当前位置:首页 » 存储配置 » 存储引擎不能使用索引中范围条件右边的列

存储引擎不能使用索引中范围条件右边的列

发布时间: 2023-01-23 01:40:43

❶ 高性能Mysql:字符串类型(2)

字符串类型( )

与CHAR 和VARCHAR 类似的类型还有BINARY 和VARBINARY 它们存储的是二进制字符串 二进制字符串跟常规字符串非常相似 但是二进制字符串存储的是字节码而不是字符 填充也不一样 MySQL 填充BINARY 采用的是 (零字节)而不是空格 在检索时也不会去掉填充值

当需要存储二进制数据 并且希望MySQL 使用字节码而不是字符进行比较时 这些类型是非常有用的 二进制比较的优势并不仅仅体现在大小写敏感上 MySQL 比较BINARY 字符串时 每次按一个字节 并且根据该字节的数值进行比较 因此 二进制比较比字符比较简单很多 所以也就更快

慷慨是不明智的

使用VARCHAR( ) 和VARCHAR( ) 存储 hello 的空间开销是一样的 那么使用更短的列有什么优势吗?

事实证明有很大的优势 更大的列会消耗更多的内存 因为MySQL 通常会分配固定大小的内存块来保存内部值 尤其是使用内存临时表进行排序或操作时会特别糟糕 在利用磁盘临时表进行排序时也同样糟糕

所以最好的策略是只分配真正需要的空间

BLOB 和TEXT 类型

BLOB 和TEXT 都是为存储很大的数据而设计的字符串数据类型 分别采用二进制和字符方式存储

实际上 它们分别属于两组不同的数据类型家族 字符类型是TINYTEXT SMALLTEXT TEXT MEDIUMTEXT LONGTEXT ;对应的二进制类型是TINYBLOB SMALLBLOB BLOB MEDIUMBLOB LONGBLOB BLOB 是SMALLBLOB 的同义词 TEXT 是SMALLTEXT 的同义词

与其他类型不同 MySQL 把每个BLOB 和TEXT 值当作一个独立的对象处理 存储引擎在存储时通常会做特殊处理 当BLOB 和TEXT 值太大时 InnoDB 会使用专门的 外部

存储区域来进行存储 此时每个值在行内需要 ~ 个字节存储一个指针 然后在外部存储区域存储实际的值

BLOB 和TEXT 家族之间仅有的不同是BLOB 类型存储的是二进制数据 没有排序规则或字符集 而TEXT 类型有字符集和排序规则

MySQL 对BLOB 和TEXT 列进行排序与其他类型是不同的 它只对每个列的最前max_sort_length 字节而不是整个字符串做排序 如果只需要排序前面一小部分字符 则可以减小max_sort_length 的配置 或者使用ORDER BY SUSTRING(column length)

MySQL 不能将BLOB 和TEXT 列全部长度的字符串进行索引 也不能使用这些索引消除排序 (关于这个主题下一章会有更多的信息 )

磁盘临时表和文件排序

因为Memory 引擎不支持BLOB 和TEXT 类型 所以 如果查询使用了BLOB 或TEXT列并且需要使用隐式临时表 将不得不使用MyISAM 磁盘临时表 即使只有几行数据也是如此(Percona Server 的Memory 引擎支持BLOB 和TEXT 类型 但直到本书写作之际 同样的场景下还是需要使用磁盘临时表)

这会导致严重的性能开销 即使配置MySQL 将临时表存储在内存块设备上(RAMDisk) 依然需要许多昂贵的系统调用

最好的解决方案是尽量避免使用BLOB 和TEXT 类型 如果实在无法避免 有一个技巧是在所有用到BLOB 字段的地方都使用SUBSTRING(column length) 将列值转换为字符串(在ORDER BY 子句中也适用) 这样就可以使用内存临时表了 但是要确保截取的子字符串足够短 不会使临时表的大小超过max_heap_table_size 或tmp_table_size 超过以后MySQL 会将内存临时表转换为MyISAM 磁盘临时表

