主机的虚拟化技术就是方式之一。
诸如VMware之类的服务器虚拟化供应商认为存储是妨碍虚拟化技术大规模普及的瓶颈之一。这些Hypervisor供应商已经实现了处理器和内存资源的抽象,实现更好的控制并提高资源利用率,他们自然而然也会希望这样控制存储。不过将存储控制功能整合到主机服务器端,称之为“存储Hypervisor”时会带来一些潜在的问题。处理一些在虚拟服务器和虚拟桌面环境中至关重要的存储服务,诸如快照、克隆和自动精简配置时,会严重影响主机服务器的性能。
Virsto的解决方案
Virsto开发出了一款软件解决方案,安装在每台主机服务器上(无论是一台虚拟机或Hypervisor上的过滤驱动器)并在主存储上创建一个虚拟化层,称为Virsto存储池。其同时创建一个高性能磁盘或者固态存储区域,成为“vLog”。读操作会直接指向主存储,不过写操作会通过vLog进行,这会给请求的虚拟机或应用程序发回一个确认。然后vLog将这些写操作异步地分布写入主存储,从而减少对写性能的影响。该存储池可以容纳多至4层的存储方式,包括固态存储和各类型的磁盘驱动器。
和缓存的工作方式类似,vLog通过在存储前端降低耦合度改善了存储性能,降低了后端存储的延迟。其同时将前端主机的随机写操作变为顺序方式,实现后端存储的最佳性能。基于Virsto主机的存储虚拟化软件实现了以上这些功能。
虚拟存储设备
基于主机的存储虚拟化的另一项应用实例是虚拟存储设备(VSA)
VSA是运行在虚拟机上的存储控制器,其虚拟化统一集群中的主机所直接连接的存储。VSA提供一个主机使用的简易的存储共享体系架构,并支持高可用性、虚拟机迁移,并改善存储提供方式。对于很多企业,这种方式可以替代原本需要建立并管理传统SAN或NAS来支持虚拟服务器和桌面的体系架构。
vSphere Storage Appliance。VMware的vSphere Storage Appliance以一个虚拟机的方式运行,从在2个或3个节点集群中,每个ESX/ESXi主机所直连的DAS存储中,创建一个共享存储池。VMware VSA提供每个节点的RAID保护,并在同一集群的各个节点之间提供镜像保护。虽然从技术角度上看,VMware VSA是一个基于文件的体系架构,不过其亦为集群中每台主机提供数据块级别的存储虚拟化,并用户可以从这种部署方式中获取和基于数据块的共享存储一样的收益。
HP的LeftHand Virtual SAN Appliance。虽然和VMware VSA的功能类似,P4000 VSA软件可以支持每台主机直连DAS以外的方式。其还允许使用iSCSI或FC SAN等外部存储来创建共享存储池。这就意味着可以将如何可用的存储,本地存储或用于容灾的异地存储,转变为LeftHand存储节点。P4000t提供快照和自动精简配置,并且支持Hyper-V和VMware。
DataCore的SANsymphony-V。DataCore的解决方案是通过在一个虚拟机中部署其SANsymphony软件来整合其它各个VMware,Hyper-V或XEN主机的直连存储,形成共享存储池。SANsymphony-V可以和HP的解决方案那样虚拟化外部的网络存储,并且该软件可以在迁移到传统的共享存储体系架构时部署在外部服务器上。SANsymphony-V同时提供各类存储服务,譬如快照、自动精简配置、自动化分层和远程复制。
FalconStor的NSS Virtual Appliance。FalconStor的Network Storage Server Virtual Appliance(NSSVA)是该公司NASS硬件产品中唯一支持的VMware版本,用网络上其它主机的直连存储创建一个虚拟存储池。和DataCore和LeftHand的解决方案类似,该存储池可以扩展到网络上任何可用的iSCSI存储上。该NSS Virtual Appliance包括快照、自动精简配置、读/写缓存、远程复制和卷分层等存储功能。
