当前位置:首页 » 文件管理 » 基于dct图像压缩

基于dct图像压缩

发布时间: 2022-12-14 04:29:00

㈠ 基于图像的dct压缩处理中的d值是是什么意思

基于图像的dct压缩处理
需要我帮助吗.

㈡ 位图图像 经 基于DCT变换的顺序编码 压缩后 文件类型会改变吗

看你怎么保存

㈢ 急求图像压缩编码方法!!!

以下是几种格式的专业解释:

HDTV

一,HDTV的概念

要解释HDTV,我们首先要了解DTV。DTV是一种数字电视技术,是目前传统模拟电视技术的接班人。所谓的数字电视,是指从演播室到发射、传输、接收过程中的所有环节都是使用数字电视信号,或对该系统所有的信号传播都是通过由二进制数字所构成的数字流来 完成的。数字信号的传播速率为每秒19.39兆字节,如此大的数据流传输速度保证了数字电视的高清晰度,克服了模拟电视的先天不足。同时,由于数字电视可以允许几种制式信号的同时存在,因此每个数字频道下又可分为若干个子频道,能够满足以后频道不断增多的 需求。HDTV是DTV标准中最高的一种,即High Definision TV,故而称为HDTV。

二,HDTV中要求音、视频信号达到哪些标准?

HDTV规定了视频必须至少具备720线非交错式(720p,即常说的逐行)或1080线交错式隔行(1080i,即常说的隔行)扫描(DVD标准为 480线),屏幕纵横比为16:9。音频输出为5.1声道(杜比数字格式),同时能兼容接收其它较低格式的 信号并进行数字化处理重放。

HDTV有三种显示格式,分别是:720P(1280×720P,非交错式),1080 i(1920×1080i,交错式),1080P(1920×1080i,非交错式),其中网络上流传的以720P和1080 i最为常见,而在微软WMV-HD站点上1080P的样片相对较多。

三,如何收看HDTV节目?

目前有两种方式可欣赏到HDTV节目。一种是在电视上实时收看HDTV,需要满足两个条件,首先是电视可接收到HDTV信号,这需要额外添加相关的硬件,其次是电视符合HDTV标准,主要是指电视的分辨率和接收端口而言。
另一种是在电脑上通过软件播放。目前我国只有极少部分地区可接收到HDTV数字信号,而且HDTV电视的价格仍高高在上,不是普通消费者所能承受的。因此,在网络中找寻HDTC源,下载后在个人电脑上播放,成了大多数HDTV迷们的一个尝鲜方法。

四,哪些是可用于电脑播放的HDTV文件?

网络中流传的HDTV主要以两类文件的方式存在,一类是经过MPEG-2标准压缩,以.tp和.ts为后缀的视频流文件,一类是经过WMV-HD (Windows Media Video High Definition)标准压缩过的.wmv文件,还有少数文件后缀为.avi或.mpg,其性质与.wmv是完全一样的。

HDTV文件都比较大,即使是经过重新编码过后的.wmv文件也非同小可。以一部普通电影的时间长度来计算,.wmv文件将会有4G以上,而同样时间长度的.tp和.ts文件能达到8G以上,有的甚至达到20多G。因此,除了通过文件后缀名,还可以通过文 件大小来判断是否为HDTV文件。

五,如何在个人电脑上播放HDTV节目?

对于.wmv文件,只要系统安装了Windows Media Player 9 或更高版本,就可以正常播放,一些播放软件的最新版本已经开始支持WMV-HD,如WINDVD6等,也可以直接使用这些软件播放HDTV。有些HDTV文件在压缩过程中采用了其它标准的编码格式,就需要安装对应的解码器,遇到Windows Media Player 9不能正常播放时,可以再安装ffdshow,它带有各种最常用的解码器。

播放以.tp和.ts为后缀的视频流文件要稍微麻烦一点,因为文件中分别包含有AC3音频信息和MPEG-2视频信息。好在现下有已经不少专门播放.tp 和.ts文件的软件问世了,Moonlight-Elecard MPEG Player 就是其中一款比较常见的支持HDTV播放的软件,目前最新的版本为2.x。安装完后,也可以运行其它播放软件来调用Moonlight- Elecard MPEG Player的解码器进行播放。

六,如何鉴别HDTV的显示格式?

目前我们无法仅从文件名称、大小上来判定一个HDTV文件的显示格式是720P还是1080i,或是1080P,但是有不少软件可以在播放时显示影片的图像信息,如WINDVD、zplay等,在软件的控制面板中选择对应的选项就可以看到详细的信息。

七,为什么我只能看到图像,却听不到声音?

这是因为未安装AC3音频解码器,导致HDTV文件中的音频信息不能被正确识别的原因。解决的方法是下载并安装对应的音频解码器,常用的有 AC3Filter,这些音、视频解码器只需安装一次即可,播放HDTV文件时系统会自动调用,而不必每次播 放的时候都打开其控制界面。

八,为什么我播放HDTV时会出现丢帧现象?

在家用电脑上播放HDTV,对其硬件配置要求较高,主要是与CPU、显存、内存紧紧相关,如果这三样中有一样性能过低,就会产生一些播放问题。播放 HDTV时会出现丢帧现象是显存容量不够造成的,尤其是在播放1080 i格式HDTV的时候,1920×1080的像素量,需要足够大的显存才能满足其数据吞吐,因此显存至少需要64M以上,建议128M。由于是2D显示,所以对显卡核心的运算能力要求反而不是很高。

九,为什么我播放HDTV时会经常出现画面和语音停顿的现象?

一些采用了WMV-HD重新编码的HDTV文件,因为有着较高的压缩率,在播放时就需要非常高的CPU运算能力来进行实时解码,一般来说P4 2.0G/AMD 2000 以上及同级别的CPU可达到这个要求。同时,由于HDTV的数据流较大,需要足够的内存来支持,推荐在256M以上。如果你的电脑满足不了这样的配置,就可能会在播放过程中产生画面与语音不同步、画面经常停顿、爆音等现象。严重的话甚至无法顺利观看。如果 这种现象不太严重,则可以通过优化系统和一些小技巧来改善。

十,如何优化系统以保证顺利地播放HDTV?

除非你的电脑硬件配置的确很强,否则就很可能需要对系统进行一些优化,以便可以顺利地播放HDTV。首先是在播放HDTV前关闭所有没有用的后台程序或进程,尽量增加系统的空闲资源为播放HDTV服务;其次是选择一款占用系统资源较低的软件来播放HDTV 。Windows Media Player、WINDVD等软件占用系统资源较多,在硬件配置本就不高的系统上会影响HDTV的播放效果,这时可以选择使用BSPlayer。 BSPlayer是一款免费软件,最大的特点就是占用系统资源很小,尤其在播放HDTV文件时,与其它几个资源占用大户相比效果更为明显。另外,运行播放软件后立即打开任务管理器(仅在Windows 2000/XP中有效),将播放软件的进程级别设置为最高,这样也可以为HDTV的播放调用更多的系统资源。除此之外,安装更高版本的 DirectX,也能更好地支持HDTV的播放。

十一,还有什么其它的技巧?

