操作系统课程设计存储管理
⑴ 高分急求操作系统课程设计:存储管理---动态分区分配算法的模拟
我有存储管理---动态分区分配算法的模拟 这个课程设计
⑵ 操作系统中的分区存储管理和分页存储管理的优点和缺点各是什么
一、分区存储管理
1、固定分区:
优点:易于实现、开销小
缺点:存在内部碎片(分区内未被利用空间)、分区总数固定,限制了并发执行的程序数量。
2、动态创建分区:按照程序申请要求分配。
优点: 没有内部碎片
缺点:有外部碎片(难以利用的小空闲分区)
二、页式存储管理
优点: 没有外部碎片,最后一页可能有内碎片但不大; 程序不必连续存放;便于改变程序占用空间大小。
缺点: 程序仍需要全部装入内存。
⑶ *操作系统的存储管理的主要内容是什么
这是我收集的你看全吗问题一:⑴ 存储管理的实质是什么?(对内存的管理,主要对内存中用户区进行管理)⑵ 多道程序中,为方便用户和充分利用内存以提高内存利用率,内存管理的任务是什么?(内存空间的分配和回收、内存空间的共享、存储保护、地址映射、内存扩充)。⑶ 如何实现存储保护?
答:在多道程序系统中,内存中既有操作系统,又有许多用户程序。为使系统正常运行,避免内存中各程序相互干扰,必须对内存中的程序和数据进行保护。
1、防止地址越界
对进程所产生的地址必须加以检查,发生越界时产生中断,由操作系统进行相应处理。
2、防止操作越权
对属于自己区域的信息,可读可写;
对公共区域中允许共享的信息或获得授权可使用的信息,可读而不可修改;
对未获授权使用的信息,不可读、不可写。
存储保护一般以硬件保护机制为主,软件为辅,因为完全用软件实现系统开销太大,速度成倍降低。当发生越界或非法操作时,硬件产生中断,进入操作系统处理(4) 物理存储器分几类?(内存、外存、缓存)⑸ 虚存储器的含义是什么?(两层含义)
答:虚存储器有两层含义,一是指用户程序的逻辑地址构成的地址空间;二是指当内存容量不满足用户要求时,采用一种将内存空间与外存空间有机地结合在一起,利用内外存自动调度的方法构成一个大的存储器,从而给用户程序提供更大的访问空间。⑹ 什么叫物理地址?什么叫逻辑地址?什么叫地址映射?地址映射分哪几类?(静态、动态)
答:物理地址是内存中各存储单元的编号,即存储单元的真实地址,它是可识别、可寻址并实际存在的。
用户程序经过编译或汇编形成的目标代码,通常采用相对地址形式,其首地址为零,其余指令中的地址都是相对首地址而定。这个相对地址就称为逻辑地址或虚拟地址。逻辑地址不是内存中的物理地址,不能根据逻辑地址到内存中存取信息。
为了保证CPU执行程序指令时能正确访问存储单元,需要将用户程序中的逻辑地址转运行时可由机器直接寻址的物理地址,这一过程称为地址映射或地址重定位。
地址映射可分为两类:
1、静态地址映射2、动态地址映射问题二:⑴ 怎样对内存进行分区?(静态、动态;等长、不等长)
答:对内存空间的划分是可以静态的,也可以动态的;可以是等长的,也可以不等长。
静态划分是指系统运行之前就将内存空间划分成若干区域,通常,分配给进程的内存可能比进程实际所需的区域长。
动态划分是在系统运行过程中才划分内存空间。这样,系统可按进程所需要的存储空间大小为其分配恰好满足要求的一个或多个区域。
等长分区是将存储空间划分为若干个长度相同的区域。
不等长分区则是将存储空间划分若干个长度不同的区域。⑵ 根据分区情况,从如何实现进程的内存分配?