基于主机的存储虚拟化解决方案是目前大多使用在虚拟化服务器和虚拟化桌面环境中,用以实现环境的高可用性特性,以及改善存储性能、利用率和管理效率。
你的采纳是我前进的动力,
记得好评和采纳,答题不易,互相帮助,
Ⅳ 存储虚拟化产品的特性是什么
存储虚拟化:使管理员能够虚拟化物理存储,便于供给和管理,并且通过优化现有容量,辅助“绿色”计算。
异构支持:飞康NSS支持各种行业标准硬件和软件,并且还可以进行扩展以管理大型异构存储环境。飞康NSS可为Microsoft和Oracle的数据库以及Microsoft和IBM的电子邮件系统提供存储。它支持包括VMware和MicrosoftHyper-V在内的服务器虚拟化解决方案,并且经过认证可以与BMC、CA、HP和Tivoli的高端企业管理软件解决方案结合使用。这种灵活性和广泛的支持便于企业轻松的与现有基础架构集成,而不会中断业务运营,也不会造成其他厂商通常会存在的“厂商锁定”问题。
精简配置:允许配置比物理分配的存储容量更大的虚拟存储。仅在需要时才会分配额外的物理存储容量。这样可以提高存储利用效率。精简配置可以应用到灾难恢复(DR)上的主存储、副本存储和镜像存储。
TimeMark快照:支持创建数据卷的定期、计划或按需时间点增量快照副本。这些增量快照仅包含已做更改的数据,因此,使用的硬盘存储空间最小。每个数据卷可以维护高达1,000个增量快照。
TimeView映像–TimeMark技术包含TimeView功能,可创建易访问、可装载的增量快照映像,使管理员可以自由地为活动数据集创建多个即时虚拟副本。数据集和/或副本拷贝可以分配给具备读/写权限的多台应用程序服务器,以实现并发独立处理(全部发生在主应用程序服务器仍在访问/更新原始数据集时)。
应用程序感知快照代理:快照代理能够与复制和TimeMark技术无缝协作,确保为MicrosoftSQLServer和Oracle等活动数据库以及MicrosoftExchange和LotusNotes等邮件应用程序提供全面保护。通过稳健的自动化过程安全、可靠地为时间点恢复拍摄数据库快照,实现100%的数据和交易完整性。组快照功能可以确保实现多个存储卷间数据库的交易完整性。
WAN优化复制:通过IP将主存储复制到现场或异地的二级或三级存储。MicroScan专利技术消除了因应用程序和文件系统层的低效而导致的过大块级更改。因此,只会传输细度级别为磁盘扇区(512字节)的更改。MicroScan功能降低了WAN带宽要求和成本,使得异地DR对于各种规模的企业来说在技术和经济上均具有可行性。复制还包括内置压缩和加密。
自动化灾难恢复(DR)RecoverTrac技术可以自动恢复关键业务应用程序服务器和数据,实现随时将任何服务恢复到任意位置。RecoverTrac技术使用受支持的物理机和虚拟机的任何组合,进行“任意到任意”恢复,包括同类或非同类机器之间的P2P、P2V、V2V或V2P恢复。RecoverTrac工具支持异构环境,消除了成本高昂的厂商锁定,并且通过利用现有硬件,最大限度地提高了投资回报(ROI)。
镜像:飞康NSS在任何磁盘系统之间提供级块数据镜像,不论供应商/品牌、磁盘类型或连接(光纤通道[FC]、iSCSI、以太网光纤通道[FCoE])为何。数据可以同步到备用存储设备,且不受涉及的服务器影响。不需要特定于系统且基于主机的工具。镜像联机后,之后的数据将同时写入主卷和镜像。