如果你的PC可以流利地播放HDTV,那么你唯一会感到遗憾的,可能就是抱怨显示器太小和音箱太不够劲了。音箱的问题没有好的方法可以解决,必竟PC音箱和家庭影院的音箱两者是不可同比的,然而我们可以通过调高显示器的分辨率来提高画面的清晰度和细节感。 现在主流的显示器为17寸纯平CRT(因为改变标准分辨率只会给LCD带来负面影响,因此这种方法只针对普通的CRT显示器),中低档的17寸显示器很难达到1600×1200以上的分辨率,即使达到了其水平扫描率也在60Hz以下,但是请不要忘了,电视 信号的水平扫描率也就是在这个水平上。720P的水平扫描率为60Hz,1080i则有50Hz和60Hz两种,分别为我国和美国地区的标准。也就是说,即使你在显示器水平扫描率为60Hz的状态下全屏观看HDTV或DVD等其它视频,你是感觉不到晃眼的 ,这主要是由于人眼对于动态和静态物体的感应不同造成的。因此你可以在观看HDTV的时候,放心地将显示器水平扫描率设为60Hz,进而将分辨率调高,平时使用再调回标准分辨率即可。

存放HDTV文件的硬盘分区必须转换为NTFS格式,因为一部HDTV电影通常是几个4.3GB的视频文件组成(为了方便刻录在DVD上面),而FAT32是无法管理2GB以上的文件的,因此务必转换分区格式。

H.264

JVT(Joint Video Team,视频联合工作组)于2001年12月在泰国Pattaya成立。它由ITU-T和ISO两个国际标准化组织的有关视频编码的专家联合组成。JVT的工作目标是制定一个新的视频编码标准,以实现视频的高压缩比、高图像质量、良好的网络适应性等目标。目前JVT的工作已被ITU-T接纳,新的视频压缩编码标准称为H.264标准,该标准也被ISO接纳,称为AVC(Advanced Video Coding)标准,是MPEG-4的第10部分。
H.264标准可分为三档:
基本档次(其简单版本,应用面广);
主要档次(采用了多项提高图像质量和增加压缩比的技术措施,可用于SDTV、HDTV和DVD等);
扩展档次(可用于各种网络的视频流传输)。
H.264不仅比H.263和MPEG-4节约了50%的码率,而且对网络传输具有更好的支持功能。它引入了面向IP包的编码机制,有利于网络中的分组传输,支持网络中视频的流媒体传输。H.264具有较强的抗误码特性,可适应丢包率高、干扰严重的无线信道中的视频传输。H.264支持不同网络资源下的分级编码传输,从而获得平稳的图像质量。H.264能适应于不同网络中的视频传输,网络亲和性好。

H.261是最早出现的视频编码建议,目的是规范ISDN网上的会议电视和可视电话应用中的视频编码技术。它采用的算法结合了可减少时间冗余的帧间预测和可减少空间冗余的DCT变换的混合编码方法。和ISDN信道相匹配,其输出码率是p×64kbit/s。p取值较小时,只能传清晰度不太高的图像,适合于面对面的电视电话;p取值较大时(如 p>6),可以传输清晰度较好的会议电视图像。H.263 建议的是低码率图像压缩标准,在技术上是H.261的改进和扩充,支持码率小于64kbit/s的应用。但实质上H.263以及后来的H.263 和H.263 已发展成支持全码率应用的建议,从它支持众多的图像格式这一点就可看出,如Sub-QCIF、QCIF、CIF、4CIF甚至16CIF等格式。
MPEG-1标准的码率为1.2Mbit/s左右,可提供30帧CIF(352×288)质量的图像,是为CD-ROM光盘的视频存储和播放所制定的。MPEG-l标准视频编码部分的基本算法与H.261/H.263相似,也采用运动补偿的帧间预测、二维DCT、VLC游程编码等措施。此外还引入了帧内帧(I)、预测帧(P)、双向预测帧(B)和直流帧(D)等概念,进一步提高了编码效率。在MPEG-1的基础上,MPEG-2标准在提高图像分辨率、兼容数字电视等方面做了一些改进,例如它的运动矢量的精度为半像素;在编码运算中(如运动估计和DCT)区分“帧”和“场”;引入了编码的可分级性技术,如空间可分级性、时间可分级性和信噪比可分级性等。近年推出的MPEG-4标准引入了基于视听对象(AVO:Audio-Visual Object)的编码,大大提高了视频通信的交互能力和编码效率。 MPEG-4中还采用了一些新的技术,如形状编码、自适应DCT、任意形状视频对象编码等。但是MPEG-4的基本视频编码器还是属于和H.263相似的一类混合编码器。
总之,H.261建议是视频编码的经典之作,H.263是其发展,并将逐步在实际上取而代之,主要应用于通信方面,但H.263众多的选项往往令使用者无所适从。MPEG系列标准从针对存储媒体的应用发展到适应传输媒体的应用,其核心视频编码的基本框架是和H.261一致的,其中引人注目的MPEG-4的“基于对象的编码”部分由于尚有技术障碍,目前还难以普遍应用。因此,在此基础上发展起来的新的视频编码建议H.264克服了两者的弱点,在混合编码的框架下引入了新的编码方式,提高了编码效率,面向实际应用。同时,它是两大国际标准化组织的共同制定的,其应用前景应是不言而喻的。
JVT的H.264
H.264是ITU-T的VCEG(视频编码专家组)和ISO/IEC的MPEG(活动图像编码专家组)的联合视频组(JVT:joint video team)开发的一个新的数字视频编码标准,它既是ITU-T的H.264,又是ISO/IEC的MPEG-4的第10 部分。1998年1月份开始草案征集,1999年9月,完成第一个草案,2001年5月制定了其测试模式TML-8,2002年6月的 JVT第5次会议通过了H.264的FCD板。2003年3月正式发布。
H.264和以前的标准一样,也是DPCM加变换编码的混合编码模式。但它采用“回归基本”的简洁设计,不用众多的选项,获得比H.263 好得多的压缩性能;加强了对各种信道的适应能力,采用“网络友好”的结构和语法,有利于对误码和丢包的处理;应用目标范围较宽,以满足不同速率、不同分辨率以及不同传输(存储)场合的需求;它的基本系统是开放的,使用无需版权。
在技术上,H.264标准中有多个闪光之处,如统一的VLC符号编码,高精度、多模式的位移估计,基于4×4块的整数变换、分层的编码语法等。这些措施使得H.264算法具有很的高编码效率,在相同的重建图像质量下,能够比H.263节约50%左右的码率。H.264的码流结构网络适应性强,增加了差错恢复能力,能够很好地适应IP和无线网络的应用。
H.264的技术亮点
(1) 分层设计
H.264的算法在概念上可以分为两层:视频编码层(VCL:Video Coding Layer)负责高效的视频内容表示,网络提取层(NAL:Network Abstraction Layer)负责以网络所要求的恰当的方式对数据进行打包和传送。在VCL和NAL之间定义了一个基于分组方式的接口,打包和相应的信令属于NAL的一部分。这样,高编码效率和网络友好性的任务分别由VCL和NAL来完成。
VCL层包括基于块的运动补偿混合编码和一些新特性。与前面的视频编码标准一样,H.264没有把前处理和后处理等功能包括在草案中,这样可以增加标准的灵活性。
NAL负责使用下层网络的分段格式来封装数据,包括组帧、逻辑信道的信令、定时信息的利用或序列结束信号等。例如,NAL支持视频在电路交换信道上的传输格式,支持视频在Internet上利用RTP/UDP/IP传输的格式。NAL包括自己的头部信息、段结构信息和实际载荷信息,即上层的VCL数据。(如果采用数据分割技术,数据可能由几个部分组成)。
(2) 高精度、多模式运动估计
H.264支持1/4或1/8像素精度的运动矢量。在1/4像素精度时可使用6抽头滤波器来减少高频噪声,对于1/8像素精度的运动矢量,可使用更为复杂的8抽头的滤波器。在进行运动估计时,编码器还可选择“增强”内插滤波器来提高预测的效果。
在H.264的运动预测中,一个宏块(MB)可以按图2被分为不同的子块,形成7种不同模式的块尺寸。这种多模式的灵活和细致的划分,更切合图像中实际运动物体的形状,大大提高了运动估计的精确程度。在这种方式下,在每个宏块中可以包含有1、2、4、8或16个运动矢量。
在H.264中,允许编码器使用多于一帧的先前帧用于运动估计,这就是所谓的多帧参考技术。例如2帧或3帧刚刚编码好的参考帧,编码器将选择对每个目标宏块能给出更好的预测帧,并为每一宏块指示是哪一帧被用于预测。
(3) 4×4块的整数变换
H.264与先前的标准相似,对残差采用基于块的变换编码,但变换是整数操作而不是实数运算,其过程和DCT基本相似。这种方法的优点在于:在编码器中和解码器中允许精度相同的变换和反变换,便于使用简单的定点运算方式。也就是说,这里没有“反变换误差”。变换的单位是4×4块,而不是以往常用的8×8块。由于用于变换块的尺寸缩小,运动物体的划分更精确,这样,不但变换计算量比较小,而且在运动物体边缘处的衔接误差也大为减小。为了使小尺寸块的变换方式对图像中较大面积的平滑区域不产生块之间的灰度差异,可对帧内宏块亮度数据的16个4×4块的DC系数(每个小块一个,共16个)进行第二次4×4块的变换,对色度数据的4个4×4块的DC系数(每个小块一个,共4个)进行2×2块的变换。
H.264为了提高码率控制的能力,量化步长的变化的幅度控制在12.5%左右,而不是以不变的增幅变化。变换系数幅度的归一化被放在反量化过程中处理以减少计算的复杂性。为了强调彩色的逼真性,对色度系数采用了较小量化步长。
(4) 统一的VLC
H.264中熵编码有两种方法,一种是对所有的待编码的符号采用统一的VLC(UVLC :Universal VLC),另一种是采用内容自适应的二进制算术编码(CABAC:Context-Adaptive Binary Arithmetic Coding)。CABAC是可选项,其编码性能比UVLC稍好,但计算复杂度也高。UVLC使用一个长度无限的码字集,设计结构非常有规则,用相同的码表可以对不同的对象进行编码。这种方法很容易产生一个码字,而解码器也很容易地识别码字的前缀,UVLC在发生比特错误时能快速获得重同步。
图3显示了码字的语法。这里,x0,x1,x2,…是INFO比特,并且为0或1。图4列出了前9种码字。如:第4号码字包含INFO01,这一码字的设计是为快速再同步而经过优化的,以防止误码。
(5) 帧内预测
在先前的H.26x系列和MPEG-x系列标准中,都是采用的帧间预测的方式。在H.264中,当编码Intra图像时可用帧内预测。对于每个4×4块(除了边缘块特别处置以外),每个像素都可用17个最接近的先前已编码的像素的不同加权和(有的权值可为0)来预测,即此像素所在块的左上角的17个像素。显然,这种帧内预测不是在时间上,而是在空间域上进行的预测编码算法,可以除去相邻块之间的空间冗余度,取得更为有效的压缩。
如图4所示,4×4方块中a、b、...、p为16 个待预测的像素点,而A、B、...、P是已编码的像素。如m点的值可以由(J+2K+L+2)/ 4 式来预测,也可以由(A B C D I J K L)/ 8 式来预测,等等。按照所选取的预测参考的点不同,亮度共有9类不同的模式,但色度的帧内预测只有1类模式。
(6) 面向IP和无线环境
H.264 草案中包含了用于差错消除的工具,便于压缩视频在误码、丢包多发环境中传输,如移动信道或IP信道中传输的健壮性。
为了抵御传输差错,H.264视频流中的时间同步可以通过采用帧内图像刷新来完成,空间同步由条结构编码(slice structured coding)来支持。同时为了便于误码以后的再同步,在一幅图像的视频数据中还提供了一定的重同步点。另外,帧内宏块刷新和多参考宏块允许编码器在决定宏块模式的时候不仅可以考虑编码效率,还可以考虑传输信道的特性。
除了利用量化步长的改变来适应信道码率外,在H.264中,还常利用数据分割的方法来应对信道码率的变化。从总体上说,数据分割的概念就是在编码器中生成具有不同优先级的视频数据以支持网络中的服务质量QoS。例如采用基于语法的数据分割(syntax-based data partitioning)方法,将每帧数据的按其重要性分为几部分,这样允许在缓冲区溢出时丢弃不太重要的信息。还可以采用类似的时间数据分割(temporal data partitioning)方法,通过在P帧和B帧中使用多个参考帧来完成。
在无线通信的应用中,我们可以通过改变每一帧的量化精度或空间/时间分辨率来支持无线信道的大比特率变化。可是,在多播的情况下,要求编码器对变化的各种比特率进行响应是不可能的。因此,不同于MPEG-4中采用的精细分级编码FGS(Fine Granular Scalability)的方法(效率比较低),H.264采用流切换的SP帧来代替分级编码。
H.264的性能测试
TML-8为H.264的测试模式,用它来对H.264的视频编码效率进行比较和测试。测试结果所提供的PSNR已清楚地表明,相对于MPEG-4(ASP:Advanced Simple Profile)和H.263 (HLP:High Latency Profile)的性能,H.264的结果具有明显的优越性,如图5所示。
H.264的PSNR比MPEG-4(ASP)和H.263 (HLP)明显要好,在6种速率的对比测试中,H.264的PSNR比MPEG-4(ASP)平均要高2dB,比H.263(HLP)平均要高3dB。6个测试速率及其相关的条件分别为:32 kbit/s速率、10f/s帧率和QCIF格式;64 kbit/s速率、15f/s帧率和QCIF格式;128kbit/s速率、15f/s帧率和CIF格式;256kbit/s速率、15f/s帧率和QCIF格式;512 kbit/s速率、30f/s帧率和CIF格式;1024 kbit/s速率、30f/s帧率和CIF格式。
实现难度
对每个考虑实际应用的工程师而言,在关注H.264的优越性能的同时必然会衡量其实现难度。从总体上说,H.264性能的改进是以增加复杂性为代价而获得的。目前全球也只有中国杭州海康威视数字技术有限公司在安防领域实现了H.264的实际应用,这一次我们走到了世界的前端!

