数据存储应用技术
㈠ 攀登比珠穆朗玛更高的山峰,数据存储技术的突破之路
文: 科技 商业 于洪涛
在物理世界,山峰是自然力量的象征;而在数字世界里,数据则是智慧力量的来源。
或许正是因为如此,华为将其聚焦在数据基础技术的科研大奖命名为Olympus Mons,即奥林帕斯大奖,专门用于重奖那些在数据存储领域实现技术突破的科研工作者。
设立奖项只是一种形式。在奥林帕斯大奖的背后,是华为通过汇聚产学研各方能力,来推动数据技术实现突破性发展的雄心,从而为数字经济发展提供更好的数据基础设施。
随着数字化时代的到来,数据的价值越来越突出,正在日益成为国家、企业、甚至个人的核心资产。
与传统经济相比,数字经济的本质就是数据的流通,数据也成为智能 社会 的主要生产要素。IDC的调研显示,2020年全球共创造了59ZB的数据,到2025年则将达到163ZB。
如此巨量的数据资产,需要经过数据采集、数据存储、数据分析等流程才能产生价值,其中数据存储无疑是基础。在数据中心里,存储也与计算和网络一道,成为关键基础设施,为整个数字化进程提供支持。
在数据量高速成长的同时,数据的形态也日益多样化,视频、图片、音频等非结构化数据已经成为数据的主体。这些复杂的数据要想充分发挥价值,就需要更加高效的数据存储和数据管理。
有统计显示,如今只有2%的数据被保存,保存下来的数据也只有10%得到分析利用。华为数据存储与机器视觉产品线总裁周跃峰介绍说,数据在企业数字化转型中扮演着越来越重要的角色,然而企业却面临海量数据存不下、流不动、管不好的问题。
为了满足客户日益增长的数据存储需求, 华为主张构建端到端的数据能力,包括计算、存储、利用和AI等能力,让数据在全生命周期内实现每比特价值最大,每比特成本最优。
华为的努力,已经收到了成效,如今越来越多的政企使用华为的数据存储解决方案,来实现对数据资产的管理。
甘肃敦煌研究院,正在利用华为的海量存储解决方案,通过 计算机技术和数字图像技术,实现敦煌石窟文物的永久保存、永续利用。
然而,整个敦煌莫高窟拥有735个洞窟、4.5万平方米壁画、2415尊泥质彩塑,要把这么多文物数字化,达成构建数字敦煌博物馆的目标,意味着需要大量的投资和海量的存储设备。 显然,要想解决这一问题,仅靠华为自身的努力还不够,而需要各个方面的共同参与,通过打造产业技术生态,来实现存储技术的新突破。这也正是华为设立“奥林帕斯奖”的初衷。
据了解,华为“奥林帕斯奖”,每年都聚焦于数据领域的两个主要技术难题来寻求解决方案。在去年底的全球数据存储教授论坛上,第二届的“2021年奥林帕斯悬红”两大难题已经确定:一是构建每比特极致性价比的数据存储,二是实现下一代存储产业根技术突破。对于每个难题,华为都给出了高达100万元的悬红,
华为希望通过“奥林帕斯奖”的设立,与学术界在 Cloud-Oriented多云存储服务、Data-Centric新型数据应用存储系统、AI-Driven存储软件架构、创新体系架构等技术方向共同攻坚,构筑更好的数据存储系统。
我们都知道,妨碍电动 汽车 推广普及的主要制约因素是电池的能量密度,其决定了电动 汽车 的可用性。在数据中心里,数据的存储密度则将成为未来的核心挑战,决定着我们智能 社会 的成色。
科学家们已经明确了下一步的发展目标:在有限的资源下实现100x性能密度和100x容量密度的数据存储。要实现存储能力的提升,压缩算法是核心技术之一,可以降低 数据的存储成本,帮助用户缓解数据规模爆炸性增长带来的成本压力。
然而,作为存储技术中的重磅难题,压缩算法多年来未有突出成果。
为了突破压缩算法面临的瓶颈,激发数据压缩领域的活力,自2020年起,华为与莫斯科国立大学合作,举办全球数据压缩大赛,以促进数据压缩根技术的研究。
今年的第二届全球数据压缩大赛,邀请了压缩领域享有盛誉的技术专家担任评委;使用电子显微镜、遥感等高性能计算数据,更贴近前沿、更贴近实际场景。大赛设计了五种类型的数据集(赛事项目):定量数据压缩、定性数据压缩、混合数据压缩、小块数据压缩和熵编码优化。