最坏情况下的长度分配对于排序的时候也是一样的 所以这一招对于内存中创建大临时表和文件排序 以及在磁盘上创建大临时表和文件排序这两种情况都很有帮助 例如 假设有一个 万行的表 占用几个GB 的磁盘空间 其中有一个utf 字符集的VARCHAR( ) 列 每个字符最多使用 个字节 最坏情况下需要 字节的空间 如果在ORDER BY 中用到这个列 并且查询扫描整个表 为了排序就需要超过 GB 的临时表

这三行数据实际存储为整数 而不是字符串 可以通过在数字上下文环境检索看到这个双重属性

返回目录 高性能MySQL

编辑推荐

ASP NET MVC 框架揭秘

Oracle索引技术

ASP NET开发培训视频教程

lishixin/Article/program/MySQL/201311/29686

❷ mySQL的存储引擎

MyISAMMySQL 5.0 之前的默认数据库引擎,最为常用。拥有较高的插入,查询速度,但不支持事务
InnoDB事务型数据库的首选引擎,支持ACID事务,支持行级锁定, MySQL 5.5 起成为默认数据库引擎
BDB源 自 Berkeley DB,事务型数据库的另一种选择,支持Commit 和Rollback 等其他事务特性
Memory所有数据置于内存的存储引擎,拥有极高的插入,更新和查询效率。但是会占用和数据量成正比的内存空间。并且其内容会在 MySQL 重新启动时丢失
Merge将一定数量的 MyISAM 表联合而成一个整体,在超大规模数据存储时很有用
Archive非常适合存储大量的独立的,作为历史记录的数据。因为它们不经常被读取。Archive 拥有高效的插入速度,但其对查询的支持相对较差
Federated将不同的 MySQL 服务器联合起来,逻辑上组成一个完整的数据库。非常适合分布式应用
Cluster/NDB高冗余的存储引擎,用多台数据机器联合提供服务以提高整体性能和安全性。适合数据量大,安全和性能要求高的应用
CSV: 逻辑上由逗号分割数据的存储引擎。它会在数据库子目录里为每个数据表创建一个 .csv 文件。这是一种普通文本文件,每个数据行占用一个文本行。CSV 存储引擎不支持索引。
BlackHole:黑洞引擎,写入的任何数据都会消失,一般用于记录 binlog 做复制的中继
EXAMPLE 存储引擎是一个不做任何事情的存根引擎。它的目的是作为 MySQL 源代码中的一个例子,用来演示如何开始编写一个新存储引擎。同样,它的主要兴趣是对开发者。EXAMPLE 存储引擎不支持编索引。
另外,MySQL 的存储引擎接口定义良好。有兴趣的开发者可以通过阅读文档编写自己的存储引擎。

❸ Mysql高级(五) 索引失效

1.全值匹配

2.最佳左前缀法则
3.不在索引列上做任何操作(计算、函数、(自动or手动)类型转换),会导致索引失效而转向全表扫描
4.存储引擎不能使用索引中范围条件右边的列
5.尽量使用覆盖索引(只访问索引的查询(索引列和查询列一直)),减少select *
6.mysql在使用不等于(!=或者<>)的时候无法使用索引会导致全表扫描
7.is null, is not null也无法使用索引
8.like以通配符开头(‘%abc...’)mysql索引失效会变成全表扫描的操作
9.字符串不加单引号索引失效
10.少用or,用它来连接时索引会失效

❹ 索引失效的情况有哪些

原因有如下:

1、最佳左前缀原则——如果索引了多列,要遵守最左前缀原则。指的是查询要从索引的最左前列开始并且不跳过索引中的列。

2、不在索引列上做任何操作,会导致索引失效而导致全表扫描。

3、存储引擎不能使用索引中范围条件右边的列,范围之后索引失效。这写条件判断最后放到后面,先定位到小的范围再开始。

4、mysql使用不等于(!= 或者<>)的时候,无法使用索引,会导致索引失效。

5、mysql中使用is not null 或者 is null会导致无法使用索引。

6、mysql中like查询是以%开头,索引会失效变成全表扫描,覆盖索引。

7、mysql中,如果条件中有or,即使其中有条件带索引也不会使用(这也是为什么尽量少用or的原因)。要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引。