SafeCache/HotZone:业务应用程序存储性能取决于“读”和“写”延迟。由于“读”操作I/O与“写”操作I/O有所不同,飞康提供“读”(HotZone)和“写”(SafeCache)两种缓存。每一缓存算法均根据“读”、“写”行为设计,因此其本身经过优化,能加速该操作的性能。如果与SSD存储结合使用,则您可以通过SafeCache/HotZone管理最苛刻应用程序中的密集I/O峰值。飞康NSSHA型号包括飞康NSSHA集群节点之间的HotZone数据卷同步,从而使“读”性能保持加速。
高可用性(HA):主存储不能出现故障。因此,HA为硬性要求。如果在集群中部署,则飞康NSS可提供HA功能。位于飞康NSS节点(存储集群链接)间的特殊通信链路持续同步存储服务器对之间的I/O、元数据。HA对可承受节点故障或临时升级,对主存储卷带来的干扰极低(若有)。
扩展集群:扩展集群功能结合了HA和站点灾难保护的优势,让您能够在两个地理位置分散的站点之间部署HA解决方案。如果其中一个站点出现故障,则数据在第二个站点立即可用并且不会发生任何更改,因为站点之间的数据集是持续同步的。
备用读取镜像:从应用程序角度来看,“读”较“写”更为关键(延迟)。此外,诸如数据库、电子邮件存储组的多个客户端主机可能会同时尝试读取相同卷。备用读取镜像是一种可用于适当主机访问的重复镜像卷。这样可以消除单个目标读取卷的I/O瓶颈,允许对两个完全相同的卷同时进行读取访问。备用读取卷可在单个飞康NSS服务器内出现,也可在两节点飞康NSS集群中出现。
智能读取镜像:除了服务主IO之外,飞康NSS还可作用于已摄取的数据,以确保为其提供保护,从而生成辅助IO。智能读取功能利用镜像卷来平均分配主IO和辅助IO,从而防止对性能造成任何影响。
FalconStorHyperTrac备份加速器:对于需要磁带备份以满足法规遵从和公司管理要求的企业,HyperTrac选项可以加快备份速度、消除备份窗口并从应用程序服务器卸下处理负载。它运行于备份服务器之上,可以在运行备份作业时自动启动和加载TimeMark快照。
Ⅳ 存储虚拟化是如何实现的
举个例子来说吧:
你要查询三个内容,内容分别存在于A,B,C三个服务器上。
那么你的查询方式一般来说就是分别查询A,B,C三个服务器。
现在有人搭了一个服务器D,这个服务器想把ABC三个服务器的内容都放进来,那么有两个办法
(1)直接拷贝,将三个服务器的内容全部拷贝过来
(2)做映射,D只要在后台做相应的映射就可以了,你访问的是D,但是D给你映射到了ABC三个存储上,个人感觉类似于存储集群(仅仅是类似,机制什么的不完全一样)
这个D就是所谓的存储虚拟化。存储虚拟化不管怎么虚拟化,还是需要真实的存储的,只是这个真实的存储的存储位置发生了变化,以前我们需要存在自己的阵列上,现在你可以保存在你能保存的地方,只要映射能映射到就可以了。基于实际存储位置的不同,有什么主机虚拟存储,互联网存储什么的,大概意思给我的感觉都差不多。
Ⅵ 服务器虚拟化环境下谁是最好的存储
你好,选择合适的存储系统是服务器虚拟化环境整体架构设计的关键一环
表面上看我们似乎有很多选择,其实不是这样
因为每个应用环境都是不同的,即使在一个地方表现良好
那也不能保证在其他地方同样合适。
对于服务器虚拟化环境来说,光纤通道存储是比较传统的选择。
但现在iSCSI和NAS的普及程度也越来越高,毕竟它们的性价比更加突出。
天互数据 杜超为您解答
Ⅶ 何为虚拟化简述服务器虚拟化桌面虚拟化存储虚拟化网络虚拟化和应用虚拟化
服务器虚拟化 就是服务器的虚拟化
存储虚拟化 就是存储的虚拟化
桌面虚拟化 就是桌面的虚拟化
从网络虚拟化 就是网络的虚拟化
应用虚拟化 就是应用的虚拟化,
说白了 只要懂虚拟化云计算的概念 就懂所有,没必要这样问。要不要我再给你加一个系统虚拟化
Ⅷ 服务器虚拟化的好处
所谓服务器虚拟化,就是指将服务器物理资源抽象成逻辑资源,让一台服务器变成几百甚至上万台虚拟服务器,让我们不再受限于物理资源,那么服务器虚拟化究竟都有什么好处呢?