同时,大赛还增设了面向高校学生、难度相对较小的编码算法优化项目,以吸引更多校园算法高手参与比赛。在奖项设置方面,进一步体现多维激励,增设领先奖、特等奖和学生参与奖。
本届数据压缩大赛,已于6月15日正式开赛,接收参赛作品截止到11月底,将于12月底公布获奖结果。截至7月中旬,开赛仅1个月大赛组委会就已经收到了来自全球近80个报名申请。
伴随着奥林帕斯大奖和全球数据压缩大赛相继进入第二届,“奥林帕斯”已经成为华为数据存储正在着力打造的新品牌,专门用来加强产学研合作,联合学界一起推动数据存储产业的进步。
从第一届奥林帕斯大奖得主那里,我们已经看到科研界在数据技术创新领域的突破。
获得 百万悬红大奖的清华大学舒继武老师团队的“持久性内存存储系统构建与关键技术”, 创新地提出了持久性内存文件系统与键值存储的设计方法和分布式持久性共享内存框架,攻克了其数据结构、内存管理、一致性与安全等方面的一系列难题,解决了基于新型内存介质的高效数据存储问题。
此外,上海交通大学的陈榕团队的 “基于新型异构硬件的高效数据处理系统”, 华中 科技 大学的冯丹团队的 “NVM(新型非易失存储)高效可靠技术”,也具有较高的创新性和先进性, 具备产业价值和应用前景。
同样,在第一届 全球数据压缩大赛上,也涌现出了很多令人瞩目的成果。
比如获奖选手Peter Thamm设计的pglz算法在压缩率和性能上,打破了快速压缩算法的一般认知,指引了压缩算法优化方向;Konstantinos Agiannis的参赛算法,在文本场景测试中的压缩率和压缩性能,均超过业界公认的标杆算法;Andreas Debski的快速图像压缩算法,达到了业界公认标杆算法120%的压缩率,展现了深厚的图像压缩算法功底。
过去一年的成功,也让我们对今年的 “奥林帕斯”有了更高的期待。对这个太阳系最高峰的攀登,意味着整个数据存储技术领域的参与者,首次能够团结一致,共同牵引基础理论研究方向,突破关键技术难题,加速科研成果产业化,实现产学研合作共赢。
在此进程中,华为一方面发挥了产业引领者的角色,大力推动产学研的合作进程;另一方面也积极投身其中,通过 Data Fabric、智能存储、内存型存储、数据缩减、视频存储等五大创新实验室,通过4000多名研发工程师的协同努力,围绕下一代存储的介质、网络、架构和管理等进行系统化创新。
我们也有理由相信,通过全球、全领域的协同创新,我们一定能够迎来数据存储技术的突破,通过技术重构实现更好的数据存储效能,让全世界共享数字技术红利,进而推动千行百业的智能化升级。
㈡ 大数据的核心技术有哪些
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。
1、数据采集与预处理:FlumeNG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。
2、数据存储:Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。
3、数据清洗:MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算。
4、数据查询分析:Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供HQL(HiveSQL)查询功能。Spark启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。
㈢ 开展微型数据存储技术创新研发抢占未来大数据存储技术高地的建议
我国数据存储核心技术长期落后,大数据中心按照传统的 科技 房地产的思路将面临资源约束。为了防止我国存储技术“卡脖子”,节省未来海量数据存储占地空间,系统化整合资源解决当前中国大数据存储技术产品的容量问题,建议国家立项 开展微型数据存储技术创新研发 。
我国数据储存的现状和面临的问题