8、如果mysql使用全表扫描要比使用索引快,则不会使用到索引。

注意事项

1、索引列有函数处理或隐式转换,不走索引。

2、索引列倾斜,个别值查询时,走索引代价比走全表扫描高,所以不走索引。

3、索引列没有限制 not null,索引不存储空值,如果不限制索引列是not null,oracle会认为索引列有可能存在空值,所以不会按照索引计算。

❺ 如何高效地利用MySQL索引

1、要想高效利用索引,我们首先要考虑如何正确建立索引。

(1)在经常做搜索的列上,也就是WHERE子句里经常出现的列,考虑加上索引,加快搜索速度。

(2)唯一标识记录的列,应该加上唯一索引,强制该列的唯一性并且加快按该列查找记录的速度。

(3)在内连接使用的列上加上索引,最好是在内连接用到字段都加上,因为MySQL优化器会自动地选择连接顺序,然后观察索引的使用情况,将没用的索引删除即可。

(4)在需要排序的列上加上索引,因为索引本身是按顺序的组织的,它可以避免 filesort,要知道,Server层在进行排序时是在内存中进行的,非常消耗资源。

(5)可以考虑实现覆盖索引,即根据 SELECT 的所有字段上创建联合索引,这样存储引擎只用读取索引而不用去回表查询,极大地减少了对数据表的访问,大大地提高了性能。

(6)对于那些选择性很小的列,比如性别列,增加索引并不能明显加快查询速度,反而该索引会成为表的累赘。

(7)对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的要么数据量相当大,要么取值很少。

(8)当对写性能的要求远远大于读性能时,不应该创建索引。写性能和读性能是互相矛盾的。这是因为,维护一个 B+Tree 成本是非常大的,对索引的写会涉及到页的分裂等。

(9)复合索引的几个字段是否经常同时以AND方式出现在Where子句中?单字段查询是否极少甚至没有?如果是,则可以建立复合索引,否则考虑单字段索引。这还是说明,满足查询性能的前提下,索引越少越好。

(10)如果复合索引所包含的字段超过3个,那么仔细考虑其必要性,考虑减少复合的字段。

(11)在用于GROUP BY的列上加上索引,避免使用临时表。

(12)对于较长的字符列,如 char、varchar等,由于字符串的比较相对来说非常耗时,因此考虑使用前缀索引减少索引长度,或者创建自定义哈希索引,将字符串映射成整数,然后以该整数作为索引,同时以字符串的值作为过滤条件。

我们在创建索引时,可以根据下面原则进行简单判断:索引是否将相关记录集合到了一起,从未减少了磁盘I/O,加快搜索速度?索引中数据的排列顺序是否和查找的数据的排列顺序一致,从而避免了Server层的排序?索引中的列是否包含了查询中需要的全部列从而实现了覆盖索引? 这几个条件层层递进,满足得越多越好。

2、索引正确地建立了,我们还需要正确地使用它们:

(1)使用了运算符 !=,以及关键字not in,not exist,>,<等,总之产生的结果集很大时(也在where条件进行大范围的选择时),往往导致引擎不使用索引而是走全盘扫描。因为如果使用索引会造成大量的随机I/O,得不偿失。

(2)如果对索引列进行运算,如 WHERE substr(name, 1, 3)=‘mark’,存储引擎并不能聪明地判断哪些索引满足等式,因此不能使用到索引。

(3)使用到了LIKE,并且通配符在最前面时,不能使用索引。

(4)对于联合索引 (a, b, c),如果没用到最左列,那么一般情况下都使用不到索引。但是,比如统计操作 count(*) where a > xxx,是可以使用到该联合索引的。毕竟统计这类操作,它不是检索,并不需要索引完全有序。

(5)对于联合索引,如果某个列使用了范围查找,那么其右边的列都无法作为索引优化查询,但是由于 ICP(Index Condition Pushdown),这些列能作为过滤条件在存储引擎中对数据进行过滤。

(6)如果条件中有 OR,则必须每个OR用到的字段都有索引,否则不能使用任何索引。

(7)想在联合查询中使用索引来避免 filesort,则关联查询中的ORDER BY用到的字段必须全部是第一张表(驱动表)上的。

❻ MySQL数据库存储引擎详解

存储引擎是什么?