答:1、静态等长分区的分配
2、动态异长分区的分配⑶ 什么叫碎片?(零散的小空闲区) 怎样解决碎片问题?(紧凑技术)
答:所谓碎片是指内存中出现的一些零散的小空闲区域。
解决碎片的方法是移动所有占用区域,使所有的空闲区合并成一片连续区域。这一过程称为紧凑,这一技术就是紧凑技术。。问题三:⑴ 存储管理方案有哪些?(分区管理、页式管理、段式管理、段页式管理、虚拟存储管理)⑵ 分区管理的基本思想是什么?主要缺点是什么?
基本思想:将内存划分成若干连续的区域,称为分区,每个分区装入一个运行作业。
主要缺点:不能充分利用内存,也不能实现对内存的扩充。⑶ 什么是固定分区?什么是可变分区?各有什么优缺点?
答:固定分区:系统将内存划分为若干固定的分区,当作业申请内存时,系统为其选择一个适当的分区,并装入内存运行。由于分区大小是事先固定的,因而可容纳作业的大小受到限制,而且当用户作业的地址空间小于分区的存储空间时,浪费了一些存储空间。
可变分区:是指在作业装入内存时建立分区,使分区的大小正好与作业要求的存储空间相等。引入可变分区方法,使内存分配有较大的灵活性,也提高了内存利用率。但是可变分区会引起碎片的产生。⑷ 分区管理可以采用的内存分配策略是什么?
首先适应算法、最佳适应算法、最坏适应算法。⑸ 为实现地址映射和存储保护,系统为用户程序提供了哪些寄存器?
基址寄存器、限长寄存器;上界寄存器、下界寄存器。问题四:⑴ 试述页式存储管理的基本原理
① 内存划分。
② 逻辑地址空间划分。
③ 页面大小。
④ 内存分配。⑵ 试述页式存储管理的实现方法
① 建立页表。② 建立空闲页面表。
③ 硬件支持。④ 地址映射过程。⑶ 为了提高存取速度,可以使用快表技术。试述这一技术是如何实现的?
答:快表技术是在地址映射机构中增加一个小容量的联想寄存器(相联存储器),它由高速寄存器组成,成为一张快表,快表用来存放当前访问最频繁的少数活动页的页号。
在快表中,除了逻辑页号、物理页号对应外,还增加了几位。特征位表示该行是否为空,用0表示空,用1表示有内容;访问位表示该页是否被访问过,用0表示未访问,1表示已访问,这是为了淘汰那些用得很少甚至不用的页面而设置的。
快表只存放当前进程最活跃的少数几页,随着进程的推进,快表内容动态更新。当用户程序需要存取数据时,根据该数据所在逻辑页号在快表中找出对应的物理页号,然后拼接页内地址,以形成物理地址;如果在快表中没有相应的逻辑页号,则地址映射仍然通过内存中的页表进行,得到物理页号后须将该物理页号填到快表的空闲单元中。有无空闲单元,则根据淘汰算法淘汰某一行,再填入新得到的页号。实际上查找快表和查找内存页表是并行进行的,一旦发现快表中有与所查页号一致的逻辑页号就停止查找内存页表。问题五:⑴ 试述段页式存储管理的基本思想
答:段页式存储管理的基本思想是:
1、用页式方法来分配和管理内存空间,即把内存划分成若干大小相等的页面;
2、用段式方法对用户程序按照其内在的逻辑关系划分成若干段;
3、再按照划分内存页面的大小,把每一段划分成若干大小相等的页面;
4、用户程序的逻辑地址由三部分组成,形式如下:
段号页号页内地址
5、内存是以页为基本单位分配给每个用户程序的,在逻辑上相邻的页面内存不一定相邻。⑵ 如何实现段页式存储管理
答:1、建立段表2、建立页表3、建立内存空闲页面表4、硬件支持5、地址映射过程问题六:⑴ 虚拟存储技术的基本思想
答:虚拟存储技术的基本思想是利用大容量的外存来扩充内存,产生一个比有限的实际内存空间大得多的、逻辑的虚拟内存空间,以便能够有效地支持多道程序系统的实现和大型作业运行的需要,从而增强系统的处理能力。⑵ 虚拟存储技术的理论基础(局部性原理)