计算机数据存储技术是信息技术应用的核心。一切计算机应用数据都需要由物理设备来存储,以便计算机系统进行读写等处理,数据应用与数据存储恰似树干与树根的密切关系。伴随着信息技术应用的持续高速发展,可以预见未来的数据量必将呈现爆炸式增长,随之而来的海量数据存储瓶颈问题必然日趋严重,加剧着数据存储领域长期面临的容量、安全、性能、扩充、维护、灾备、监管等诸多挑战。其中,容量困境,首当其冲。
当前痛点。 为了满足数据存储容量日益增长的需求,大数据存储中心建设必不可少。放眼当下全国各地的大数据存储中心建设,由于数据存储基础核心技术缺位,流行的模式是不可持续的“ 科技 房地产”,即单纯拓展占地面积盖楼建设数据中心,进而耗费宝贵自然资源。目前我国城市监控视频图像数据受限于数据中心存储容量空间,一般只能保留一个月左右,相关的数据应用严重受制。
应用基石。 底层数据存储是信息产业发展的基石,数据存储技术产品是信息应用系统的架构基础,也是我国的关键行业技术短板。有效的数据存储技术产品涉及到所有信息技术应用场景:人工智能,信息安全,智慧城市,大数据,云计算,区块链,城市大脑,雪亮工程,城市管理视频监控,医学影像识别,等等。
严峻局面。 追溯信息技术百年来的发展轨迹,中国在数据存储基础技术领域的贡献几乎为零。国内数据存储行业主要擅长于市场侧的商业应用创新,数据存储底层管理的核心技术研发严重依赖国外的开源开放。缺乏基础研发梯队,没有关键理论 探索 ;沿袭陈旧的发展思路,习于外购器件设备;底层技术积累短缺,核心创新能力薄弱;严峻的局面至今没有重大改变。
危情险势。 中国在核心存储产品、底层支撑技术、商业应用理念上长期跟跑,遭受外部势力釜底抽薪式的“存储底层关键核心技术精准打击”的隐患和风险极大。面对复杂多变的国际环境,一旦遭遇卡脖子,如外购存储产品断货或核心技术交流封锁,举国上下所有涉及信息技术应用的行业领域都必然窒息。从而直接降低相关产业迭代发展速度,掣肘 社会 前进步伐,削弱国家治理能力,进而危及影响到国家的政治和 社会 稳定。
时不我待。 我们需要立即行动起来,通过立项开展微型数据存储技术创新研发,凝聚国内外数据存储领域资源力量,构建数据存储专业核心技术团队;从研发软件定义的存储(数据去重)技术产品入手,填补国内技术产品领域空白;启动研发微型化(原子级)数据存储设备,抢占未来数据存储领域的制高点。这项举措也是解除我国数据存储技术产品创新研发“卡脖子”危机的最佳途径。
开展微型数据存储技术创新研发的思路
我国应抓住当前数据应用驱动信息技术升级换代的大数据发展 历史 契机,凝聚国内外资源力量,构建中国数据存储专业核心技术团队。近期:研发部署模块化数据去重技术产品,压缩海量数据存储空间需求,填补国内底层数据存储管理技术空白。远期:启动研发微型数据存储设备,抢占未来数据存储技术领域的制高点。
从开展微型数据存储技术创新研发入手,聚焦国际存储技术领域的战略性前沿技术趋势;联手科研院所、高等院校、生产企业、大型用户的资源,建设国家级核心技术团队;积极引进/培养数据存储技术人才,研发自主可控系列产品。
1.近期跟踪行业动态
对标国际顶级数据存储技术产品,砥砺学习底层模块级数据存储去重技术,压缩海量数据存储空间需求,实现自主可控国产数据存储技术管理软件产品的商务应用。基本原理是首先识别出重复的数据模块,然后优化存储多个重复数据模块中的单一模块,以及同其它重复模块的链接关系。进而减少企业级客户存储数据所需的物理空间占有量,降低采购部署数据存储设备的增量。
2.远期重点突出推进
探索 下一代数据存储技术,整合跨学科资源启动开展研发微型存储器,力图将现有基于磁盘/光盘/磁带的计算机数据存储器,转化为未来基于原子/电子运动状态的微型化数字信息采集与存取机制。其原理是将现在耗费数百万个原子的材料介质所表征的一位“0”或“1”二进制计算机数据,试图由单个原子状态变化来表征。于是,可以将现有数据存储设备体积缩小数十万乃至百万倍,最终将占地约足球场面积的大数据存储仓库缩小为便携式器件。
3.研发工作开展建议