MySQL中的数据用各种不同的技术存储在文件(或者内存)中 这些技术中的每一种技术都使用不同的存储机制 索引技巧 锁定水平并且最终提供广泛的不同的功能和能力 通过选择不同的技术 你能够获得额外的速度或者功能 从而改善你的应用的整体功能

例如 如果你在研究大量的临时数据 你也许需要使用内存存储引擎 内存存储引擎能够在内存中存储所有的表格数据 又或者 你也许需要一个支持事务处理的数据库(以确保事务处理不成功时数据的回退能力)

这些不同的技术以及配套的相关功能在MySQL中被称作存储引擎(也称作表类型) MySQL默认配置了许多不同的存储引擎 可以预先设置或者在MySQL服务器中启用 你可以选择适用于服务器 数据库和表格的存储引擎 以便在选择如何存储你的信息 如何检索这些信息以及你需要你的数据结合什么性能和功能的时候为你提供最大的灵活性

选择如何存储和检索你的数据的这种灵活性是MySQL为什么如此受欢迎的主要原因 其它数据库系统(包括大多数商业选择)仅支持一种类型的数据存储 遗憾的是 其它类型的数据库解决方案采取的 一个尺码满足一切需求 的方式意味着你要么就牺牲一些性能 要么你就用几个小时甚至几天的时间详细调整你的数据库 使用MySQL 我们仅需要修改我们使用的存储引擎就可以了

在这篇文章中 我们不准备集中讨论不同的存储引擎的技术方面的问题(尽管我们不可避免地要研究这些因素的某些方面) 相反 我们将集中介绍这些不同的引擎分别最适应哪种需求和如何启用不同的存储引擎 为了实现这个目的 在介绍每一个存储引擎的具体情况之前 我们必须要了解一些基本的问题

如何确定有哪些存储引擎可用

你可以在MySQL(假设是MySQL服务器 以上版本)中使用显示引擎的命令得到一个可用引擎的列表

    mysql>showengines; + + + + |Engine|Support|Comment| + + + + |MyISAM|DEFAULT|DefaultengineasofMySQL withgreatperformance| |HEAP|YES|AliasforMEMORY| |MEMORY|YES|Hashbased storedinmemory usefulfortemporarytables| |MERGE|YES|| |MRG_MYISAM|YES|AliasforMERGE| |ISAM|NO|Obsoletestorageengine nowreplacedbyMyISAM| |MRG_ISAM|NO|Obsoletestorageengine nowreplacedbyMERGE| |InnoDB|YES|Supportstransactions row levellocking andforeignkeys| |INNOBASE|YES|AliasforINNODB| |BDB|NO|Supportstransactionsandpage levellocking| |BERKELEYDB|NO|AliasforBDB| |NDBCLUSTER|NO|Clustered fault tolerant memory basedtables| |NDB|NO|AliasforNDBCLUSTER| |EXAMPLE|NO|Examplestorageengine| |ARCHIVE|NO|Archivestorageengine| |CSV|NO|CSVstorageengine| + + + + rowsinset( sec)

这个表格显示了可用的数据库引擎的全部名单以及在当前的数据库服务器中是否支持这些引擎

对于MySQL 以前版本 可以使用mysql> show variables like have_% (显示类似 have_% 的变量):

    mysql>showvariableslike have_% ; + + + |Variable_name|Value| + + + |have_bdb|YES| |have_crypt|YES| |have_innodb|DISABLED| |have_isam|YES| |have_raid|YES| |have_symlink|YES| |have_openssl|YES| |have_query_cache|YES| + + + rowsinset( sec)

你可以通过修改设置脚本中的选项来设置在MySQL安装软件中可用的引擎 如果你在使用一个预先包装好的MySQL二进制发布版软件 那么 这个软件就包含了常用的引擎 然而 需要指出的是 如果你要使用某些不常用的引擎 特别是CSV RCHIVE(存档)和BLACKHOLE(黑洞)引擎 你就需要手工重新编译MySQL源码