答:程序局部性原理:虚拟存储管理的效率与程序局部性程序有很大关系。根据统计,进程运行时,在一段时间内,其程序的执行往往呈现出高度的局限性,包括时间局部性和空间局部性。
1、时间局部性:是指若一条指令被执行,则在不久,它可能再被执行。
2、空间局部性:是指一旦一个存储单元被访问,那它附近的单元也将很快被访问。⑶ 虚拟存储管理的基本原理
答:虚拟存储的基本原理是:当进程要求运行时,不是将它的全部信息装入内存,而将将其一部分先装入内存,另一部分暂时留在外存。进程在运行过程中,要使用的信息不在内存时,发生中断,由操作系统将它们调入内存,以保证进程的正常运行。⑷ 虚拟存储管理的分类
答:虚拟存储管理分为:虚拟页式、虚拟段式和虚拟段页式。⑸ 以虚拟页式存储管理为例介绍虚拟存储管理的实现过程
答:虚拟页式存储管理的基本思想是,在进程开始执行之前,不是装全部页面,而是只装一个(甚至0个)页面,然后根据进程执行的需要,动态地装入其它页面。
1、页表 2、缺页中断处理3、页面淘汰⑹ 在虚存中,页面在内存与外存中频繁地调试,系统效率急剧下降,称为颠簸。试说明产生颠簸的原因。通过什么方式可以防止颠簸的发生?
答:颠簸是由缺页率高而引起的。
系统规定缺页率的上界和下界。当运行进程缺页率高于上界时,表明所分给它的物理页面数过少,应当增加;反之,当运行进行缺页率低于下界时,表明所分给它的物理页面数过多,可以减少。这样,根据缺页率反馈可动态调整物理页面的分配,以防止颠簸的发生。
⑷ 操作系统-04-操作系统的存储管理和设备管理
早期的计算机由于结构较为简单,存储容量小,并不需要过多的的存储管理。
随着计算机和程序越来越复杂,使得存储管理成为必要。
单一连续分配是最简单的内存分配方式
只能在单用户、单进程的操作系统中使用
固定分区分配是支持多道程序的最简单存储分配方式
内存空间被划分为若干固定大小的区域
每个分区只提供给一个程序使用,互不干扰
根据进程实际需要,动态分配内存空间
不需要新建空闲链表节点
只需要把空闲区的容量增大为包括回收区的容量即可
将回收区和空闲区合并
新的空闲区使用原来回收区的地址
将两个空闲区和中间的回收区合并
新的空闲区使用空闲区1的地址
为回收区创建新的空闲节点
将该节点插入到相应的空闲区链表中
上面的部分主要是从物理的角度讲解内存管理,这部分主要是讲解操作系统是怎么管理进程的内存空间。
字块 是相对于物理设备的定义, 页面 是相对逻辑空间的定义。
页式存储管理主要是将进程逻辑空间等分成若干大小的页面,相应的把物理内存空间分成与页面大小的物理块,以页面为单位把进程空间装进物理内存中分散的物理块。
页面大小应该适中,过大难以分配,过小内存碎片过多,通常是512B~8K。
页表 记录进程逻辑空间于物理空间的映射
在页式存储管理, 页地址 = 页号 + 页内偏移
现代计算机系统中,可以支持非常大的逻辑 地址空间(2 32~2 64),这样,页表就 变得非常大,要占用非常大的内存空间,如, 具有32位逻辑地址空间的分页系统,规定页 面大小为4KB,则在每个进程页表中的页表 项可达1M(2^20)个,如果每个页表项占用 1Byte,故每个进程仅仅页表就要占用1MB 的内存空间。
为了解决这个问题,引入了多级页表。
多级页表有一个根页表,每一个字块指向了内存中的一片空间,这块空间存储的是二级页表。以此类推,最后一级页表指向的字块才是进程实际使用的内存。通过这种分级机制,大大减少了进程中页表数占用的空间。
段式存储管理将进程逻辑空间划分成若干段(非等分),段的长度由连续逻辑的长度决定。