1080p

1080P是标准层面上的HDTV或者硬件层面上FULL HD的最高标准之一,而FULL HD就是能够完全显示1920*1080像素或者说物理分辨率达到1920*1080的平板电视机。需要注意的是,FULL HD和先前很多厂家宣传的1080P并不是同样的概念。
但是我们走进卖场会发现大多数品牌商家都打着1080P的旗帜对外宣传,多少对我们的选购产生了阻碍.其实目前市场中的大多数平板电视都不是FULL HD,所谓的1080P只是支持1080P信号的接收并通过计算演变在屏幕上显示,大多数大屏幕平板电视都为1366*768,等离子中的部分产品更低,要达到FULL HD的概念,就必须屏幕达到1920*1080的物理分辨率以及至少30Hz的刷新率.

WAF

We Are Family 的简称 [我们是一家人]
WAF是韩国的一个影视制作小组,他们制作的DVDRIP是目前网上除了HDTV之外质量最好的,清晰度和音质都是上乘之作。
WAF的作品有以下特点:
1:严格控制每CD的容量,每CD的容量大小一般不超过0.05M(大家见过不少CD1是702M,CD2却是698M的现象吧)。
2:经过控制的容量,利于刻盘,(有些小组制作的容量经常可以超过702M,一CD盘的容量,这时候超刻技术就受重视了^_^)
3:分割片子时注意场景转换,极少造成一段场景有分裂感(例如4CD的《特洛伊》和4CD的《黑鹰》)。
4:每个片子压制的尺寸都以OAR为准,即导演原始版。
5:尺寸统一,几乎都是800线。(例:WAF20CD DTS版BOB,800*448,见过15CD的HDTVRIP版,居然有两种尺寸!)我不清楚,一部大片为什么大家会忍受得了分辨率为640甚至以下的版本?
6:有极强的负责任的制作态度,发现有瑕疵的一般都会推出修复版.
7:喜欢WAF的DTS和AC3音频和高码率压缩的视频.
8:WAF每部片分割成的CD数一般都比别的小组制作的要多,这是为了保证必要的画质和音质的质量。试想想有个加长版《角斗士》使用DTS音轨,却只分割成2CD,每CD有70多分钟长,不知这样压缩出来的片子画质能好到什么程度?
所以说,WAF小组出品的DVDRip一般都是网上最清晰的版本。

问题补充:

普通家用电视的分辨率是多少?是不是屏幕越大分辨率越高?

电视的NTSC标准为720x480 刷新率为60Hz , PAL为720x576,刷新率为50Hz。 我国电视广播采用 PAL制。

逐行电视接收隔行信号经过差补后可以达到逐行输出,同时75Hz刷新率 ,或者隔行输出,同时100Hz刷新率。

虽然PAL制可达576线,但普通电视的实际可分辨水平线数只有300~500。高清电视理论上可达720P 和1080i,就是说最多逐行720线。所以按理论来说,搞清电视用1024x768的VGA输入也勉强可以表现出来了,但实际因为聚焦不准,文字显示比能显示1024x768的显示器差很多,画面显示则没什么问题。

HDTV是不是没有经过压缩,最原始的视频?