使用一个指定的存储引擎

你可以使用很多方法指定一个要使用的存储引擎 最简单的方法是 如果你喜欢一种能满足你的大多数数据库需求的存储引擎 你可以在MySQL设置文件中设置一个默认的引擎类型(使用storage_engine 选项)或者在启动数据库服务器时在命令行后面加上 default storage engine或 default table type选项

更灵活的方式是在随MySQL服务器发布同时提供的MySQL客户端时指定使用的存储引擎 最直接的方式是在创建表时指定存储引擎的类型 向下面这样:

CREATE TABLE mytable (id int title char( )) ENGINE = INNODB

你还可以改变现有的表使用的存储引擎 用以下语句:

ALTER TABLE mytable ENGINE = MyISAM

然而 你在以这种方式修改表格类型的时候需要非常仔细 因为对不支持同样的索引 字段类型或者表大小的一个类型进行修改可能使你丢失数据 如果你指定一个在你的当前的数据库中不存在的一个存储引擎 那么就会创建一个MyISAM(默认的)类型的表

各存储引擎之间的区别

为了做出选择哪一个存储引擎的决定 我们首先需要考虑每一个存储引擎提供了哪些不同的核心功能 这种功能使我们能够把不同的存储引擎区别开来 我们一般把这些核心功能分为四类:支持的字段和数据类型 锁定类型 索引和处理 一些引擎具有能过促使你做出决定的独特的功能 我们一会儿再仔细研究这些具体问题

字段和数据类型

虽然所有这些引擎都支持通用的数据类型 例如整型 实型和字符型等 但是 并不是所有的引擎都支持其它的字段类型 特别是BLOG(二进制大对象)或者TEXT文本类型 其它引擎也许仅支持有限的字符宽度和数据大小

这些局限性可能直接影响到你可以存储的数据 同时也可能会对你实施的搜索的类型或者你对那些信息创建的索引产生间接的影响 这些区别能够影响你的应用程序的性能和功能 因为你必须要根据你要存储的数据类型选择对需要的存储引擎的功能做出决策

锁定

数据库引擎中的锁定功能决定了如何管理信息的访问和更新 当数据库中的一个对象为信息更新锁定了 在更新完成之前 其它处理不能修改这个数据(在某些情况下还不允许读这种数据)

锁定不仅影响许多不同的应用程序如何更新数据库中的信息 而且还影响对那个数据的查询 这是因为查询可能要访问正在被修改或者更新的数据 总的来说 这种延迟是很小的 大多数锁定机制主要是为了防止多个处理更新同一个数据 由于向数据中插入信息和更新信息这两种情况都需要锁定 你可以想象 多个应用程序使用同一个数据库可能会有很大的影响

不同的存储引擎在不同的对象级别支持锁定 而且这些级别将影响可以同时访问的信息 得到支持的级别有三种:表锁定 块锁定和行锁定 支持最多的是表锁定 这种锁定是在MyISAM中提供的 在数据更新时 它锁定了整个表 这就防止了许多应用程序同时更新一个具体的表 这对应用很多的多用户数据库有很大的影响 因为它延迟了更新的过程

页级锁定使用Berkeley DB引擎 并且根据上载的信息页( KB)锁定数据 当在数据库的很多地方进行更新的时候 这种锁定不会出现什么问题 但是 由于增加几行信息就要锁定数据结构的最后 KB 当需要增加大量的行 也别是大量的小型数据 就会带来问题

行级锁定提供了最佳的并行访问功能 一个表中只有一行数据被锁定 这就意味着很多应用程序能够更新同一个表中的不同行的数据 而不会引起锁定的问题 只有InnoDB存储引擎支持行级锁定

建立索引

建立索引在搜索和恢复数据库中的数据的时候能够显着提高性能 不同的存储引擎提供不同的制作索引的技术 有些技术也许会更适合你存储的数据类型

有些存储引擎根本就不支持索引 其原因可能是它们使用基本表索引(如MERGE引擎)或者是因为数据存储的方式不允许索引(例如FEDERATED或者BLACKHOLE引擎)