开展微型数据存储技术创新研发应该建设成为国内领先、国际一流的数据存储技术研究机构、产业孵化温室、以及人才培养基地。
延揽数据存储技术专家领衔担纲咨询顾问。全球招聘在世界顶级数据存储公司工作多年的业界精英加盟指导。
构建中国数据存储技术研发团队。采用引进师资/开设培训课程等有效方式,积累培育国内数据存储技术力量。
结盟硅谷存储技术研究院。依托美国硅谷地区的数据存储实体公司,共享数据存储底层技术知识。
注册成立企业运营机构。开发软件定义存储(数据去重)技术产品,服务数据用户市场,遵循商务运作规律。
融资涵盖多种基金渠道。申报获取国家重大专项基础项目研发资金,吸引专业投资基金加盟。首期投资约需10亿元人民币(参考国际相关工程估值:美国IBM公司同类项目投资约600亿美元/10年)。
推动微型数据存储技术创新研发的建议
我国在开展新型基础设施建设的同时,应当抓住当前数据计算应用驱动信息技术升级换代的大数据发展 历史 契机,建立数据存储技术的自主知识产权体系,填补国内空白,保障数字中国建设长远规划实施,推进国产数据存储产品崛起,为相关产业发展铺路。
2.建议远期紧跟世界主流研发创新步伐,聚焦研发原子级微型化数据存储技术产品(2020-2040年),在2040年前研发出原子级大数据存储技术,并逐步实现产业化。
3.建议将微型化数据存储技术创新作为国家战略。搭建政产学研用共建共治共享的中国数据存储技术联合创新平台,建设国家级重点实验室。依托科研院所/高等院校/相关企业,奠定从微型数据存储理论、硬件设计、软件开发、结构设计、系统集成等一整套原子级微型数据存储技术研发工作的基础。
4.建议国家相关部委给予配套资金支持。加快推进原子级大数据存储技术研发和产业化转化。支持申报重大 科技 项目和专项扶持资金。
5.建议形成能够长期从事数据存储技术创新的人才队伍。借鉴全球数据存储技术创新研发经验,引进海内外数据存储技术领域顶尖科学家和工程师。在高等院校与科研院所开设数据存储技术专业课程,搭建完善的国内人才培养体系。
6.建议立项过程不宜采用常规项目申报、审批流程,亟需特事特办予以批准。主要是有鉴于本项目相关的科研生产领域中,国内现有技术力量薄弱分散,评估体系资源匮乏。
7.建议项目推进应当低调快速务实:不重造势,不扬虚名,不谋近利。主要是基于当前复杂敏感的国际政治经济形势,预计本项目势将关联国家核心产业战略布局,影响未来数十年中国数字经济命脉与发展。
作 者:中央 财经 大学中国互联网经济研究院研究员 欧阳日辉
通讯员:李 翀
战略性新兴产业专题报道 办事,“刷脸”就行
张家口敢闯敢试、先行先试,积极 探索 氢能产业创新发展的有益路径
“东数西算”正式启动,枢纽网络如何建设?
“十四五”浪潮下如何构建城市数据中心网络?
“我为群众办实事”北京市发展改革委发布第三批政策工具应用指南
大美密云 助推新兴产业发展
东方测控:打造智能制造示范工厂,引领矿山行业新未来
㈣ 数据存储技术论文3000字
数据库存储技术的出现,对于传统的纸质存储技术来说,具有革命性的作用,下面是我为大家精心推荐的数据存储技术论文3000字,希望能够对您有所帮助。
数据存储技术论文3000字篇一
数据库编程与数据库存储技术分析
【摘要】随着信息技术的发展,以及人类社会文明进步,在与计算机相关的技术发展中,关于数据方面的处理工作,如今也越来越受到重视,在不同的发展时期,根据不同的计算机类型以及在实际应用的不同,数据库的编程与数据库存相储技术方面的要求也有所差异,所以就要根据实际情况进行具体分析.本文就结合相关技术进行分析。
【关键词】数据库;编程;存储;技术;分析
引言
在计算机的发展过程中,根据数据进行程序编辑,以及在计算机内部储存程序的编辑都是非常重要的方面,虽然会根据所操作的计算机不同,而在具体操作过程中而出现有所区别,但是要针对相关的技术进行具体分析后就能够发现,在数据存储方面只要编辑好数据库对应的程序,要取得好的工作成绩不不难,所以研究好关于数据库编程和数据库存储相关的技术,就能够代替真实人的工作,取得良好的工作效果,促进计算机行业的发展.