网络中流传的HDTV主要以两类文件的方式存在,一类是经过MPEG-2标准压缩,以.tp和.ts为后缀的视频流文件,一类是经过WMV-HD (Windows Media Video High Definition)标准压缩过的.wmv文件,还有少数文件后缀为.avi或.mpg,其性质与.wmv是完全一样的。

H.264等压缩格式是不是为了方便网上传播?

在技术上,H.264标准中有多个闪光之处,如统一的VLC符号编码,高精度、多模式的位移估计,基于4块的整数变换、分层的编码语法等。这些措施使得H.264得算法具有很高的编码效率,在相同的重建图像质量下,能够比H.263节约50%左右的码率。H.264的码流结构网络适应性强,增加了差错恢复能力,能够很好地适应IP和无线网络的应用。

H.264能以较低的数据速率传送基于联网协议(IP)的视频流,在视频质量、压缩效率和数据包恢复丢失等方面,超越了现有的MPEG-2、MPEG-4和H.26x视频通讯标准,更适合窄带传输。

网上流传的Rip格式是什么意思?DVDRip

DVDRip理解:其实就是一种DVD的备份技术。

DVD我们都知道,目前非常优秀的媒体格式,MPEG2编码的视频;AC3、DTS的音轨。但是我们也知道DVD载体是DVD光盘,D5一张就有4.7G。显然,直接将DVD文件进行网络传送毫无实际价值可言,将这样的文件打包传到服务器上只会占用服务器的硬盘和大量的网络带宽。还没有多少人的网络带宽可以让他毫不动容地去下载一个7、8GB的文件只为了看两个小时电影,更不要说将它们保存下来,DVD刻录机这样的产品目前也不是一般人能拥有的。
这就需要rip了,将DVD的视频、音频、字幕剥离出来,再经过压缩或者其他处理,然后重新合成成多媒体文件。在更小的文件尺寸上达到DVD的是视听享受。

㈣ 多媒体知识

多媒体知识全接触 教程第一篇 多媒体基本概念

1.多媒体的定义

“多媒体”一词译自英文“Multimedia”,而该词又是由mutiple和media复合而成的。媒体(medium)原有两重含义,一是指存储信息的实体,如磁盘、光盘、磁带、半导体存储器等,中文常译作媒质;二是指传递信息的载体,如数字、文字、声音、图形等,中文译作媒介。所以与多媒体对应的一词是单媒体(Monomedia),从字面上看,多媒体就是由单媒体复合而成的啦。

多媒体技术从不同的角度有着不同的定义。比如有人定义“多媒体计算机是一组硬件和软件设备;结合了各种视觉和听觉媒体,能够产生令人印象深刻的视听效果。在视觉媒体上,包括图形、动画、图像和文字等媒体,在听觉媒体上,则包括语言、立体声响和音乐等媒体。用户可以从多媒体计算机同时接触到各种各样的媒体来源”。还有人定义多媒体是“传统的计算媒体----文字、图形、图像以及逻辑分析方法等与视频、音频以及为了知识创建和表达的交互式应用的结合体”。概括起来就是:多媒体技术,即是计算机交互式综合处理多媒体信息----文本、图形、图像和声音,使多种信息建立逻辑连接,集成为一个系统并具有交互性。简言之,多媒体技术就是具有集成性、实时性和交互性的计算机综合处理声文图信息的技术(这句话的三性可是精髓哦!)。多媒体在我国也有自己的定义,一般认为多媒体技术指的就是能对多种载体(媒介)上的信息和多种存储体(媒介)上的信息进行处理的技术。

2.多媒体的关键技术

由于多媒体系统需要将不同的媒体数据表示成统一的结构码流,然后对其进行变换、重组和分析处理,以进行进一步的存储、传送、输出和交互控制。所以,多媒体的传统关键技术主要集中在以下四类中:数据压缩技术、大规模集成电路(VLSI)制造技术、大容量的光盘存储器(CD-ROM)、实时多任务操作系统。因为这些技术取得了突破性的进展,多媒体技术才得以迅速的发展,而成为像今天这样具有强大的处理声音、文字、图像等媒体信息的能力的高科技技术。

但说到当前要用于互联网络的多媒体关键技术,有些专家却认为可以按层次分为媒体处 理与编码技术、多媒体系统技术、多媒体信息组织与管理技术、多媒体通信网络技术、多媒 体人机接口与虚拟现实技术,以及多媒体应用技术这六个方面。而且还应该包括多媒体同步 技术、多媒体操作系统技术、多媒体中间件技术、多媒体交换技术、多媒体数据库技术、超 媒体技术、基于内容检索技术、多媒体通信中的QoS管理技术、多媒体会议系统技术、多媒 体视频点播与交互电视技术、虚拟实景空间技术等等。

3.一般多媒体系统的组成部分

一般的多媒体系统由如下四个部分的内容组成:

多媒体硬件系统、多媒体操作系统、媒体处理系统工具和用户应用软件。

★ 多媒体硬件系统:包括计算机硬件、声音/视频处理器、多种媒体输入/输出设备及信号转换装置、通信传输设备及接口装置等。其中,最重要的是根据多媒体技术标准而研制生成的多媒体信息处理芯片和板卡、光盘驱动器等。

★ 多媒体操作系统:或称为多媒体核心系统(Multimedia kernel system),具有实时任务调度、多媒体数据转换和同步控制对多媒体设备的驱动和控制,以及图形用户界面管理等。

★ 媒体处理系统工具:或称为多媒体系统开发工具软件,是多媒体系统重要组成部分。

★ 用户应用软件:根据多媒体系统终端用户要求而定制的应用软件或面向某一领域的用户应用软件系统,它是面向大规模用户的系统产品。

第二篇 多媒体计算机的组成

1.多媒体个人机的解释

在多媒体计算机之前,传统的微机或个人机处理的信息往往仅限于文字和数字,只能算是计算机应用的初级阶段,同时,由于人机之间的交互只能通过键盘和显示器,故交流信息的途径缺乏多样性。为了改换人机交互的接口,使计算机能够集声、文、图、像处理于一体,人类发明了有多媒体处理能力的计算机。我们这里重点谈谈个人机(就是现在说的PC啦)。所以现在你该明白,所谓多媒体个人机(Multimedia Personal Computer, MPC)无非就是具有了多媒体处理功能的个人计算机(如早期的586机型),它的硬件结构与一般所用的个人机并无太大的差别,只不过是多了一些软硬件配置而已。一般用户如果要拥有MPC大概有两种途径:一是直接够买具有多媒体功能的PC机;二是在基本的PC机上增加多媒体套件而构成MPC。到奔Ⅱ横行的今天,对计算机厂商和开发人员来说,MPC已经成为一种必须具有的技术规范。

2.多媒体计算机的基本配置(及可选配置)

一般来说,多媒体个人计算机(MPC)的基本硬件结构可以归纳为七部分:

★ 至少一个功能强大、速度快的中央处理器(CPU);

★ 可管理、控制各种接口与设备的配置;

★ 具有一定容量(尽可能大)的存储空间;

★ 高分辨率显示接口与设备;

★ 可处理音响的接口与设备;

★ 可处理图像的接口设备;

★ 可存放大量数据的配置等;

这样提供的配置是最基本MPC的硬件基础,它们构成MPC的主机。除此以外,MPC能扩充的配置还可能包括如下几个方面:

★ 光盘驱动器:包括可重写光盘驱动器(CD-R)、WORM光盘驱动器和CD-ROM驱动器。其中CD-ROM驱动器为MPC带来了价格便宜的650M存储设备,存有图形、动画、图像、声音、文本、数字音频、程序等资源的CD-ROM早已广泛使用,因此现在光驱对广大用户来说已经是必须配置的了。而可重写光盘、WORM光盘价格较贵,目前还不是非常普及。另外,DVD出现在市场上也有些时日了,它的存储量更大,双面可达17GB,是升级换代的理想产品。

★ 音频卡:在音频卡上连接的音频输入输出设备包括话筒、音频播放设备、MIDI合成器、耳机、扬声器等。数字音频处理的支持是多媒体计算机的重要方面,音频卡具有A/D和D/A音频信号的转换功能,可以合成音乐、混合多种声源,还可以外接MIDI电子音乐设备。

