当前位置:首页 » 存储配置 » 存储设备缓存

存储设备缓存

发布时间: 2022-12-29 08:38:23

存储器层次结构中的缓存

《深入理解计算机系统》p422

6.1 存储器层次结构中的缓存

一般而言,高速缓存( cache ,读作“ cash ”)是一个小而快速的存储设备,它作为存储在更大、也更慢的设备中的数据对象的缓冲区域。使用高速缓存的过程称为缓存( caching ,读作“ cashing ”)。存储器层次结构的中心思想是,对于每个 k ,位于 k 层的更快更小的存储设备作为位于 k 十1层的更大更慢的存储设备的缓存。换句话说,层次结构中的每一层都缓存来自较低一层的数据对象。例如,本地磁盘作为通过网络从远程磁盘取出的文件(例如 Web 页面)的缓存,主存作为本地磁盘上数据的缓存,依此类推,直到最小的缓存—— CPU 寄存器组。图6-22展示了存储器层次结构中缓存的一般性概念。第 k 十1层的存储器被划分成连续的数据对象组块( chunk ),称为块( block )。每个块都有一个唯一的地址或名字,使之区别于其他的块。块可以是固定大小的(通常是这样的),也可以是可变大小的(例如存储在 Web 服务器上的远程 HTML 文件)。例如,图6-22中第 k 十1层存储器被划分成16个大小固定的块,编号为0~15。

类似地,第 k 层的存储器被划分成较少的块的集合,每个块的大小与 k 十1层的块的大小一样。在任何时刻,第 k 层的缓存包含第 k 十1层块的一个子集的副本。例如,在图6-22中,第 k 层的缓存有4个块的空间,当前包含块4、9、14和3的副本。

数据总是以块大小为传送单元( transfer unit )在第 k 层和第 k +1层之间来回复制的。虽然在层次结构中任何一对相邻的层次之间块大小是固定的,但是其他的层次对之间可以有不同的块大小。例如,在图6-21中,L1和 LO 之间的传送通常使用的是1个字大小的块。L2和L1之间(以及I3和I2之间、L4和I3之间)的传送通常使用的是几十个字节的

块。而L5和L4之间的传送用的是大小为几百或几千字节的块。一般而言,层次结构中较低层(离 CPU 较远)的设备的访问时间较长,因此为了补偿这些较长的访问时间,倾向于使用较大的块。

1. 缓存命中

当程序需要第 k 十1层的某个数据对象 d 时,它首先在当前存储在第 k 层的一个块中查找 d 。如果 d 刚好缓存在第 k 层中,那么就是我们所说的缓存命中( cache hit )。该程序直接从第 k 层读取 d ,根据存储器层次结构的性质,这要比从第 k +1层读取 d 更快。例如,一个有良好时间局部性的程序可以从块14中读出一个数据对象,得到一个对第 k 层的缓存命中。

2. 缓存不命中

另一方面,如果第 k 层中没有缓存数据对象 d ,那么就是我们所说的缓存不命中( cache miss )。当发生缓存不命中时,第 k 层的缓存从第 k 十1层缓存中取出包含 d 的那个块,如果第 k 层的缓存已经满了,可能就会覆盖现存的一个块。

覆盖一个现存的块的过程称为替换( replacing )或驱逐( evicting )这个块。被驱逐的这个块有时也称为牺牲块( victim block )。决定该替换哪个块是由缓存的替换策略( replace — ment policy )来控制的。例如,一个具有随机替换策略的缓存会随机选择一个牺牲块。一个具有最近最少被使用 LRU )替换策略的缓存会选择那个最后被访问的时间距现在最远的块。

在第 k 层缓存从第 k 十1层取出那个块之后,程序就能像前面一样从第 k 层读出 d 了。例如,在图6-22中,在第 k 层中读块12中的一个数据对象,会导致一个缓存不命中,因为块12当前不在第 k 层缓存中。一旦把块12从第 k 十1层复制到第 k 层之后,它就会保持在那里,等待稍后的访问。

3. 缓存不命中的种类

区分不同种类的缓存不命中有时候是很有帮助的。如果第 k 层的缓存是空的,那么对

任何数据对象的访问都会不命中。一个空的缓存有时被称为冷缓存( cold cache ),此类不命中称为强制性不命中( compulsory miss )或冷不命中( cold miss )。冷不命中很重要,因为它们通常是短暂的事件,不会在反复访问存储器使得缓存暖身( warmed up )之后的稳定状态中出现。