例如一个程序有主函数MAIN、子程序段X、子函数Y等,这个时候会根据每一个函数的逻辑长度来分配逻辑空间。
页表由 页号 和 基址 组成,但在段式存储管理中由于每一段的长度是不固定的,段表由 段号 、 基址 以及 段长 组成。
在段式存储管理, 段地址 = 段号 + 段内偏移
分页可以有效提高内存利用率(虽然说存在页内碎片)
分段可以更好满足用户需求
两者结合,形成段页式存储管理
先将逻辑空间按段式管理分成若干段,再把段内空间按页式管理等分成若干页。
在段页式存储管理中, 段页地址 = 段号 + 段内页号 + 页内地址
有些进程实际需要的内存很大,超过物理内存的容量。
由于操作系统的多道程序设计,使得每个进程可用物理内存更加稀缺。
不可能无限增加物理内存,物理内存总有不够的时候,于是便有了虚拟内存的概念。
虚拟内存是操作系统内存管理的关键技术,使得多道程序运行和大程序运行成为现实,她通过将进程所使用的内存进行划分,将部分暂时不使用的内存放置在辅存。
根据局部性原理,程序运行时,无需全部装入内存,装载部分即可。如果访问页不在内存,则发出缺页中断,发起页面置换。
从用户层面看,程序拥有很大的空间,即是虚拟内存。
虚拟内存实际是对物理内存的补充,速度接近于内存,成本接近于辅存。
置换算法一般有先进先出算法(FIFO)、最不经常使用算法(LFU)、最近最少使用算法(LRU)。
从计算机组成原理篇章中,我们可以知道,CPU的高速缓存没有数据时,需要从主存中加载数据。此时若主存中也没有数据,则需要从辅存中载入页面数据。
内存替换策略发生在Cache-主存层次、主存-辅存层次。Cache-主存层次的替换策略主要是为了解决 速度问题 ,
主存-辅存层次则。主要是为了解决 容量问题 。
顺序文件是指按顺序存放在存储介质中的文件,例如磁带的存储特性使得磁带文件只能存储顺序文件。
顺序文件是所有逻辑文件当中存储效率最高的。
可变长文件不适合使用顺序文件格式存储,索引文件是为了解决可变长文件存储而发明的一种文件格式,索引文件需要配合索引表完成存储的操作。
目录的层级结构是树状的,成为目录树。
目录树中任何文件或目录都只有唯一路径。
对CPU而言,凡是对CPU进行数据输入的都是输入设备,凡是CPU进行数据输出的都是输出设备。
缓冲区主要是解决CPU与IO设备的速率不匹配的问题,减少CPU处理IO请求的频率,提高CPU与IO设备之间的并行性。
专用缓冲区只适用于特定的IO进程,当这样的IO进程比较多时,对内存的消耗也很大,所以操作系统划出可供多个进程使用的公共缓冲区,称之为缓冲池。
SPOOLing技术是关于慢速字符设备如何与计算机主机交换信息的一种技术,利用高速共享设备将低速的独享设备模拟为高速的共享设备,逻辑上,系统为每一个用户都分配了一台独立的高速独享设备,是一种虚拟设备技术。
SPOOLing技术把同步调用低速设备改为异步调用。在输入、输出之间增加了排队转储环节(输入井、输出井),SPOOLing负责输入(出)井与低速设备之间的调度,逻辑上,进程直接与高速设备交互,减少了进程的等待时间。
⑸ 【操作系统】01--存储器的层次结构
操作系统存储器,如何对存储器进行有效的管理,直接影响着存储器的利用率和系统性能。
1、存储器的层次结构
2、程序的装入和链接
3、连续分配存储管理方式
4、分页存储管理方式
5、分段存储管理方式
内部碎片和外部碎片
逻辑地址和物理地址
内存分配策略
分页的地址变换,页表的使用
分页和分段的优缺点
1、存储的层次结构
这个图不怎么看的清,总体是三个部分:存储器的层次结构、程序的装入和链接、连续分配存储管理方式