★ 图形加速卡:图文并茂的多媒体表现需要分辨率高,而且同屏显示色彩丰富的显示卡的

支持,同时还要求具有Windows的显示驱动程序,并在Windows下的像素运算速度要快。所以现在带有图形用户接口GUI加速器的局部总线显示适配器使得Windows的显示速度大大加快。

★ 视频卡:可细分为视频捕捉卡、视频处理卡、视频播放卡以及TV编码器等专用卡,其功能是连接摄像机、VCR影碟机、TV等设备,以便获取、处理和表现各种动画和数字化视频媒体。

★ 扫描卡:它是用来连接各种图形扫描仪的,是常用的静态照片、文字、工程图输入设备。

★ 打印机接口:用来连接各种打印机,包括普通打印机、激光打印机、彩色打印机等,打印机现在已经是最常用的多媒体输出设备之一了。

★ 交互控制接口:它是用来连接触摸屏、鼠标、光笔等人机交互设备的,这些设备将大大方便用户对MPC的使用。

★ 网络接口:是实现多媒体通信的重要MPC扩充部件。计算机和通信技术相结合的时代已经来临,这就需要专门的多媒体外部设备将数据量庞大的多媒体信息传送出去或接收进来,通过网络接口相接的设备包括视频电话机、传真机、LAN和ISDN等。

3.媒体播放器在WEB中的应用

我们知道,由于声音点播和影视点播应用还没有完全直接集成到现在的Web浏览器中,这就需要一个单独的应用程序来帮助,通常我们使用媒体播放器(Media player)来播放声音和影视。典型的媒体播放器要执行好几个功能,包括解压缩、消除抖动、错误纠正和用户播放等功能。现在可以使用像插件这种技术把媒体播放器的用户接口放在Web客户机的用户界面上,浏览器在当前Web页面上保留屏幕空间,并且由媒体播放器来管理。目前,大多数客户机使用如下几种方法来读取声音和影视文件:

★ 通过Web浏览器把声音/影视从Web服务器传送给媒体播放器;

★ 直接把声音/影视从Web服务器传送给媒体播放器

★ 直接把声音/影视从多媒体流放服务器传送给媒体播放器;

在这个过程中,媒体播放器的主要功能表现在如下四个方面:

★ 解压缩:几乎所有的声音和电视图象都是经过压缩之后存放在存储器中的,因此无论播放来自于存储器或者来自网络上的声音和影视都要解压缩。

★ 去抖动:由于到达接收端的每个声音信息包和电视图象信息包的时延不是一个固定的数值,如果不加任何措施就原原本本地把数据送到媒体播放器播放,听起来就会有抖动的感觉,甚至对声音和电视图象所表达的信息无法理解。在媒体播放器中,限制这种抖动的简单方法是使用缓存技术,就是把声音或者电视图象数据先存放在缓冲存储器中,经过一段延时之后再播放。

★ 错误处理:由于在因特网上往往会出现让人不能接收的交通拥挤,信息包中的部分信息在传输过程中就可能会丢失。如果连续丢失的信息包太多,用户接收的声音和图象质量就不能容忍。采取的办法往往是重传。

★ 用户可控制的接口:这是用户直接控制媒体播放器播放媒体的实际接口。媒体播放器为用户提供的控制功能通常包括声音的音量大小、暂停/重新开始和跳转等等。

第三篇 图像和图形

1.有关色彩的基本常识

我们知道,只要是彩色都可用亮度、色调和饱和度来描述,人眼中看到的任一彩色光都是这三个特征的综合效果。那么亮度、色调和饱和度分别指的是什么呢?

★ 亮度:是光作用于人眼时所引起的明亮程度的感觉,它与被观察物体的发光强度有关;★ 色调:是当人眼看到一种或多种波长的光时所产生的彩色感觉,它反映颜色的种类,是决定颜色的基本特性,如红色、棕色就是指色调;

★ 饱和度:指的是颜色的纯度,即掺入白光的程度,或者说是指颜色的深浅程度,对于同一色调的彩色光,饱和度越深颜色越鲜明或说越纯。通常我们把色调和饱和度通称为色度。 现在你该明白了,亮度是用来表示某彩色光的明亮程度,而色度则表示颜色的类别与深浅程度。除此之外,自然界常见的各种颜色光,都可由红(R)、绿(G)、蓝(B)三种颜色光按不同比例相配而成;同样绝大多数颜色光也可以分解成红、绿、蓝三种色光,这就形成了色度学中最基本的原理----三原色原理(RGB)。

2.目前常见的图形(图像)格式

一般来说,目前的图形(图像)格式大致可以分为两大类:一类为位图;另一类称为描绘类、矢量类或面向对象的图形(图像)。前者是以点阵形式描述图形(图像)的,后者是以数学方法描述的一种由几何元素组成的图形(图像)。一般说来,后者对图像的表达细致、真实,缩放后图形(图像)的分辨率不变,在专业级的图形(图像)处理中运用较多。

在介绍图形(图像)格式前,我们实在有必要先了解一下图形(图像)的一些相关技术指标:分辨率、色彩数、图形灰度。

★ 分辨率:分为屏幕分辨率和输出分辨率两种,前者用每英寸行数表示,数值越大图形(图像)质量越好;后者衡量输出设备的精度,以每英寸的像素点数表示;

★ 色彩数和图形灰度:用位(bit)表示,一般写成2的n次方,n代表位数。当图形(图像)达到24位时,可表现1677万种颜色,即真彩。灰度的表示法类似;

下面我们就通过图形文件的特征后缀名(就是如图.bmp这样的)来逐一认识当前常见的图形文件格式:BMP、DIB、PCP、DIF、WMF、GIF、JPG、TIF、EPS、PSD、CDR、IFF、TGA、PCD、MPT。

★ BMP(bit map picture):PC机上最常用的位图格式,有压缩和不压缩两种形式,该格式可表现从2位到24位的色彩,分辨率也可从480x320至1024x768。该格式在Windows环境下相当稳定,在文件大小没有限制的场合中运用极为广泛。

★ DIB(device independent bitmap):描述图像的能力基本与BMP相同,并且能运行于多种硬件平台,只是文件较大。

★ PCP(PC paintbrush):由Zsoft公司创建的一种经过压缩且节约磁盘空间的PC位图格式,它最高可表现24位图形(图像)。过去有一定市场,但随着JPEG的兴起,其地位已逐渐日落终天了。

★ DIF(drawing interchange formar):AutoCAD中的图形文件,它以ASCII方式存储图形,表现图形在尺寸大小方面十分精确,可以被CorelDraw,3DS等大型软件调用编辑。

★ WMF(Windows metafile format):Microsoft Windows图元文件,具有文件短小、图案造型化的特点。该类图形比较粗糙,并只能在Microsoft Office中调用编辑。

★ GIF(graphics interchange format):在各种平台的各种图形处理软件上均可处理的经过压缩的图形格式。缺点是存储色彩最高只能达到256种。

★ JPG(joint photographics expert group):可以大幅度地压缩图形文件的一种图形格式。对于同一幅画面,JPG格式存储的文件是其他类型图形文件的1/10到1/20,而且色彩数最高可达到24位,所以它被广泛应用于Internet上的homepage或internet上的图片库。

★ TIF(tagged image file format):文件体积庞大,但存储信息量亦巨大,细微层次的信息较多,有利于原稿阶调与色彩的复制。该格式有压缩和非压缩两种形式,最高支持的色彩数可达16M。

★ EPS(encapsulated PostScript):用PostScript语言描述的ASCII图形文件,在PostScript图形打印机上能打印出高品质的图形(图像),最高能表示32位图形(图像)。该格式分为Photoshop EPS格式adobeillustrator EPS和标准EPS格式,其中后者又可以分为图形格式和图像格式。

★ PSD(photoshop standard):Photoshop中的标准文件格式,专门为Photoshop而优化的格式。

★ CDR(coreldraw):CorelDraw的文件格式。另外,CDX是所有CorelDraw应用程序均能使用的图形(图像)文件,是发展成熟的CDR文件。

★ IFF(image file format):用于大型超级图形处理平台,比如AMIGA机,好莱坞的特技大片多采用该图形格式处理。图形(图像)效果,包括色彩纹理等逼真再现原景。当然,该格式耗用的内存外存等的计算机资源也十分巨大。

