电荷存储效应与作用
㈠ 电力二极管的动态特性中,为什么会出现电压过冲呢
二极管和一般开关的不同在于“开”与“关”由所加电压的极性决定, 而且“开”态有微小的压降UF,“关”态有微小的电流i0。当电压由正向变为反向时, 电流并不立刻成为(- i0) , 而是在一段时间td反向电流始终很大,二极管并不关断。
经过td后反向电流才逐渐变小再经过tf 时间二极管的电流才成为 (- i0) , td 称为储存时间, tf 称为下降时间。trr= td+ tf 称为反向恢复时间。
正向PN结的电荷存储效应给电力二极管带来的主要优缺点: 优点:电导调制效应使通态压降较低,在正向电流增大时通态压降增加很少。 缺点:反向关断过程中会引起反向恢复电流和反向恢复时间,使开关频率降低。

肖特基二极管
以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒二极管(Schottky Barrier Diode--SBD),简称为肖特基二极管。肖特基二极管的优点在于:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管。因此,其开关损耗和正向导通损耗都比快速二极管还要小,效率高。
㈡ 电是如何存储的
目前,电能存储都是将其转换为其它形式的能量,电→动能、电→化学能等。蓄电池就是将电能转化为化学能存储的。还有这里说到的抽水蓄能,将电能转换为动能与势能。不管哪种方式,其实它的转换效率和存储容量都很低。
发电厂发出多少电,用户就得同时消耗多少电,这个平衡必须满足!即发出电能=消耗电能。如果实际发出的电>实际消耗的电,那么过剩的电能将会转化为热能,造成发电厂的发电机发热甚至爆炸,此时等式变为发出电能=实际消耗电能+发热。
因为发热的本质也是消耗电能,所以等式依旧是发出电能=消耗电能;如果实际发出的电<实际要消耗的电,即发出的电不够用,将会造成电能质量下降,比如灯泡变暗甚至不亮,此时等式变为实际发出的电=实际消耗的电(令灯泡变暗甚至不亮所消耗的电),本质其实还是发出电能=消耗电能。

(2)电荷存储效应与作用扩展阅读
人类储存电能的方式
1、压缩空气能量储存
压缩空气能量储存或CAES,就像抽水蓄能电池一样,除了电力生产者在低需求期间使用电力以将环境空气抽入储存容器而不是水中。当需要电力时,允许压缩空气膨胀并用于驱动涡轮发电。
2、熔盐储热
熔盐可以长时间保持热量,因此通常发现在太阳能热电厂中,数十种或数百种定日镜(大镜子)使用阳光的热量来产生能量。在一些植物中,阳光被引导到一个大的中央热塔,其快速加热并在其中沸腾一个工作流体。
在其他工厂,充满液体的管道在抛物面镜前面流动,流体在这些管道中升温。无论哪种方式,可以立即使用热量来驱动蒸汽轮机,或者将其转移到熔融盐,其中热量可以储存数小时。这有助于太阳能工厂延长工作时间,并在晚上提供电力。
3、氧化还原电池
氧化还原液流电池是通过还原 ,氧化反应(因此,氧化还原)充电和放电的巨大电池。它们通常涉及充满电解质的巨型运输容器,其流入公共区域并且经常通过膜相互作用以产生电荷。钒电解质已经变得普遍,尽管锌,氯和盐水溶液也已被尝试和提出。
㈢ 电荷存储、 分辨率和阀值、 接触电势 分别的名词解释
电荷存储是一种特殊的pn结开关二极管,即在pn结两边的扩散区中存储有大量少数载流子的二极管,以致在关断时存储时间很长,但是关断时的下降时间tf几乎为0(为ps数量级)。这种二极管具有很好的正向导电性,所以在正向电压时能够注入大量的少数载流子电荷到pn结两边的扩散区中去,从而可实现大量电荷的存储。实际上电荷存储二极管基本上与阶跃恢复二极管是一致的。
㈣ mos管是什么原理起什么作用
工作原理:
MOS管是由加在输入端栅极的电压来控制输出端漏极的电流。MOS管是压控器件它通过加在栅极上的电压控制器件的特性,不会发生像三极管做开关时的因基极电流引起的电荷存储效应,因此在开关应用中,MOS管的开关速度应该比三极管快。其主要原理如图:

作用:
由于MOS管主要是为配件提供稳定的电压,所以它一般使用在CPU、AGP插槽和内存插槽附近。其中在CPU与AGP插槽附近各安排一组MOS管,而内存插槽则共用了一组MOS管,MOS管一般是以两个组成一组的形式出现主板上的。
㈤ 电力二极管的动态特性及其为什么
1、正向PN结的电荷存储效应给电力二极管带来的主要优缺点: 优点:电导调制效应使通态压降较低,在正向电流增大时通态压降增加很少。 缺点:反向关断过程中会引起反向恢复电流和反向恢复时间,使开关频率降低。 2、正向通态压降的大致范围0.7-1.2V; 3、主要参数:通态平均电流IF(AV)、反向耐压URRM和反向恢复时间TRR; 普通二极管:反向恢复时间TRR在5uS以上。 快恢复二极管:0.8-1.1V的正向导通压降,反向恢复时间数百纳秒,正向电流是几安培至几千安培,反向峰值电压可达几百到几千伏。超快恢复二极管的反向恢复电荷进一步减小,使其trr可低至几十纳秒。
肖特基二极管:其反向恢复时间极短10-40纳秒,正向导通压降仅0.4V左右,而整流电流却可达到几千毫安,而且反向漏电流较大,优点低功耗,大电流,开关频率高,缺点耐压低,一般低于200V。
这两种管子通常用于开关电源。快恢复二极管主要应用在逆变电源中做整流元件. 追问: 什么是电导调制效应,它是如何影响电力二极管的动态特性的 回答: 电导调制需效应是Webster效应,是在大注入时基区电导增大的现象;而基区宽度调制效应就是Early效应,是集电结电压变化而致使基区宽度变化、并造成伏安输出特性倾斜、使输出电阻减小的现象;另外,基区宽度展宽效应就是Kirk效应,是在大电流下基区宽度增大的现象。这三种重要的效应是BJT的一种基本特性,
二极管在有正向电压,并且正向电压大于1V左右(每个管子不一样,但大约这个范围左右)的时候就会导通。但是施加了正向电压不会立刻就导通,会有一点延迟,毕竟二极管是半导体,不是导体。大约是几毫秒左右或者几微秒的时间,每个管子也不一样,具体看说明书。这就是延迟时间。反向恢复:二极管正向导通,电压反向了会截止。但是二极管自己有电容结,所以会反应比较慢。电压一反向,它并不会立刻就截止了,会继续流一会儿电流,即使这个电流是反向的(电压现在反向了,电流当然基本上也是反向的了),但是反向的电流会把二极管的结电容里的电放完,然后就可以截止了,这个过程所花的时间,就是反向恢复时间。正向恢复时间?我没听说过。。。你杜撰出来的吧-_-b是开通的速度的意思吗?是不是说由反向电压转到正向电压后,会化多少时间开通二极管?下降时间是说电压从正向变成反向的时候,电流下降到零,再反向成负值,再上升到零的这个过程所花的时间,比反向恢复时间长一点点,大概长个二分之一吧。
㈥ mos管是什么原理,起什么作用的
MOS管的原理:
它是利用VGS来控制“感应电荷”的多少,以改变由这些“感应电荷”形成的导电沟道的状况,然后达到控制漏极电流的目的。在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电沟道,即使在VGS=0时也有较大的漏极电流ID。当栅极电压改变时,沟道内被感应的电荷量也改变,导电沟道的宽窄也随之而变,因而漏极电流ID随着栅极电压的变化而变化。
作用:
1、可应用于放大电路。由于MOS管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
2、很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。
3、可以用作可变电阻。
4、可以方便地用作恒流源。
5、可以用作电子开关。
简介:
mos管,即在集成电路中绝缘性场效应管。是金属(metal)—氧化物(oxid)—半导体(semiconctor)场效应晶体管。或者称是金属—绝缘体(insulator)—半导体。MOS管的source和drain是可以对调的,都是在P型backgate中形成的N型区。在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。这样的器件被认为是对称的。
结构特点:
MOS管的内部结构如下图所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET,大大提高了MOSFET器件的耐压和耐电流能力。

p沟道mos管
其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻,该管导通时在两个高浓度n扩散区间形成n型导电沟道。n沟道增强型MOS管必须在栅极上施加正向偏压,且只有栅源电压大于阈值电压时才有导电沟道产生的n沟道MOS管。n沟道耗尽型MOS管是指在不加栅压(栅源电压为零)时,就有导电沟道产生的n沟道MOS管。
㈦ 基于MOS管栅极电容的电荷存储效应 请问这个效应如何进行具体表述,查了很多资料,讲的都不是很确切
MOS是场控器件,意味着只要栅极电压达到阈值,其DS之间的沟道即会打开。但由于其栅源之间有等效电容,故无论是开通或关断或放大的时候,其响应均会受电容影响,有所延迟。因为电容电压不会突变,这就是存储效应。
㈧ “多数载流子”和“少数载流子”的意义分别是什么
多数载流子,少数载流子,它们都承担着传递电流的作用,载流子(电荷)的定向运动,产生了电流。具体来说,不同的半导体器件,有的是多数载流子其主要作用,有的又是少数载流子起重要作用。所以半导体器件,又分为多子器件和少子器件。你比如说,双极型器件,如BJT,PiN二极管,这些都是少数载流子器件。特点是电流能力大,但是开关速度相对较低,因为有少子电荷存储效应。
于此对应的,多数载流子器件,如MOSFET,肖特基二极管,这些是单极器件,起作用的是多数载流子。由于没有了少子存储效应,所以特点是开关速度很快,可以工作在高的频率下,但是电流能力不如双极型器件。
所以,你问多数载流子少数载流子的意义,其实它们都是电流的承担者和贡献者,就看具体器件应用中,谁占主要作用了。
希望对你有帮助