====================
(1)内存分配——为每个进程分配一定的内存空间
(2)地址映射——把程序中所用的相对地址转换成内存的物理地址
(3)内存保护——检查地址的合法性,防止越界访问
(4)内存扩充——解决“求大于供”的问题,采用虚拟存储技术
内存分配
内存分配的主要任务是:为每一道程序分配内存空间,使它们“各得其所”;当程序撤消时,则收回它占用的内存空间。分配时注意提高存储器的利用率。
地址映射
目标程序所访问的地址是逻辑地址集合的地址空间,而内存空间是内存中物理地址的集合,在多道程序环境下,这两者是不一致的,因此,存储管理必须提供地址映射功能,用于把程序地址空间中的逻辑地址转换为内存空间中对应的物理地址。
内存保护
内存保护的任务是确保每道程序都在自己的内存空间运行,互不干扰。保护系统程序区不被用户侵犯(有意或无意的),不允许用户程序读写不属于自己地址空间的数据(系统区地址空间,其他用户程序的地址空间)。
内存扩充
内存扩充的任务是从逻辑上来扩充内存容量,使用户认为系统所拥有的内存空间远比其实际的内存空间(硬件RAM)大的多。
【缓存都在其使用的工具之前,目的是为了减少访问次数】
2.1 主存储器
主存储器是计算机系统中的一个主要部件,用于保存进程运行时的程序和数据,CPU的控制部件只能从主存储器中取得指令和数据,数据能够从主存储器中读取并将他们装入到寄存器中,或者从寄存器存入到主存储器,CPU与外围设备交换的信息一般也依托于主存储器地址空间。但是,主存储器的访问速度远低于CPU执行指令的速度,于是引入了寄存机和告诉缓冲。
2.2 寄存器
寄存器访问速度最快,能与CPU协调工作,价格昂贵,容量不大,寄存器用于加速存储器的访问速度,如用寄存器存放操作数,或用作地址寄存器加快地址转换速度等。
2.3 高速缓存
高速缓存容量大于或远大于寄存器,但小于内存,访问速度高于主内存器,根据程序局部性原理,将主存中一些经常访问的信息存放在高速缓存中, 减少访问主存储器的次数 ,可大幅度提高程序执行速度。通常,进程的程序和数据存放在主存,每当使用时,被临时复制到高速缓存中,当CPU访问一组特定信息时,首先检查它是否在高速缓存中,如果已存在,则直接取出使用,否则,从主存中读取信息。有的计算机系统设置了两级或多级高速缓存,一级缓存速度最高,容量小,二级缓存容量稍大,速度稍慢。
2.4 磁盘缓存
磁盘的IO速度远低于对主存的访问速度,因此将频繁使用的一部分磁盘数据和信息暂时存放在磁盘缓存中, 可减少访问磁盘的次数, 磁盘缓存本身并不是一种实际存在的存储介质,它依托于固定磁盘,提供对主存储器空间的扩充,即利用主存中的存储空间,来暂存从磁盘中读出或写入的信息,主存可以看做是辅存的高速缓存,因为,辅存中的数据必须复制到主存方能使用,反之,数据也必须先存在主存中,才能输出到辅存。
主存储器简称 主存或内存 , 用于保存程序运行时的指令和数据.
寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和 地址 .
通常, 处理机从指存中读出数据放入指令寄存器, 这一时间段我们称之为取指周期; 处理机从数存中读取数据放入数据寄存器, 再流入运算器, 这一时间段我们称之为执行周期.
高速缓存和磁盘缓存:
高速缓冲存储器是介于寄存器和存储器之间的存储器, 主要用于备份主存中较常用的数据, 用来减少处理机对主存储器的访问次数, 提高运行效率.
磁盘缓存主要用于暂时存放频繁使用的一部分磁盘数据和信息, 以减少访问磁盘的次数.