1.降低能耗
整合服务器通过将物理服务器变成虚拟服务器减少物理服务器的数量,可以在电力和冷却成本上获得巨大节省。据中心里服务器和相关硬件的数量,企业可以从减少能耗与制冷需求中获益,从而降低IT成本。
2.节省空间
使用虚拟化技术大大节省了所占用的空间,减少了数据中心里服务器和相关硬件的数量。避免过多部署在实施服务器虚拟化之前,管理员通常需要额外部署一下服务器来满足不时之需。利用服务器虚拟化,可以避免这种额外部署工作。
3.节约成本
使用虚拟化技术大大削减了采购服务器的数量,同时相对应的占用空间和能耗都变小了,每台服务器大约可节约500到600美金每年。
4.提高基础架构的利用率
通过将基础架构资源池化并打破一个应用一台物理机的藩篱,虚拟化大幅提升了资源利用率。通过减少额外硬件的采购,企业可以获得大幅成本节约。
5.提高稳定性
提高可用性,带来具有透明负载均衡、动态迁移、故障自动隔离、系统自动重构的高可靠服务器应用环境。通过将操作系统和应用从服务器硬件设备隔离开,病毒与其他安全威胁无法感染其他应用。
6.减少宕机事件
迁移虚拟机服务器虚拟化的一大功能是支持将运行中的虚拟机从一个主机迁移到另一个主机上,而且这个过程中不会出现宕机事件。有助于虚拟化服务器实现比物理服务器更长的运行时间。
7.提高灵活性
通过动态资源配置提高IT对业务的灵活适应力,支持异构操作系统的整合,支持老应用的持续运行,减少迁移成本。支持异构操作系统的整合,支持老应用的持续运行,支持快速转移和复制虚拟服务器,提供一种简单便捷的灾难恢复解决方案。
资讯来自网络时代
Ⅸ 光纤、iSCSI、NAS:谁是服务器虚拟化最佳存储类型
因为每个应用环境都是不同的,即使在一个地方表现良好,那也不能保证在其他地方同样合适。 对于服务器虚拟化环境来说,光纤通道存储是比较传统的选择。但现在iSCSI和NAS的普及程度也越来越高,毕竟它们的性价比更加突出。下面本文就来看看每一种网络存储技术的规格特性,并逐一分析它们的优势和不足。 光纤通道存储 单从性能和可靠性的角度看,光纤通道无疑是出色的存储架构,其它产品很难与之PK.但凡事都有两面性,使用光纤通道存储的确获得了高性能,可用户却不得不承担更高的成本,以及面对更复杂的技术架构。不过,光纤通道技术在数据中心领域的应用历史很长,基础非常好,因此比较大的虚拟化环境通常都倾向于选择光纤通道,这些用户主要还是考虑速度和可靠性的因素(光纤通道当前的带宽是8 Gbps,下一代是16 Gbps)。另外,光纤通道存储网络一直是相对独立的,因此与基于以太网的存储设备相比安全性更好。可问题是,光纤通道需要特殊的HBA主机适配器、特殊的交换机,而且这些配件比以太网络使用的同类配件更加昂贵。 客观的说,如果要从零开始构建一个光纤通道网络代价是很高的。除此之外,光纤通道环境的部署和管理也更复杂,与传统网络架构相比,它配置起来难度很大,熟悉此项技术的人才也偏少。当前,很多公司都有技术熟练的网络管理员,但其中却很少有光纤通道存储网络方面的管理人才。设计并管理一个SAN架构通常需要经过特殊的培训,这无形中又进一步增加了实施的费用。 光纤通道存储的优势: FC是部署企业级存储架构的首选,而且许多应用环境本身就已经在使用SAN了; 由于具有更高的可用带宽,通常情况下性能表现最好; 独立的光纤通道网络更安全;还有LUN zoning和LUN masking等访问控制机制; 支持boot from SAN(从存储启动系统),服务器本地不再需要硬盘; 基于block的块存储类型,可以使用VMware vSphere自带的VMFS卷(一种文件系统)。 光纤通道存储的不足: 从零开始构建的话,部署成本会很高; 需要特殊的、昂贵的配件,比如交换机、线缆和HBA卡; 实施和管理也许更复杂,通常需要专职的存储管理员; 可用的安全控制功能较少,实现认证和加密比较复杂。 