随着计算机的普及应用,计算机应用软件得到了快速的发展,从某种意义上来说,计算机之所以能够在各个领域中得到应用,很大程度上就是因为相应的应用软件,根据各个行业的特点,软件公司都开发了针对性的应用软件,通过这些软件的使用,能够给实际的工作带来方便,提升工作的效率,例如在工业自动化中,现在的计算机技术已经具有一定的智能性,可以代替人来进行操作,这种方式出现错误的几率很低,而且计算机不需要休息,生产效率得到了大幅提高,在计算机软件中,尤其是一些大型的软件,数据库是软件的核心内容,因此在计算机软件编写过程中,数据库编程和存储技术,也是一个核心内容,受到我国特殊历史原因影响,我国的软件行业发展较慢,因此数据库编程和存储技术的核心都掌握在西方发达国家手中。
1、数据库存储技术简述
1.1数据库存储技术的概念
数据库的发展很大程度上依赖于计算机性能的提升,在计算机出现的早期,并没有数据库的概念,当时计算机的性能很低,只能进行一些简单的数字运算,体积也非常庞大,还没有数据存储的概念,随着晶体管和集成电路应用在计算机制造中,计算机的性能得到了大幅的提升,开始在各个领域中进行应用,当计算机被用于数据管理时,尤其是一些复杂的数据,传统的存储方式已经无法满足人们的需要,在这种背景下,DSMS诞生了,这种数据库管理系统在当时看来,是数据库管理技术的一次革命,随着计算机性能的提升,逐渐出现了SQL、Oracle等,在传统的数据库编程中,由于数据库编写的时期不同,使用的编写语言也有一定的差异,目前常使用的软件有VB、JAVA、VC、C++等,利用这些编程软件,都可以编写一个指定的数据库,由于每个软件自身都有一定的特点,因此不同领域的数据编程中,所选择的编程软件业有一定的差异。
1.2数据库存储技术的发展
数据库的概念最早可以追溯到20世纪50年代,但是当时数据库的管理,还处于传统人工的方式,并没有形成软件的形式,因此并不能算数据库存储技术的起源,在20世纪60年代中期,随着计算机存储设备的出现,使得计算机能够存储数据,在这种背景下,数据管理软件诞生了,但是受到当时技术条件的限制,只能以文件为单位,将数据存储在外部存储设备中,人们开发了带有界面的操作系统,以便对存储的数据进行管理,随着计算机的普及应用,计算机能够存储的数据越来越多,人们对数据库存储技术有了更高的要求,尤其是企业用户的增加,希望数据库存储技术能够具有很高的共享能力,数据存储技术在这一时期,得到了很大的发展,现在的数据库存储技术,很大程度上也是按照这一时期的标准,来进行相应的开发,随着数据库自身的发展,出现了很多新的数据库存储技术,如数据流、Web数据管理等。
1.3数据库存储技术的作用
数据库存储技术的出现,对于传统的纸质存储技术来说,具有革命性的作用,由于纸质存储数据的方式,很容易受到水、火等灾害,而造成数据的损失,人类文明从有文字开始,就记录了大量的历史信息,但是随着时间的推移,很多数据资料都损毁了,给人类文明造成了严重的损失,而数据库存储技术就能够很好的避免这个问题,在数据库的环境下,信息都会转化成电子的方式,存储在计算机的硬盘中,对于硬盘的保存,要比纸质的书籍等简单的多,需要的环境比较低,最新的一些服务器存储器,甚至具有防火的性能,而且数据库中的数据,可以利用计算机很简单的进行复制,目前很多企业数据库,为了最大程度上保证数据的安全性,都会建立一个映像数据库,定期的对数据库中的信息进行备份,如果工作的数据库出现了问题,就可以通过还原的方式,恢复原来的数据。
2、数据库编程与数据库存储技术的关系
2.1数据库编程决定数据库存储的类型
通过对计算机软件的特点进行分析可以知道,任何软件要想具有相关的功能,都需要在编程过程中来实现,对于数据库程序来说也是一样,在数据库编程的过程中,能够决定数据库存储的类型,根据应用领域的不同,数据库存储技术也有一定的差异,如在电力、交通控制等领域中,应用的大多是实时数据库,而网上的视频网站等,大多采用关系数据库,其次还有商业数据库、自由数据库、微型数据库等,每种数据库的出现,都是为了满足实际应用的需要,虽然在不同历史时期,一种数据库成为主流,但是对于数据库程序的编写者来说,这些数据库的编写;并没有太大的差异,虽然不同的程序编写人员,由于所受教育和习惯的不同,在实际编写的过程中,使用的程序编写软件不同,但无论是VB、VF还是C++等,都可以实现每种数据库类型的编写,从某种意义上来说,数据库类型的确定,通常是在软件需求分析阶段中进行设计,然后在数据编程阶段来实现,
2.2数据库存储技术是数据库编程的核心
对于数据库程序来说,最重要的功能就是存储数据,通常情况在,一个数据库程序会分成几个模块,其中核心模块就是数据库存储技术。
结语
在目前国内经济发展形势下,针对于计算机的软件行业的形式,也在大力推动下,成为一个焦点行业,随着行业的发展,相关促进简便工作的程序也得到了相应的研究和发明中,就算是一些不具备计算机专业知识的普通使用着,不管在使用还是研发程序上也是介可以的,只是针对于数据库编程和数据库存储技术方面进行分析,但是作为系统的核心区域,所以相关的技术也是非常重要的,所以要想提升工作效率,缓解工作压力,就要结合使用情况,在所能应用的范围内,选择最具有优势的相应软件处理技术,以此为研发中心,开发出所需要的软件类型,进行所有的数据整理工作,对于办公室工作极大范围内的促进,对于数据库编程于数据存储方面的技术是非常重要的。
参考文献
[1]董慧群,王福明.基于LabWindows/CVI的数据库编程[J].山西电子技术,2011(04):55-56.