⑹ 操作系统存储管理实验
#include<stdio.h>#include <dos.h>#include<stdlib.h>#include<conio.h>#include<iostream.h>
#define n 10 /*假定系统允许的最大作业数为n,假定模拟实验中n值为10*/ #define m 10 /*假定系统允许的空闲区表最大为m,假定模拟实验中m值为10*/ #define minisize 100 /*空闲分区被分配时,如果分配后剩余的空间小于minisize,则将该空闲分区全部分配,若大于minisize,则切割分配*/
struct { float address; /*已分配分区起始地址*/ float length; /*已分配分区长度,单位为字节*/ int flag; /*已分配区表登记栏标志,用"0"表示空栏目*/ }used_table[n]; /*已分配区表*/
struct { float address; /*空闲区起始地址*/ float length; /*空闲区长度,单位为字节*/ int flag; /*空闲区表登记栏标志,用"0"表示空栏目,用"1"表示未分配*/ }free_table[m]; /*空闲区表*/
void allocate(char J,float xk) /*给J作业,采用最佳分配算法分配xk大小的空间*/ { int i,k; float ad; k=-1;
for(i=0;i<m;i++) /*寻找空间大于xk的最小空闲区登记项k*/ if(free_table[i].length>=xk&&free_table[i].flag==1) if(k==-1||free_table[i].length<free_table[k].length) k=i; if(k==-1)/*未找到可用空闲区,返回*/ { printf("无可用空闲区\n"); return; }
/*找到可用空闲区,开始分配:若空闲区大小与要求分配的空间差小于minisize大小,则空闲区全部分配;若空闲区大小与要求分配的空间差大于minisize大小,则从空闲区划出一部分分配*/ if(free_table[k].length-xk<=minisize) { free_table[k].flag=0; ad=free_table[k].address; xk=free_table[k].length; } else { free_table[k].length=free_table[k].length-xk; ad=free_table[k].address+free_table[k].length; } /*修改已分配区表*/ i=0; while(used_table[i].flag!=0&&i<n) /*寻找空表目*/ i++;
if(i>=n) /*无表目可填写已分配分区*/ { printf("无表目填写已分分区,错误\n");
/*修正空闲区表*/ if(free_table[k].flag==0) /*前面找到的是整个空闲分区*/ free_table[k].flag=1; else {/*前面找到的是某个空闲分区的一部分*/ free_table[k].length=free_table[k].length+xk; return; } } else {/*修改已分配表*/ used_table[i].address=ad; used_table[i].length=xk; used_table[i].flag=J; }
return; }/*主存分配函数结束*/
void reclaim(char J) /*回收作业名为J的作业所占主存空间*/ { int i,k,j,s,t; float S,L;
/*寻找已分配表中对应登记项*/ s=0; while((used_table[s].flag!=J||used_table[s].flag==0)&&s<n) s++;
if(s>=n)/*在已分配表中找不到名字为J的作业*/ { printf("找不到该作业\n"); return; }
/*修改已分配表*/ used_table[s].flag=0;
/*取得归还分区的起始地址S和长度L*/ S=used_table[s].address; L=used_table[s].length; j=-1;k=-1;i=0;
/*寻找回收分区的空闲上下邻,上邻表目k,下邻表目j*/ while(i<m&&(j==-1||k==-1)) { if(free_table[i].flag==1) { if(free_table[i].address+free_table[i].length==S)k=i;/*找到上邻*/ if(free_table[i].address==S+L)j=i;/*找到下邻*/ } i++; }