如果用户的物理服务器上准备运行多个虚拟机,且应用类型对磁盘I/O有较高的要求,那么为了得到最佳的性能,用户或许应该认真考虑使用光纤通道存储系统。此外,FCoE也是一个选择,它相当于在传统的以太网设备上承载光纤通道协议。但目前FCoE必须部署在同样昂贵的10 Gbps以太网环境,需要特殊的交换设备。 如果用户的应用环境中已经有了FC SAN,那么在构建虚拟化平台时使用光纤通道储存是很合适的。扩展一个已有的SAN环境很容易,而且比部署一个全新的环境要便宜许多。如果用户的预算充足,而且有管理复杂环境的技术能力,那么选择光纤通道存储一定没错。

Ⅹ 超融合和虚拟化的区别
超融合和虚拟化的区别有:概念上的不同、耦合度、复杂度不同、扩展性不同、经济性不同。
1、概念上的不同
虚拟化通常是指通过软件技术创建服务器、存储、网络等基础设施的虚拟表现形式。这使得IT组织能够在单个服务器上运行多个虚拟系统(以下简称VM),让计算资源的利用率得到了最大化的使用。

超融合通常是指通过软件来定义整个基础架构,包括了传统数据中心的所有的要素:计算、存储、网络以及管理。它集成了服务器虚拟化、存储虚拟化、网络虚拟化、统一管理功能。这使得IT组织可以简单轻松地搭建自己私有云基础设施。
2、耦合度、复杂度不同
在虚拟化解决方案中,一切都是自由的,也是松耦合的。当然选择多了,复杂度就变高了。
虚拟化软件可以自由选择,既可以选择业界一流的vMware vsphere,也可以选择基于KVM的OpenStack软件。
而服务器只需要选择标准的X86服务器即可。为了兼容性和稳定性,一般选择Intel或AMD的同一代CPU系列即可。
存储方面可以采用传统的集中存储,也可以直接利用服务器的硬盘来构建虚拟存储。
网络方面可以利用虚拟化软件将服务器的网口构建出虚拟交换机。物理交换机和传统数据中心保持不变。
在超融合解决方案中,为了更加简单易用,软硬件基本上采用厂商最佳实践方式来实现。交付基本是采用超融合软硬一体机来交付的,用户无需过多的考虑,复杂度变低了很多。
超融合软件:一般包含了服务器、存储、网络的虚拟化软件。业界有采用OpenStack+Ceph+Neutron来实现的,也有用vmware vsphere+vSAN+NSX来实现。特别注意的是,存储器基本上采用服务器上的硬盘来构建虚拟存储。
硬件资源:通常采用高密度的X86服务器,通常选用“多子星”服务器。一台机器里面包含了多个节点,并配备了很多硬盘来当做虚拟存储设备。当然也可以普通高性能X86服务器来实现。
超融合解决方案软硬件的耦合性更强,用户的复杂度更低。虚拟化则自由度更高,用户复杂度更高。
3、扩展性不同
在虚拟化解决方案中,具有良好的纵向扩展和横向扩展。如果计算资源不足,可以通过给服务器增加CPU、内存资源来扩展。存储资源不足,可以通过传统的方法扩展存储空间。
当然如果采用的是分布式存储,也可以通过给所有节点服务器增加硬盘来实现。当然,也可以通过增加服务器节点和存储节点来横向扩展。
在超融合解决方案中,由于采用的是高密度服务器,一般初始配置就把纵向空间压榨得差不多了。所以如果出现资源不足,一般采用横向增加节点来扩展资源。
4、经济性不同
在虚拟化解决方案中,软硬件是分开的。如果现有硬件资源还不错,可以充分利旧。软件除了采购收费的虚拟化软件以外,也可以选择自己安装开源的软件来解决(需要自己有较强的技术)。
对用户来说,可以分批投资。但如果是大规模私有云或混合云部署,虚拟化需要单独采购其他软件,投资费用可能比超融合更高。
在超融合解决方案中,由于是软硬件一体的解决方案,完全没有利旧的可能。软硬件也无法分开选型,也无法通过开源软件来节省投资。但如果是大规模私有云或混合云部署,超融合由于一次性融合了更多的功能,相比虚拟化更加节省投资。