★ TGA(tagged graphic):是True vision公司为其显示卡开发的图形文件格式,创建时期较早,最高色彩数可达32位。VDA,PIX,WIN,BPX,ICB等均属其旁系。

★ PCD(Photo CD):由KODAK公司开发,其它软件系统对其只能读取。

★ MPT(macintosh paintbrush)或MAC:Macintosh机所使用的灰度图形(图像)模式,在macintosh paintbrush中使用,其分辨率只能是720x567。

除此之外,Macintosh机专用的图形(图像)格式还有PNT、PICT、PICT2等。
第四篇 声音(音频)

1.多媒体中的音频处理技术

多媒体涉及到多方面的音频处理技术,如:音频采集、语音编码/解码、文一-语转换、音乐合成、语音识别与理解、音频数据传输、音频一-视频同步、音频效果与编辑等。其中数字音频是个关键的概念,它指的是一个用来表示声音强弱的数据序列,它是由模拟声音经抽样(即每隔一个时间间隔在模拟声音波形上取一个幅度值)量化和编码(即把声音数据写成计算机的数据格式)后得到的。计算机数字CD、数字磁带(DAT)中存储的都是数字声音。模拟一-数字转换器把模拟声音变成数字声音;数字一-模拟转换器可以恢复出模拟来的声音。

一般来讲,实现计算机语音输出有两种方法:一是录音/重放,二是文一-语转换。第二种方法是基于声音合成技术的一种声音产生技术,它可用于语音合成和音乐合成。而第一种方法是最简单的音乐合成方法,曾相继产生了应用调频(FM)音乐合成技术和波形表(wavetable)音乐合成技术。

2.乐器数字接口MIDI的概念

现在我们用的最多的音频名词之一MIDI(musical instrument digital interface)是作为“乐器数字接口”的缩写出现的,并用它来泛指数字音乐的国际标准。由于它定义了计算机音乐程序、合成器及其他电子设备交换信息和电子信号的方式,所以可以解决不同电子乐器之间不兼容的问题。另外,标准的多媒体PC平台能够通过内部合成器或连接到计算机MIDI端口的外部合成器播放MIDI文件,利用MIDI文件演奏音乐,所需的存储量最少。

至于MIDI文件,是指存放MIDI信息的标准文件格式。MIDI文件中包含音符、定时和多达16个通道的演奏定义。文件包括每个通道的演奏音符信息:键通道号、音长、音量和力度(击键时,键达到最低位置的速度)。由于MDDI文件是一系列指令,而不是波形,它需要的磁盘空间非常少;并且现装载MIDI文件比波形文件容易的多。这样,在设计多媒体节目时,我们可以指定什么时候播放音乐,将有很大的灵活性。在以下几种情况下,使用MIDI文件比使用波形音频更合适:需要播放长时间高质量音乐,如想在硬盘上存储的音乐大于4分钟,而硬盘又没有足够的存储容量;需要以音乐作背景音响效果,同时从CD-ROM中装载其它数据,如图像、文字的显示;需要以音乐作背景音响效果,同时播放波形音频或实现文一语转换,以实现音乐和语音的同时输出。

3.常见的声音文件格式

再接下来我们介绍七种目前最为流行的多媒体声音文件效果让你认识认识:

★ WAVE,扩展名为WAV:该格式记录声音的波形,故只要采样率高、采样字节长、机器速度快,利用该格式记录的声音文件能够和原声基本一致,质量非常高,但这样做的代价就是文件太大。

★ MOD,扩展名MOD、ST3、XT、S3M、FAR、669等:该格式的文件里存放乐谱和乐曲使用的各种音色样本,具有回放效果明确,音色种类无限等优点。但它也有一些致命弱点,以至于现在已经逐渐淘汰,目前只有MOD迷及一些游戏程序中尚在使用。

★ MPEG-3,扩展名MP3:现在最流行的声音文件格式,因其压缩率大,在网络可视电话通信方面应用广泛,但和CD唱片相比,音质不能令人非常满意。

★ Real Audio,扩展名RA:这种格式真可谓是网络的灵魂,强大的压缩量和极小的失真使其在众多格式中脱颖而出。和MP3相同,它也是为了解决网络传输带宽资源而设计的,因此主要目标是压缩比和容错性,其次才是音质。

★ Creative Musical Format,扩展名CMF:Creative公司的专用音乐格式,和MIDI差不多,只是音色、效果上有些特色,专用于FM声卡,但其兼容性也很差。

★ CD Audio音乐CD,扩展名CDA:唱片采用的格式,又叫“红皮书”格式,记录的是波形流,绝对的纯正、HIFI。但缺点是无法编辑,文件长度太大。

★ MIDI,扩展名MID:目前最成熟的音乐格式,实际上已经成为一种产业标准,其科学性、兼容性、复杂程度等各方面当然远远超过本文前面介绍的所有标准(除交响乐CD、Unplug CD外,其它CD往往都是利用MIDI制作出来的),它的General MIDI就是最常见的通行标准。作为音乐工业的数据通信标准,MIDI能指挥各音乐设备的运转,而且具有统一的标准格式,能够模仿原始乐器的各种演奏技巧甚至无法演奏的效果,而且文件的长度非常小。

总之,如果有专业的音源设备,那么要听同一首曲子的HIFI程度依次是:

原声乐器演奏 〉 MIDI 〉 CD唱片 〉 MOD 〉 所谓声卡上的MIDI 〉 CMF,而MP3及RA要看它的节目源是采用MIDI、CD还是MOD了。

另外,在多媒体材料中,存储声音信息的文件格式也是需要认识的,共有:

WAV文件、VOC文件、MIDI文件、RMI文件、PCM文件以及AIF文件等若干种。

★ WAV文件:Microsoft公司的音频文件格式,它来源于对声音模拟波形的采样。用不同的采样频率对声音的模拟波形进行采样可以得到一系列离散的采样点,以不同的量化位数(8位或16位)把这些采样点的值转换成二进制数,然后存入磁盘,这就产生了声音的WAV文件,即波形文件。Microsoft Sound System软件Sound Finder可以转换AIF SND和VOD文件到WAV格式。

★ VOC文件:Creative公司波形音频文件格式,也是声霸卡(sound blaster)使用的音频文件格式。每个VOC文件由文件头块(header block)和音频数据块(data block)组成。文件头包含一个标识版本号和一个指向数据块起始的指针。数据块分成各种类型的子块。如声音数据静音标识ASCII码文件重复的结果重复以及终止标志,扩展块等。

★ MIDI文件:Musical Instrument Digital Interface(乐器数字接口)的缩写。它是由世界上主要电子乐器制造厂商建立起来的一个通信标准,以规定计算机音乐程序 电子合成器和其它电子设备之间交换信息与控制信号的方法。MIDI文件中包含音符定时和多达16个通道的乐器定义,每个音符包括键通道号持续时间音量和力度等信息。所以MIDI文件记录的不是乐曲本身,而是一些描述乐曲演奏过程中的指令。

★ RMI文件:Microsoft公司的MIDI文件格式,它可以包括图片标记和文本。

★ PCM文件:模拟音频信号经模数转换(A/D变换)直接形成的二进制序列,该文件没有附加的文件头和文件结束标志。在声霸卡提供的软件中,可以利用VOC-HDR程序,为PCM格式的音频文件加上文件头,而形成VOC格式。Windows的Convert工具可以把PCM音频格式的文件转换成Microsoft的WAV格式的文件。

★ AIF文件:Apple计算机的音频文件格式。Windows的Convert工具同样可以把AIF格式的文件换成Microsoft的WAV格式的文件。

第五篇 视频(动画)

1.动态图像的组成

动态图像,包括动画和视频信息,是连续渐变的静态图像或图形序列,沿时间轴顺次更换显示,从而构成运动视感的媒体。当序列中每帧图像是由人工或计算机产生的图像时,我们常称作动画;当序列中每帧图像是通过实时摄取自然景象或活动对象时,我们常成为影像视频,或简称为视频。动态图像演示常常与声音媒体配合进行,二者的共同基础是时间连续性。一般意义上谈到视频时,往往也包含声音媒体。但在这里,视频(动画)特制不包含声音媒体的动态图像。