if(k!=-1) if(j!=-1) /* 上邻空闲区,下邻空闲区,三项合并*/ { free_table[k].length=free_table[j].length+free_table[k].length+L; free_table[j].flag=0; } else /*上邻空闲区,下邻非空闲区,与上邻合并*/ free_table[k].length=free_table[k].length+L; else if(j!=-1) /*上邻非空闲区,下邻为空闲区,与下邻合并*/ { free_table[j].address=S; free_table[j].length=free_table[j].length+L; } else /*上下邻均为非空闲区,回收区域直接填入*/ { /*在空闲区表中寻找空栏目*/ t=0; while(free_table[t].flag==1&&t<m) t++; if(t>=m)/*空闲区表满,回收空间失败,将已分配表复原*/ { printf("主存空闲表没有空间,回收空间失败\n"); used_table[s].flag=J; return; } free_table[t].address=S; free_table[t].length=L; free_table[t].flag=1; } return; }/*主存回收函数结束*/
int main( ) { int i,a; float xk; char J;
/*空闲分区表初始化:*/ free_table[0].address=10240; /*起始地址假定为10240*/ free_table[0].length=10240; /*长度假定为10240,即10k*/ free_table[0].flag=1; /*初始空闲区为一个整体空闲区*/ for(i=1;i<m;i++) free_table[i].flag=0; /*其余空闲分区表项未被使用*/
/*已分配表初始化:*/ for(i=0;i<n;i++) used_table[i].flag=0; /*初始时均未分配*/
while(1) { printf("选择功能项(0-退出,1-分配主存,2-回收主存,3-显示主存)\n"); printf("选择功项(0~3) :");
scanf("%d",&a); switch(a) { case 0: exit(0); /*a=0程序结束*/
case 1: /*a=1分配主存空间*/ printf("输入作业名J和作业所需长度xk: "); scanf("%*c%c%f",&J,&xk); allocate(J,xk); /*分配主存空间*/ break;
case 2: /*a=2回收主存空间*/ printf("输入要回收分区的作业名"); scanf("%*c%c",&J); reclaim(J); /*回收主存空间*/ break;
case 3: /*a=3显示主存情况*/ /*输出空闲区表和已分配表的内容*/ printf("输出空闲区表:\n起始地址 分区长度 标志\n"); for(i=0;i<m;i++) printf("%6.0f%9.0f%6d\n",free_table[i].address,free_table[i].length, free_table[i].flag); printf(" 按任意键,输出已分配区表\n"); getch(); printf(" 输出已分配区表:\n起始地址 分区长度 标志\n"); for(i=0;i<n;i++) if(used_table[i].flag!=0) printf("%6.0f%9.0f%6c\n",used_table[i].address,used_table[i].length, used_table[i].flag); else printf("%6.0f%9.0f%6d\n",used_table[i].address,used_table[i].length, used_table[i].flag); break;
default:printf("没有该选项\n"); }/*case*/ }/*while*/
return 1;}
⑺ 简述存储管理的主要功能
1、寻址空间
操作系统让系统看上去有比实际内存大得多的内存空间。虚拟内存可以是系统中实际物理空间的许多倍。每个进程运行在其独立的虚拟地址空间中。
这些虚拟空间相互之间都完全隔离开来,所以进程间不会互相影响。同时,硬件虚拟内存机构可以将内存的某些区域设置成不可写。这样可以保护代码与数据不会受恶意程序的干扰。
2、存储管理内存映射
内存映射技术可以将映象文件和数据文件直接映射到进程的地址空间。在内存映射中,文件的内容被直接连接到进程虚拟地址空间上。
3、存储管理物理内存分配
内存管理子系统允许系统中每个运行的进程公平地共享系统中的物理内存。
4、存储管理共享虚拟内存
尽管虚拟内存允许进程有其独立的虚拟地址空间,但有时也需要在进程之间共享内存。 例如有可能系统中有几个进程同时运行BASH命令外壳程序。为了避免在每个进程的虚拟内存空间内都存在BASH程序的拷贝,较好的解决办法是系统物理内存中只存在一份BASH的拷贝并在多个进程间共享。
(7)操作系统课程设计存储管理扩展阅读:
相关延伸:存储管理存储知识结构
1、系统管理:UNIX/Linux/Windows操作系统管理。
2、开发技术:C/C++,网络编程,多进程/多线程,进程间通信。
3、存储基础:磁盘、RAID阵列、文件系统等存储相关硬件和软件的安装、配置、调试。
4、存储系统:RAID,DAS,SAN,NAS, CAS等。
5、存储协议:TCP/IP,SCSI,iSCSI,NFS/CIFS等。
6、文件系统:VFS, EXTx/NTFS/FAT32等磁盘文件系统,NFS/CIFS网络文件系统,Lustre/GFS/AFS等分布式文件系统。
7、存储技术:Deplication,SSD,HSM,Virtualization,Snapshot,Replication,CDP, VTL,Thin Provision等等。
8、存储架构:掌握不同行业的存储需求,能够根据实际需求提出存储解决方案,并进行存储系统架构、设计和实现