[2]吴敏宁,高楠.Delphi数据库编程开发[J].电脑知识与技术,2009(11):2882-2883.
[3]郑刚,唐红梅.面向对象数据库中数据模型及存储结构的研究[J].计算机工程,2002(03):65-67.
点击下页还有更多>>>数据存储技术论文3000字
㈤ 分布式存储技术有哪些
中央存储技术现已发展非常成熟。但是同时,新的问题也出现了,中心化的网络很容易拥挤,数据很容易被滥用。传统的数据传输方式是由客户端向云服务器传输,由服务器向客户端下载。而分布式存储系统QKFile是从客户端传送到 N个节点,然后从这些节点就近下载到客户端内部,因此传输速度非常快。对比中心协议的特点是上传、下载速度快,能够有效地聚集空闲存储资源,并能大大降低存储成本。
在节点数量不断增加的情况下,QKFile市场趋势开始突出,未来用户数量将呈指数增长。分布式存储在未来会有很多应用场景,如数据存储,文件传输,网络视频,社会媒体和去中心化交易等。因特网的控制权越来越集中在少数几个大型技术公司的手中,它的网络被去中心化,就像分布式存储一样,总是以社区为中心,面向用户,而分布式存储就是实现信息技术和未来因特网功能的远景。有了分布式存储,我们可以创造出更加自由、创新和民主的网络体验。是时候把因特网推向新阶段了。
作为今年非常受欢迎的明星项目,关于QKFile的未来发展会推动互联网的进步,给整个市场带来巨大好处。分布式存储是基于因特网的基础结构产生的,区块链分布式存储与人工智能、大数据等有叠加作用。对今天的中心存储是一个巨大的补充,分布式时代的到来并不是要取代现在的中心互联网,而是要使未来的数据存储发展得更好,给整个市场生态带来不可想象的活力。先看共识,后看应用,QKFile创建了一个基础设施平台,就像阿里云,阿里云上面是做游戏的做电商的视频网站,这就叫应用层,现阶段,在性能上,坦白说,与传统的云存储相比,没有什么竞争力。不过另一方面来说,一个新型的去中心化存储的信任环境式非常重要的,在此环境下,自然可以衍生出许多相关应用,市场潜力非常大。
虽然QKFile离真正的商用还有很大的距离,首先QKFile的经济模型还没有定论,其次QKFile需要集中精力发展分布式存储、商业逻辑和 web3.0,只有打通分布式存储赛道,才有实力引领整个行业发展,人们认识到了中心化存储的弊端,还有许多企业开始接受分布式存储模式,即分布式存储 DAPP应用触达用户。所以QKFile将来肯定会有更多的商业应用。创建超本地高效存储方式的能力。当用户希望将数据存储在QKFile网络上时,他们就可以摆脱巨大的集中存储和地理位置的限制,用户可以看到在线存储的矿工及其市场价格,矿工之间相互竞争以赢得存储合约。使用者挑选有竞争力的矿工,交易完成,用户发送数据,然后矿工存储数据,矿工必须证明数据的正确存储才能得到QKFile奖励。在网络中,通过密码证明来验证数据的存储安全性。采矿者通过新区块链向网络提交其储存证明。通过网络发布的新区块链验证,只有正确的区块链才能被接受,经过一段时间,矿工们就可以获得交易存储费用,并有机会得到区块链奖励。数据就在更需要它的地方传播了,旋转数据就在地球范围内流动了,数据的获取就不断优化了,从小的矿机到大的数据中心,所有人都可以通过共同努力,为人类信息社会的建设奠定新的基础,并从中获益。
㈥ 大数据存储与应用特点及技术路线分析
大数据存储与应用特点及技术路线分析
大数据时代,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,对数据的存储量的需求越来越大;另一方面,对数据的有效管理提出了更高的要求。大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
大数据存储与应用的特点分析
“大数据”是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用形成的智力资源和知识服务能力。其常见特点可以概括为3V:Volume、Velocity、Variety(规模大、速度快、多样性)。
大数据具有数据规模大(Volume)且增长速度快的特性,其数据规模已经从PB级别增长到EB级别,并且仍在不断地根据实际应用的需求和企业的再发展继续扩容,飞速向着ZB(ZETA-BYTE)的规模进军。以国内最大的电子商务企业淘宝为例,根据淘宝网的数据显示,至2011年底,淘宝网最高单日独立用户访问量超过1.2亿人,比2010年同期增长120%,注册用户数量超过4亿,在线商品数量达到8亿,页面浏览量达到20亿规模,淘宝网每天产生4亿条产品信息,每天活跃数据量已经超过50TB.所以大数据的存储或者处理系统不仅能够满足当前数据规模需求,更需要有很强的可扩展性以满足快速增长的需求。