只要发生了不命中,第 k 层的缓存就必须执行某个放置策略( placement policy ),确定把它从第 k 十1层中取出的块放在哪里。最灵活的替换策略是允许来自第 k +1层的任何块放在第 k 层的任何块中。对于存储器层次结构中高层的缓存(靠近 CPU ),它们是用硬件来实现的,而且速度是最优的,这个策略实现起来通常很昂贵,因为随机地放置块,定位起来代价很高。

因此,硬件缓存通常使用的是更严格的放置策略,这个策略将第 k 十1层的某个块限制放置在第 k 层块的一个小的子集中(有时只是一个块)。例如,在图6-22中,我们可以确定第 k 十1层的块 i 必须放置在第 k 层的块( i mod 4)中。例如,第 k 十1层的块0、4、8和12会映射到第 k 层的块0;块1、5、9和13会映射到块1;依此类推。注意,图6-22中的示例缓存使用的就是这个策略。

这种限制性的放置策略会引起一种不命中,称为冲突不命中( conflict miss ),在这种情况中,缓存足够大,能够保存被引用的数据对象,但是因为这些对象会映射到同一个缓存块,缓存会一直不命中。例如,在图6-22中,如果程序请求块0,然后块8,然后块0,然后块8,依此类推,在第 k 层的缓存中,对这两个块的每次引用都会不命中,即使这个缓存总共可以容纳4个块。

程序通常是按照一系列阶段(如循环)来运行的,每个阶段访问缓存块的某个相对稳定不变的集合。例如,一个嵌套循环可能会反复地访问同一个数组的元素。这个块的集合称为这个阶段的工作集( working set )。当工作集的大小超过缓存的大小时,缓存会经历容量不命中( capacity miss )。换句话说就是,缓存太小了,不能处理这个工作集。

4. 缓存管理

正如我们提到过的,存储器层次结构的本质是,每一层存储设备都是较低一层的缓存。在每一层上,某种形式的逻辑必须管理缓存。这里,我们的意思是指某个东西要将缓存划分成块,在不同的层之间传送块,判定是命中还是不命中,并处理它们。管理缓存的逻辑可以是硬件、软件,或是两者的结合。

例如,编译器管理寄存器文件,缓存层次结构的最高层。它决定当发生不命中时何时发射加载,以及确定哪个寄存器来存放数据。L1、L2和L3层的缓存完全是由内置在缓存中的硬件逻辑来管理的。在一个有虚拟内存的系统中, DRAM 主存作为存储在磁盘上的数据块的缓存,是由操作系统软件和 CPU 上的地址翻译硬件共同管理的。对于一个具有像 AFS 这样的分布式文件系统的机器来说,本地磁盘作为缓存,它是由运行在本地机器上的 AFS 客户端进程管理的。在大多数时候,缓存都是自动运行的,不需要程序采取特殊的或显式的行动。

6.3.2 存储器层次结构概念小结

概括来说,基于缓存的存储器层次结构行之有效,是因为较慢的存储设备比较快的存储设备更便宜,还因为程序倾向于展示局部性:

1)利用时间局部性: 由于时间局部性,同一数据对象可能会被多次使用。一旦一个数据对象在第一次不命中时被复制到缓存中,我们就会期望后面对该目标有一系列的访问命中。因为缓存比低一层的存储设备更快,对后面的命中的服务会比最开始的不命中快很多。

2)利用空间局部性: 块通常包含有多个数据对象。由于空间局部性,我们会期望后面对该块中其他对象的访问能够补偿不命中后复制该块的花费。现代系统中到处都使用了缓存。正如从图6-23中能够看到的那样, CPU 芯片、操作系统、分布式文件系统中和万维网上都使用了缓存。各种各样硬件和软件的组合构成和管理着缓存。注意,图6-23中有大量我们还未涉及的术语和缩写。在此我们包括这些术语和缩写是为了说明缓存是多么的普遍。

Ⅱ 电子计算机中的CMOS存储器和高速缓存有什么作用

题主,CMOS只是个技术名称,它是指制造大规模集成电路芯片用的一种技术或用这种技术制造出来的芯片,是电脑主板上的一块可读写的RAM芯片。因为可读写的特性,所以在电脑主板上用来保存BIOS设置完电脑硬件参数后的数据,这个芯片仅仅是用来存放数据的。
高速缓冲存储器(Cache)其原始意义是指存取速度比一般随机存取记忆体(RAM)来得快的一种RAM,一般而言它不像系统主记忆体那样使用DRAM技术,而使用昂贵但较快速的SRAM技术,也有快取记忆体的名称。

Ⅲ mbuf : 存储器缓存

mbuf的主要用途就是保存在进程和网络接口之间相互传递的用户数据,以及源与目标地址,插口选项等等。根据在成员m_flags中填写不同标志,有4种不同的mbuf:

4 最后一类mbuf包含一个分组首部,并包含超过208字节的数据。同时设置了标志M_PKTHDR和M_EXT。

另外有几点:

可通过netstat -m检测。(内核在一个全局变量中保持对某些统计信息的跟踪,当内核在运行时,一个进程对这些信息进行检查)

m_flags的独立的值:

当接收到一个以太网帧时,设备驱动程序调用m_devget来创建一个mbuf链表,并把所接收到的帧复制到这个链表中。根据所接收到的帧的长度不同,导致以下4种不同的mbuf链表。

m_pullup函数有两个目的:

只有头指针的mbuf链表

有头尾指针的链表

使用簇的好处在于:

Ⅳ 高速缓冲存储器的主要作用是什么,它与主内存有什么关系

高速缓存储器分布在CPU、硬盘、光驱等配件上。

存储器的高速缓冲存储器存储了频繁访问的主内存位置的内容及这些数据项的存储地址。当处理器引用主内存中的某地址时,高速缓冲存储器便检查是否存有该地址。

如果存有该地址,则将数据返回处理器;如果没有保存该地址,则进行常规的存储器访问。因为高速缓冲存储器总是比主内存速度快,所以当主内存的访问速度低于微处理器的速度时,常使用高速缓冲存储器。

(4)存储设备缓存扩展阅读:

高速缓冲存储器是存在于主存与CPU之间的一级存储器, 由静态存储芯片(SRAM)组成,容量比较小但速度比主存高得多, 接近于CPU的速度。在计算机存储系统的层次结构中,是介于中央处理器和主存储器之间的高速小容量存储器。它和主存储器一起构成一级的存储器。高速缓冲存储器和主存储器之间信息的调度和传送是由硬件自动进行的。

Ⅳ 谁给我解释下内部存储,系统存储,系统缓存,内

1、内部存储:内置在设备内的存储器,区别于外置存储,外置存储是在外部通过数据线、卡槽、网线等其他方式连接至设备的存储器。内部存储是硬件,是实体存储设备。
2、系统存储:用于存放系统文件的存储空间。只得是实体存储设备内存放系统的那部分空间。
3、系统缓存:用于存放系统运行时需要使用或产生的临时文件的存放空间,为了提高系统调取文件的速度,每次都会将该文件相邻的文件的一块调取到系统缓存,以便系统下次调取到该相邻文件时可以加快调取速度。这个存放相邻调取文件的地方叫做缓存。顾名思义,临时文件在该处做个缓冲存储。存放缓存的存储器是实体存储器,是硬件,但是缓存本身是一个空间概念,只是个大小。
4、内存,由于普通存储器的存取速度不足以满足CPU的处理速度,我们需要一个速度非常高的存储设备来连接CPU和普通存储器。缓存是一种方式,但是还不够,所以需要在中间在放置个内存。它的空间比缓存大,比外部存储器小,速度比缓存慢但是比外部存储器快。是实体存储器,是硬件。

Ⅵ 主存储器 与 缓存 有什么关系

一般来说缓存在CPU里面,常听说的就是一有缓存,二级缓存,
像比较新的酷睿四核的二级缓存可中8M
还有现在的硬盘也带缓存,高端的是16M的缓存,一般是2M或8M
主存主是平常说的内存,不包含缓存,它本事就是一个高速存储器.
速度:CPU缓存>内存>硬盘缓存>硬盘

Ⅶ 缓存属不属于本地存储器

缓存是指临时文件交换区,电脑把最常用的文件从存储器里提出来临时放在缓存里,就像把工具和材料搬上工作台一样,这样会比用时现去仓库取更方便。因为缓存往往使用的是RAM(断电即掉的非永久储存),所以在忙完后还是会把文件送到硬盘等存储器里永久存储。
缓存属于本地存储器。

热点内容
java返回this 发布:2025-10-20 08:28:16 浏览:598
制作脚本网站 发布:2025-10-20 08:17:34 浏览:890
python中的init方法 发布:2025-10-20 08:17:33 浏览:584
图案密码什么意思 发布:2025-10-20 08:16:56 浏览:768
怎么清理微信视频缓存 发布:2025-10-20 08:12:37 浏览:688
c语言编译器怎么看执行过程 发布:2025-10-20 08:00:32 浏览:1015
邮箱如何填写发信服务器 发布:2025-10-20 07:45:27 浏览:259
shell脚本入门案例 发布:2025-10-20 07:44:45 浏览:118
怎么上传照片浏览上传 发布:2025-10-20 07:44:03 浏览:808
python股票数据获取 发布:2025-10-20 07:39:44 浏览:716