事务处理

事务处理功能通过提供在向表中更新和插入信息期间的可靠性 这种可靠性是通过如下方法实现的 它允许你更新表中的数据 但仅当应用的应用程序的所有相关操作完全完成后才接受你对表的更改 例如 在会计处理中每一笔会计分录处理将包括对借方科目和贷方科目数据的更改 你需要要使用事务处理功能保证对借方科目和贷方科目的数据更改都顺利完成 才接受所做的修改 如果任一项操作失败了 你都可以取消这个事务处理 这些修改就不存在了 如果这个事务处理过程完成了 我们可以通过允许这个修改来确认这个操作

lishixin/Article/program/MySQL/201311/29301

❼ SQL优化(二)

SQL优化一: sql优化(一)

上片文章已经详细介绍了explain各个字段的含义,以及什么情况应该建立索引,什么情况不需要建立索引以及sql语句性能的判断依据,接下来我介绍下如何合理的建立索引。

sql语句:select id,author_id from article where category_id = 1 and comments>1 order by views desc limit 1;

分析:首先我们根据where后面的条件建立符合索引,然后根据order by后面的字段建立索引,因此建立索引idx_article_ccv,即以(category_id,comments,views)数据列建立复合索引,但由于comments是一个范围,按照BTree索引的原理,先排序category_id,如果遇到相同的category_id则再排序comments,如果遇到相同的comments则再排序views,又因为comments字段在复合索引里处于中间位置,而comments>1是一个条件(是一个范围值),在复合索引的一个范围值的数据列后面的索引全部失效,mysql无法利用索引再对后面的views部分进行检索,也就是说views无法按照索引排序,所以explain下此sql语句,type为range,extra使用的是Using filesort,这是比较糟糕的。所以我们放弃comments这个范围字段,建立索引idx_article_cv,即以(category_id,views)数据列建立复合索引,explain 此sql,type变成了ref,extra的using filesort也变成了using index,这就变得好多了。

索引:idx_article_cv,即以(category_id,views)数据列建立复合索引

前段时间做了一个销售精细化项目,是公司crm项目的一个大模块,大致就是为销售人员制定指标,实现销售目标从区域到团到业务员到客户,实时跟踪业务员所负责客户的下单量的情况。这就存在许多关联关系,区域-团,团-业务员,业务员-客户,这使得sql常常需要关联多张表。

sql语句:SELECT

tu.fuserid,

tu.faccount,

tu.fphone,

tu.fcertificationtype,

tu.fcertificatename,

tu.fkeyarea,

tu.fkeyareatext,

DATE_FORMAT(tcr.fupdatetime,'%Y-%m-%d %H:%i:%s') as fupdatetime,

tag.forggroupid,

tag.forggroupname,

tug.forguserid,

tug.fusername,

tug.fuserphone,

tag.fcitycode

FROM t_finedt_user AS tu

LEFT JOIN t_finedt_customer_relation AS tcr

ON tu.fuserid = tcr.fuserid

LEFT JOIN t_finedt_usergroup AS tug

ON tcr.forguserid = tug.forguserid

and tcr.forggroupid = tug.forggroupid

LEFT JOIN t_finedt_areagroup AS tag

ON tug.forggroupid = tag.forggroupid

where tu.fkeyarea=? and tu.fuserid=? and tug.forggroupid = ?

分析:上面的sql是左连接,左边的表一定是全表查询,所以要建立右边表对应关联字段的索引,在表t_finedt_user上建立tu_fuserid_fkeyarea索引,即以(fuserid,fkeyarea)字段建立索引,在表t_finedt_customer_relation 上建立tcr_forguserid_forggroupid索引,即以(forguserid,forggroupid)字段建立索引,在表t_finedt_usergroup 上建立tug_forguserid_forggroupid索引,即以(forguserid,forggroupid)字段建立索引,在表t_finedt_areagroup上建立tag_forggroupid索引,即以(forggroupid)字段建立索引。建立索引后,sql查询速度明显快了很多

索引:tcr_forguserid_forggroupid,tu_fuserid_fkeyarea,tug_forguserid_forggroupid,tag_forggroupid