(1)大数据的存储及处理不仅在于规模之大,更加要求其传输及处理的响应速度快(Velocity)。
相对于以往较小规模的数据处理,在数据中心处理大规模数据时,需要服务集群有很高的吞吐量才能够让巨量的数据在应用开发人员“可接受”的时间内完成任务。这不仅是对于各种应用层面的计算性能要求,更加是对大数据存储管理系统的读写吞吐量的要求。例如个人用户在网站选购自己感兴趣的货物,网站则根据用户的购买或者浏览网页行为实时进行相关广告的推荐,这需要应用的实时反馈;又例如电子商务网站的数据分析师根据购物者在当季搜索较为热门的关键词,为商家提供推荐的货物关键字,面对每日上亿的访问记录要求机器学习算法在几天内给出较为准确的推荐,否则就丢失了其失效性;更或者是出租车行驶在城市的道路上,通过GPS反馈的信息及监控设备实时路况信息,大数据处理系统需要不断地给出较为便捷路径的选择。这些都要求大数据的应用层可以最快的速度,最高的带宽从存储介质中获得相关海量的数据。另外一方面,海量数据存储管理系统与传统的数据库管理系统,或者基于磁带的备份系统之间也在发生数据交换,虽然这种交换实时性不高可以离线完成,但是由于数据规模的庞大,较低的数据传输带宽也会降低数据传输的效率,而造成数据迁移瓶颈。因此大数据的存储与处理的速度或是带宽是其性能上的重要指标。
(2)大数据由于其来源的不同,具有数据多样性的特点。
所谓多样性,一是指数据结构化程度,二是指存储格式,三是存储介质多样性。对于传统的数据库,其存储的数据都是结构化数据,格式规整,相反大数据来源于日志、历史数据、用户行为记录等等,有的是结构化数据,而更多的是半结构化或者非结构化数据,这也正是传统数据库存储技术无法适应大数据存储的重要原因之一。所谓存储格式,也正是由于其数据来源不同,应用算法繁多,数据结构化程度不同,其格式也多种多样。例如有的是以文本文件格式存储,有的则是网页文件,有的是一些被序列化后的比特流文件等等。所谓存储介质多样性是指硬件的兼容,大数据应用需要满足不同的响应速度需求,因此其数据管理提倡分层管理机制,例如较为实时或者流数据的响应可以直接从内存或者Flash(SSD)中存取,而离线的批处理可以建立在带有多块磁盘的存储服务器上,有的可以存放在传统的SAN或者NAS网络存储设备上,而备份数据甚至可以存放在磁带机上。因而大数据的存储或者处理系统必须对多种数据及软硬件平台有较好的兼容性来适应各种应用算法或者数据提取转换与加载(ETL)。
大数据存储技术路线最典型的共有三种:
第一种是采用MPP架构的新型数据库集群,重点面向行业大数据,采用Shared Nothing架构,通过列存储、粗粒度索引等多项大数据处理技术,再结合MPP架构高效的分布式计算模式,完成对分析类应用的支撑,运行环境多为低成本 PC Server,具有高性能和高扩展性的特点,在企业分析类应用领域获得极其广泛的应用。
这类MPP产品可以有效支撑PB级别的结构化数据分析,这是传统数据库技术无法胜任的。对于企业新一代的数据仓库和结构化数据分析,目前最佳选择是MPP数据库。
第二种是基于Hadoop的技术扩展和封装,围绕Hadoop衍生出相关的大数据技术,应对传统关系型数据库较难处理的数据和场景,例如针对非结构化数据的存储和计算等,充分利用Hadoop开源的优势,伴随相关技术的不断进步,其应用场景也将逐步扩大,目前最为典型的应用场景就是通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑。这里面有几十种NoSQL技术,也在进一步的细分。对于非结构、半结构化数据处理、复杂的ETL流程、复杂的数据挖掘和计算模型,Hadoop平台更擅长。
第三种是大数据一体机,这是一种专为大数据的分析处理而设计的软、硬件结合的产品,由一组集成的服务器、存储设备、操作系统、数据库管理系统以及为数据查询、处理、分析用途而特别预先安装及优化的软件组成,高性能大数据一体机具有良好的稳定性和纵向扩展性。
以上是小编为大家分享的关于大数据存储与应用特点及技术路线分析的相关内容,更多信息可以关注环球青藤分享更多干货
㈦ 云存储数据中心常用的网络存储技术有哪些
直连式存储、网络存储设备和存储网络。
