hadoop大数据存储
❶ hadoop是怎么存储大数据的
Hadoop中有很多方法可以加入多个数据集。MapRece提供了Map端和Rece端的数据连接。这些连接是非平凡的连接,并且可能会是非常昂贵的操作。Pig和Hive也具有同等的能力来申请连接到多个数据集。Pig提供了复制连接,合并连接和倾斜连接(skewed join),并且Hive提供了map端的连接和完整外部连接来分析数据。
一个重要的事实是,通过使用各种工具,比如MapRece、Pig和Hive等,数据可以基于它们的内置功能和实际需求来使用它们。至于在Hadoop分析大量数据,Anoop指出,通常,在大数据/Hadoop的世界,一些问题可能并不复杂,并且解决方案也是直截了当的,但面临的挑战是数据量。在这种情况下需要不同的解决办法来解决问题。
一些分析任务是从日志文件中统计明确的ID的数目、在特定的日期范围内改造存储的数据、以及网友排名等。所有这些任务都可以通过Hadoop中的多种工具和技术如MapRece、Hive、Pig、Giraph和Mahout等来解决。这些工具在自定义例程的帮助下可以灵活地扩展它们的能力。
❷ hadoop是怎么存储大数据的
Hadoop本身是分布式框架,如果在hadoop框架下,需要配合hbase,hive等工具来进行大数据计算。如果具体深入还要了解HDFS,Map/Rece,任务机制等等。如果要分析还要考虑其他分析展现工具。
大数据还有分析才有价值
用于分析大数据的工具主要有开源与商用两个生态圈。开源大数据生态圈:
1、Hadoop
HDFS、HadoopMapRece,
HBase、Hive
渐次诞生,早期Hadoop生态圈逐步形成。
2、.
Hypertable是另类。它存在于Hadoop生态圈之外,但也曾经有一些用户。
3、NoSQL,membase、MongoDb商用大数据生态圈:1、一体机数据库/数据仓库:IBM
PureData(Netezza),
OracleExadata,
SAP
Hana等等。2、数据仓库:TeradataAsterData,
EMC
GreenPlum,
HPVertica
等等。3、数据集市:QlikView、
Tableau
、
以及国内的Yonghong
Data
Mart
。
❸ Hadoop在大数据中有什么作用
HDFS按照Master和Slave的结构。分为NameNode、SecondaryNameNode、DataNode这几个角色。
NameNode:是Master节点,是大领导。管理数据块映射;处理客户端的读写请求;配置副本策略;管理HDFS的名称空间。
SecondaryNameNode:是一个小弟,分担大哥namenode的工作量;是NameNode的冷备份;合并fsimage(元数据镜像文件,文件系统的目录树)和fsedits(元数据的操作日志,针对文件系统做的修改操作记录),然后再发给namenode。
DataNode:是Slave节点,是奴隶,干活的。负责存储客户端发来的block;执行block的读写操作。NameNode和DataNode之间的通信是通过心跳机制实现的。
Map(映射)任务处理:
读取HDFS中的文件。每一行解析成一个。每一个键值对调用一次map函数。map函数接收前面产生的,进行处理,转换为新的输出。对转换后的进行分区。对不同分区中的数据按key进行排序、分组。分组指的是相同key的value放到一个集合中。
Rece(归约)任务处理:
多个map任务的输出,按照不同的分区,通过网络到不同的rece节点上。对多个map的输出进行合并、排序。覆盖rece函数,接收的是分组后的数据,实现自己的业务逻辑,处理后,产生新的输出。对rece输出的写到HDFS中。
关于Hadoop在大数据中有什么作用,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