1、尽可能减少join语句中的NestedLoop的循环次数,永远用小结果集驱动大结果集

2、优先优化NestedLoop的内层循环

3、保证join语句总被驱动表上的join字段已经被索引

4、当无法保证被驱动表join条件字段被索引,且内存资源充足的前提下,不要太吝啬joinBuffer的设置

1、全值匹配我最爱

2、最佳左前缀原则——如果索引了多列,要遵守最左前缀原则,指的是查询从索引的最左前列开始并且不跳过索引中的列

3、并在索引列上做任何操作(计算、函数、自动or手动类型转换),这些会导致索引失效而转向全表扫描

4、存储引擎不能使用索引中范围条件右边的列,范围之后的索引全失效

5、尽量使用覆盖索引(之访问索引的查询(索引列和查询的列一致)),减少select *

6、mysql在使用不等于(!=、>、<)的时候无法使用索引会导致全表扫描。

7、is null、is not null也无法使用索引。

8、like以通配符开头("%abc.."),mysql索引失效也会变成全表扫描的操作。

9、字符串不加单引号也会引起索引失效

10、少用or,用它来连接时会索引失效。

1、对于单值索引,尽量选择针对当前query过滤性更好的索引

2、在选择组合索引的时候,当前query中过滤性最好的字段在索引字段顺序中,位置越靠前越好

3、在选择组合索引的时候,尽量选择尽可能包含当前query中的where字句中更多字段的索引

4、尽可能通过分析统计信息和调整query的写法来达到选择合适索引的目的。

全值匹配我最爱,最左前缀要遵守

带头大哥不能死,中间兄弟不能断

索引列上少计算,范围之后全失效

like百分写最右,覆盖索引不写里

不等空值还有or,索引失效要少用

var引号不可丢,sql高级也不难

❽ 【mysql】索引类型的划分

了解mysql的索引类型的时候,我觉得按照以下4中方式划分逻辑是比较清晰的。
1.存储结构 2.物理存储 3.作用字段 4.功能

按照数据存储的结构可以分B树索引和hash索引。

又称为 BTREE 索引,目前大部分的索引都是采用 B-树索引来存储的。B-树索引是一个典型的数据结构。
基于这种树形数据结构,表中的每一行都会在索引上有一个对应值。因此,在表中进行数据查询时,可以根据索引值一步一步定位到数据所在的行。
查询必须从索引的最左边的列开始。
查询不能跳过某一索引列,必须按照从左到右的顺序进行匹配。
存储引擎不能使用索引中范围条件右边的列。

也称为散列索引或 HASH 索引。MySQL 目前仅有 MEMORY 存储引擎和 HEAP 存储引擎支持这类索引。
其中,MEMORY 存储引擎可以支持 B-树索引和 HASH 索引,且将 HASH 当成默认索引。
HASH 索引不是基于树形的数据结构查找数据,而是根据索引列对应的哈希值的方法获取表的记录行。
不能使用 HASH 索引排序。
HASH 索引只支持等值比较,如“=”“IN()”或“<=>”。
HASH 索引不支持键的部分匹配,因为在计算 HASH 值的时候是通过整个索引值来计算的。

聚集索引是按照所以把数据排好序了,所以一个表只能存在一个聚集索引,其它的都是非聚集索引。
因这个特性,聚集索引是查询数据范围的时候有很大的性能优势。
但是也需要注意的是如果频繁更新的列不适合设置为聚集索引,
原因很简单,每次更新都需要从新排序,频繁的更新给的压力也大。
如果不指定的话,默认主键为聚集索引。

一个表里除了一个聚集索引外其他的都是非聚集索引,虽然不能把数据按照索引排序,但是索引数据是可以排序的。
所以非聚集索引查询范围的时候是先找索引列的范围,再通过这个索引查询行的值。

单列索引即一个索引只包含单个列。

组合索引指在表的多个字段组合上创建的索引,只有在查询条件中使用了这些字段的左边字段时,索引才会被使用。使用组合索引时遵循最左前缀集合

Primary Key(聚集索引):InnoDB存储引擎的表会存在主键(唯一非null),如果建表的时候没有指定主键,则会使用第一非空的唯一索引作为聚集索引,否则InnoDB会自动帮你创建一个不可见的、长度为6字节的row_id用来作为聚集索引。