一切以客户的需求为出发点。传统存储以文件系统为典型代表,但是随着数据爆炸性增长,传统文件系统已经无法满足对存储系统的容量、性能等需求,因此,云存储应运而生。
云存储最大的特点是数据被集中存储在数据中心,公有云存储将客户数据存放在公有云服务商数据中心,而私有云存储则是将公有云存储能力私有化部署在客户自身的数据中心。
原则就是要尽可能把实际的物理介质索引,存储的数据库,数据存储的磁盘抽象出来,在上层具有一个可拓展,可迁移的逻辑单元,当然对象存储系统之间差异也很大,从潮流上看,基本都摒弃了索引的中心化存储方案,在寻址方面也各有各的花招。
云计算关键技术云计算是分布式处理、并行计算和网格计算等概念的发展和商业实现,其技术实质是计算、存储、服务器、应用软件等IT软硬件资源的虚拟化,云计算在虚拟化、数据存储、数据管理、编程模式等方面具有自身独特的技术。
㈧ 数据的存储方法有哪些
什么是分布式存储
分布式存储是一种数据存储技术,它通过网络使用企业中每台机器上的磁盘空间,这些分散的存储资源构成了虚拟存储设备,数据分布存储在企业的各个角落。
分布式存储系统,可在多个独立设备上分发数据。传统的网络存储系统使用集中存储服务器来存储所有数据。存储服务器成为系统性能的瓶颈,也是可靠性和安全性的焦点,无法满足大规模存储应用的需求。分布式网络存储系统采用可扩展的系统结构,使用多个存储服务器共享存储负载,利用位置服务器定位存储信息,不仅提高了系统的可靠性,可用性和访问效率,而且易于扩展。
分布式存储的优势
可扩展:分布式存储系统可以扩展到数百甚至数千个这样的集群大小,并且系统的整体性能可以线性增长。
低成本:分布式存储系统的自动容错和自动负载平衡允许在低成本服务器上构建分布式存储系统。此外,线性可扩展性还能够增加和降低服务器的成本,并实现分布式存储系统的自动操作和维护。
高性能:无论是针对单个服务器还是针对分布式存储群集,分布式存储系统都需要高性能。
易用性:分布式存储系统需要提供方便易用的界面。此外,他们还需要拥有完整的监控和操作工具,并且可以轻松地与其他系统集成。
杉岩分布式统一存储USP
利用分布式技术将标准x86服务器的HDD、SSD等存储介质抽象成资源池,对上层应用提供标准的块、文件、对象访问接口,
同时提供清晰直观的统一管理界面,减少部署和运维成本,满足高性能、高可靠、高可扩展性的大规模存储资源池的建设需求。
㈨ 大数据关键技术有哪些
大数据关键技术涵盖数据存储、处理、应用等多方面的技术,根据大数据的处理过程,可将其分为大数据采集、大数据预处理、大数据存储及管理、大数据处理、大数据分析及挖掘、大数据展示等。
1、大数据采集技术
大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。
因为数据源多种多样,数据量大,产生速度快,所以大数据采集技术也面临着许多技术挑战,必须保证数据采集的可靠性和高效性,还要避免重复数据。
2、大数据预处理技术
大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。
因获取的数据可能具有多种结构和类型,数据抽取的主要目的是将这些复杂的数据转化为单一的或者便于处理的结构,以达到快速分析处理的目的。
3、大数据存储及管理技术
大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。
4、大数据处理
大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。
(9)数据存储应用技术扩展阅读:
大数据无处不在,大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大数据的印迹。
1、制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
2、金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
3、汽车行业,利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
4、互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。
5、电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。