Key(普通索引):是MySQL中的基本索引类型,允许在定义索引的列中插入重复值和空值

Unique(唯一索引):索引列的值必须唯一,但允许有空值。若是组合索引,则列值的组合必须唯一。
主键索引是一种特殊的唯一索引,不允许有空值。

既不是主键索引也不是唯一索引的一般索引。

FULLTEXT(全文索引):全文索引类型为FULLTEXT,在定义索引的列上支持值的全文查找,允许在这些索引列中插入重复值和空值。
全文索引可以在CHAR、VARCHAR或者TEXT类型的列上创建。

空间索引主要用于地理空间数据类型 GEOMETRY。

下面是 mysql官网给出的几个存储引擎和索引之间的关系 。

欢迎大家的意见和交流

email: [email protected]

❾ MySQL存储引擎

InnoDB的数据文件本身就是主索引文件。而MyISAM的主索引和数据是分开的。辅助索引data域存储相应记录主键的值而不是地址。

innoDB是聚簇索引,数据挂在逐渐索引之下。

是 MySQL 默认的事务型存储引擎, 只有在需要它不支持的特性时,才考虑使用其它存储引擎

实现了四个标准的隔离级别,默认级别是可重复读(REPEATABLE READ)。在可重复读隔离级别下,通过多版本并发控制(MVCC)+ 间隙锁(Next-Key Locking)防止幻影读。

主索引是聚簇索引,在索引中保存了数据,从而避免直接读取磁盘,因此对查询性能有很大的提升。

内部做了很多优化,包括从磁盘读取数据时采用的可预测性读、能够加快读操作并且自动创建的自适应哈希索引、能够加速插入操作的插入缓冲区等。

支持真正的在线热备份。其它存储引擎不支持在线热备份,要获取一致性视图需要停止对所有表的写入,而在读写混合场景中,停止写入可能也意味着停止读取。

以B+树作为索引结构,叶节点的数据域存放数据记录的地址。主索引和辅助索引在结构上没有区别,只是主索引要求key唯一,而辅助索引的key可以重复。

MyISAM中索引检索的算法为首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。

设计简单,数据以紧密格式存储。对于只读数据,或者表比较小、可以容忍修复的操作,则依然可以使用它。

提供了大量的特性,包括压缩表、空间数据索引等。

不支持事务

不支持行级锁,只能对整张表加锁,读取时会对需要读到的所有表加共享锁,写入时则对表加排它锁。但在表有读取操作的同时,也可以往表中插入新的记录,这被称为并发插入(CONCURRENT INSERT)。

可以手工或者自动执行检查和修复操作,但是和事务恢复以及崩溃恢复不同,可能导致一些数据丢失,而且修复操作是非常慢的。

如果指定了 DELAY_KEY_WRITE 选项,在每次修改执行完成时,不会立即将修改的索引数据写入磁盘,而是会写到内存中的键缓冲区,只有在清理键缓冲区或者关闭表的时候才会将对应的索引块写入磁盘。这种方式可以极大地提升写入性能,但是在数据库或者主机崩溃时会造成索引损坏,需要执行修复操作。

热点内容
php办公系统 发布:2025-07-19 03:06:35 浏览:895
奥德赛买什么配置出去改装 发布:2025-07-19 02:53:18 浏览:37
请与网络管理员联系请求访问权限 发布:2025-07-19 02:37:34 浏览:185
ipad上b站缓存视频怎么下载 发布:2025-07-19 02:32:17 浏览:840
phpcgi与phpfpm 发布:2025-07-19 02:05:19 浏览:523
捷达方向机安全登录密码是多少 发布:2025-07-19 00:57:37 浏览:690
夜魔迅雷下载ftp 发布:2025-07-19 00:39:29 浏览:97
增值税票安全接入服务器地址 发布:2025-07-19 00:20:45 浏览:484
solidworkspcb服务器地址 发布:2025-07-18 22:50:35 浏览:820
怎么在堆叠交换机里配置vlan 发布:2025-07-18 22:42:35 浏览:628