2.动画的定义

什么是动画?所谓动画,就是通过以每秒15到20帧的速度(相当接近于全运动视频帧速)顺序地播放静止图像帧以产生运动的错觉。因为眼睛能足够长时间地保留图像以允许大脑以连续的序列把帧连接起来,所以能够产生运动的错觉。我们可以通过在显示时改变图像来生成简单的动画。最简单的方法是在两个不同帧之间的反复。这种方法对于指示“是”或“不是”的情况来说是很好的解决方法。另一种制作动画的方法是以循环的形式播放几个图像帧以生成旋转的效果,并且可以依靠计算时间来获得较好的回放,或用记时器来控制动画。

3.常见的视频文件格式

视频信息在计算机中存放的格式有很多,目前最流行的两种格式是:

苹果公司的Quicktime和微软的AVI。

★ Quicktime:是苹果公司采用的面向最终用户桌面系统的低成本、全运动视频的方式,现在在软件压缩和解压缩中也开始采用这种方式了。其向量量化是Quicktime软件的压缩技术之一,它在最高为30帧/秒下提供的视频分辨率是320x240,其压缩率能从25到200。

★ AVI:类似于Quicktime,是微软公司采用的音频视频交错格式,也是一种桌面系统上的低成本、低分辨率的视频格式。AVI可在160x120的视窗中以15帧/秒回放视频,并可带有8位的声音,也可以在VGA或超级VGA监视器上回放。AVI很重要的一个特点是可伸缩性,使用AVI算法时的性能依赖于与它一起使用的基础硬件。

第六篇 多媒体数据压缩和编码技术标准

目前,被国际社会广泛认可和应用的通用压缩编码标准大致有如下四种:

H.261、JPEG、 MPEG和DVI。

★ H.261:由CCITT(国际电报电话咨询委员会)通过的用于音频视频服务的视频编码解码器(也称Px64标准),它使用两种类型的压缩:一帧中的有损压缩(基于DCT)和用于帧间压缩的无损编码,并在此基础上使编码器采用带有运动估计的DCT和DPCM(差分脉冲编码调制)的混合方式。这种标准与JPEG及MPEG标准间有明显的相似性,但关键区别是它是为动态使用设计的,并提供完全包含的组织和高水平的交互控制。

★ JPEG:全称是Joint Photogragh Coding Experts Group(联合照片专家组),是一种基于DCT的静止图像压缩和解压缩算法,它由ISO(国际标准化组织)和CCITT(国际电报电话咨询委员会)共同制定,并在1992年后被广泛采纳后成为国际标准。它是把冗长的图像信号和其它类型的静止图像去掉,甚至可以减小到原图像的百分之一(压缩比100:1)。但是在这个级别上,图像的质量并不好;压缩比为20:1时,能看到图像稍微有点变化;当压缩比大于20:1时,一般来说图像质量开始变坏。

★ MPEG:是Moving Pictures Experts Group(动态图像专家组)的英文缩写,实际上是指一组由ITU和ISO制定发布的视频、音频、数据的压缩标准。它采用的是一种减少图像冗余信息的压缩算法,它提供的压缩比可以高达200:1,同时图像和音响的质量也非常高。现在通常有三个版本:MPEG-1、MPEG-2、MPEG-4以适用于不同带宽和数字影像质量的要求。它的三个最显着优点就是兼容性好、压缩比高(最高可达200:1)、数据失真小。

★ DVI:其视频图像的压缩算法的性能与MPEG-1相当,即图像质量可达到VHS的水平,压缩后的图像数据率约为1.5Mb/s。为了扩大DVI技术的应用,Intel公司最近又推出了DVI算法的软件解码算法,称为Indeo技术,它能将为压缩的数字视频文

㈤ 对图像进行基于DCT压缩,

我正在做关于JPEG压缩的论文,希望得到用MATLAB编写基于离散正弦变换的图像压缩%计算二维DCT,矩阵T及其转置是DCT函数P1*X*P2的参数
B=blkproc(I,[8,

㈥ 基于dct的jpeg编码方法有哪些步骤

一.JPEG压缩过程

JPEG压缩分四个步骤实现:
1.颜色模式转换及采样;
2.DCT变换;
3.量化;
4.编码。
二.
1.颜色模式转换及采样 RGB色彩系统是我们最常用的表示颜色的方式。JPEG采用的是YCbCr色彩系统。想要用JPEG基本压缩法处理全彩色图像,得先把RGB颜色模式图像数据,转换为YCbCr颜色模式的数据。Y代表亮度,Cb和Cr则代表色度、饱和度。通过下列计算公式可完成数据转换。 Y=0.2990R+0.5870G+0.1140B Cb=-0.1687R-0.3313G+0.5000B+128 Cr=0.5000R-0.4187G-0.0813B+128 人类的眼晴对低频的数据比对高频的数据具有更高的敏感度,事实上,人类的眼睛对亮度的改变也比对色彩的改变要敏感得多,也就是说Y成份的数据是比较重要的。既然Cb成份和Cr成份的数据比较相对不重要,就可以只取部分数据来处理。以增加压缩的比例。JPEG通常有两种采样方式:YUV411和YUV422,它们所代表的意义是Y、Cb和Cr三个成份的数据取样比例。
2.DCT变换 DCT变换的全称是离散余弦变换(Discrete Cosine Transform),是指将一组光强数据转换成频率数据,以便得知强度变化的情形。若对高频的数据做些修饰,再转回原来形式的数据时,显然与原始数据有些差异,但是人类的眼睛却是不容易辨认出来。 压缩时,将原始图像数据分成8*8数据单元矩阵,例如亮度值的第一个矩阵内容如下:
JPEG将整个亮度矩阵与色度Cb矩阵,饱和度Cr矩阵,视为一个基本单元称作MCU。每个MCU所包含的矩阵数量不得超过10个。例如,行和列采样的比例皆为4:2:2,则每个MCU将包含四个亮度矩阵,一个色度矩阵及一个饱和度矩阵。 当图像数据分成一个8*8矩阵后,还必须将每个数值减去128,然后一一代入DCT变换公式中,即可达到DCT变换的目的。图像数据值必须减去128,是因为DCT转换公式所接受的数字范围是在-128到+127之间。 DCT变换公式:
x,y代表图像数据矩阵内某个数值的坐标位置f(x,y)代表图像数据矩阵内的数个数值u,v代表DCT变换后矩阵内某个数值的坐标位置F(u,v)代表DCT变换后矩阵内的某个数值 u=0 且 v=0 c(u)c(v)=1/1.414 u>0 或 v>0 c(u)c(v)=1 经过DCT变换后的矩阵数据自然数为频率系数,这些系数以F(0,0)的值最大,称为DC,其余的63个频率系数则多半是一些接近于0的正负浮点数,一概称之为AC。
3、量化 图像数据转换为频率系数后,还得接受一项量化程序,才能进入编码阶段。量化阶段需要两个8*8矩阵数据,一个是专门处理亮度的频率系数,另一个则是针对色度的频率系数,将频率系数除以量化矩阵的值,取得与商数最近的整数,即完成量化。 当频率系数经过量化后,将频率系数由浮点数转变为整数,这才便于执行最后的编码。不过,经过量化阶段后,所有数据只保留整数近似值,也就再度损失了一些数据内容,JPEG提供的量化表如下:

4、编码 Huffman编码无专利权问题,成为JPEG最常用的编码方式,Huffman编码通常是以完整的MCU来进行的。 编码时,每个矩阵数据的DC值与63个AC值,将分别使用不同的Huffman编码表,而亮度与色度也需要不同的Huffman编码表,所以一共需要四个编码表,才能顺利地完成JPEG编码工作。 DC编码 DC是彩采用差值脉冲编码调制的差值编码法,也就是在同一个图像分量中取得每个DC值与前一个DC值的差值来编码。DC采用差值脉冲编码的主要原因是由于在连续色调的图像中,其差值多半比原值小,对差值进行编码所需的位数,会比对原值进行编码所需的位数少许多。例如差值为5,它的二进制表示值为101,如果差值为-5,则先改为正整数5,再将其二进制转换成1的补数即可。所谓1的补数,就是将每个Bit若值为0,便改成1;Bit为1,则变成0。差值5应保留的位数为3,下表即列出差值所应保留的Bit数与差值内容的对照。
在差值前端另外加入一些差值的霍夫曼码值,例如亮度差值为5(101)的位数为3,则霍夫曼码值应该是100,两者连接在一起即为100101。下列两份表格分别是亮度和色度DC差值的编码表。根据这两份表格内容,即可为DC差值加上霍夫曼码值,完成DC的编码工作。
AC编码 AC编码方式与DC略有不同,在AC编码之前,首先得将63个AC值按Zig-zag排序,即按照下图箭头所指示的顺序串联起来。
63个AC值排列好的,将AC系数转换成中间符号,中间符号表示为RRRR/SSSS,RRRR是指第非零的AC之前,其值为0的AC个数,SSSS是指AC值所需的位数,AC系数的范围与SSSS的对应关系与DC差值Bits数与差值内容对照表相似。 如果连续为0的AC个数大于15,则用15/0来表示连续的16个0,15/0称为ZRL(Zero Rum Length),而(0/0)称为EOB(Enel of Block)用来表示其后所剩余的AC系数皆等于0,以中间符号值作为索引值,从相应的AC编码表中找出适当的霍夫曼码值,再与AC值相连即可。 例如某一组亮度的中间符为5/3,AC值为4,首先以5/3为索引值,从亮度AC的Huffman编码表中找到1111111110011110霍夫曼码值,于是加上原来100(4)即是用来取[5,4]的Huffman编码1111111110011110100,[5,4]表示AC值为4的前面有5个零。 由于亮度AC,色度AC霍夫曼编码表比较长,在此省略去,有兴趣者可参阅相关书籍。 实现上述四个步骤,即完成一幅图像的JPEG压缩。 参考资料[1] 林福宗 《图像文件格式(上)——Windows 编程》,清华大学出版社, 1996年[2] 李振辉、李仁各编着,《探索图像文件的奥秘》,清华大学出版社,1996年[3] 黎洪松、成实译《JPEG静止数据压缩标准》,学苑出版社,1996年

希望有点帮助

㈦ dct变换本身能不能压缩数据,为什么

dct变换本身不能压缩数据,以图像处理为例,dct变换只是将数据从空间域转换到频率域。但是dct变换之后的数据再用其他编码方法进行压缩可以实现很高的压缩比。

㈧ 1.简要地说明利用DCT变换进行图像压缩的方法。 2.简要地说明利用傅里叶变换进行图像去噪的方法。

图像包含空间2维信息。DCT变换就是将空间2维信息变换到频域上。在频域上,可以利用人眼的视觉特性,进行压缩处理。

图像噪声包含高频信号分量。通过傅里叶变换,将图像变换到频域上。在频域上通过低通滤波,可以滤到高频噪声。

基本思路都很类似。即,如果一些数据在一个域里面不好处理,就把它变换到等效的另外一个域里处理。

㈨ 请问有关\"手机中的图像压缩技术\"这个题目,谁有资料可以告诉我一下么谢谢!

近年来,随着新型传感技术的发展,遥感影像的时间、空间和光谱分辨率不断提高,随着航天遥感技术的迅速发展,相应的数据规模呈几何级数增长。遥感数据量日益庞大,有限的信道容量与传输大量遥感数据的需求之间的矛盾日益突出给数据的传输和存储带来了极大的困难。数据压缩技术作为解决这一问题的有效途径,在遥感领域越来越受到重视,尤其对于遥感图象数据来说。一般说来,图象分辨率越高,相邻采样点的相关性越高,数据水分也越大。对遥感数据进行压缩,有利于节省通信信道,提高信息的传输速率;数据压缩之后有利于实现保密通讯,提高系统的整体可靠性。

一般地,图像压缩技术可分为两大类:无损压缩技术和有损(率失真)压缩技术。无损压缩利用数据的统计冗余进行压缩,可完全恢复原始数据而不引入任何失真,但压缩率受到数据统计冗余度的理论限制,一般为2:1到5:1。这类方法广泛用于文本数据、程序和特殊应用场合的图像数据(如指纹图像、医学图像等)的压缩。由于压缩比的限制,仅使用无损压缩方法不可能解决图像和数字视频的存储和传输问题。有损压缩方法利用了人类视觉对图像中的某些频率成分不敏感的特性,允许压缩过程中损失一定的信息;虽然不能完全恢复原始数据,但是所损失的部分对理解原始图像的影响较小,却换来了大得多的压缩比。有损压缩广泛应用于语音、图像和视频数据的压缩。在多媒体应用中常用的压缩方法有;PCM(脉冲编码调制)、预测编码、变换编码(主成分变换或K-L变换、离散余弦变换MT等)、插值和外推法(空域亚采样、时域亚采样、自适应)、统计编码(Huffman编码、算术编码、Shannon-Fano编码、行程编码等)、矢量量化和子带编码等;混合编码是近年来广泛采用的方法。新一代的数据压缩方法,如基于模型的压缩方法、分形压缩和小波变换方法等也己经接近实用化水平。

在遥感信息处理领域,根据信息处理的阶段性,遥感图像压缩又可分为星上无损压缩、星上有损压缩和地面遥感数据压缩。为了最大限度地保持遥感传感器所获取的目标信息,星上压缩一般采用无损压缩方法。但当信息量大到无损压缩难以满足要求时,也考虑失真量较小的有损压缩,即高保真压缩方法。同时,为了适应遥感数据采样率较高的特点,星上压缩的实时性要求较高,因而要求压缩方法计算简单,硬件复杂度低。

二.目前数据压缩方法标准概述

经常使用的无损压缩方法有Shannon-Fano编码法、Huffman编码法、游程(Run-length)编码法、LZW编码法(Lempel-Ziv-Welch)和算术编码法等。

数据压缩研究中应注意的问题是,首先,编码方法必须能用计算机或VLSI硬件电路高速实现;其次,要符合当前的国际标准。

下面介绍三种流行的数据压缩国际标准。

1、JPEG-静止图像压缩标准

这是一个适用于彩色和单色多灰度或连续色调静止数字图像的压缩标准。它包括基于DPCM(差分脉冲编码调制、DCT(离散余弦变换)和Huffman编码的有损压缩算法两个部分。前者不会产生失真,但压缩此很小;后一种算法进行图像压缩是信息虽有损失但压缩比可以很大。 JPEG标准实际上有三个范畴:

1)基本顺序过程Baseline Sequential processes) 实现有损图像压缩,重建图像质量达到人眼难以观察出来的要求。采用的是8x8像素自适应DCT算法、量化及Huffman型的墒编码器。

2)基于DCT的扩展过程(Extended DCT Based Process) 使用累进工作方式,采用自适应算术编码过程。

3)无失真过程(Losslesss Process)采用预测编码及Huffman编码(或算术编码),可保证重建图像数据与原始图像数据完全相同。

其中JPEG有以下五种方法:

(l)JPEG算法

基本JPEG算法操作可分成以下三个步骤:通过离散余弦变换(DCT)去除数据冗余;使用量化表对以DCT系数进行量化,量化表是根据人类视觉系统和压缩图像类型的特点进行优化的量化系数矩阵;对量化后的DCT系数进行编码使其熵达到最小,熵编码采用Huffman可变字长编码。(2)离散余弦变换(3)量 化

(4)游程编码(5)熵编码

2、MPEG-运动图像压缩编码

MPEG(Moving Pictures Experts Group)标准分成两个阶段:第一个阶段(MPEG-I)是针对传输速率为 lMb/s到l.5Mb/s的普通电视质量的视频信号的压缩;第二个阶段(MPEG-2)目标则是对每秒30帧的720x572分辨率的视频信号进行压缩;在扩展模式下,MPEG-2可以对分辨率达1440Xl152高清晰度电视(HDTV)的信号进行压缩。但是MPEG压缩算法复杂、计算量大,其实现一般要专门的硬件支持。

MPEG视频压缩算法中包含两种基本技术:一种是基于l6x16子块的运动补偿技术,用来减少帧序列的时域冗余;另一种是基于DCT的压缩,用于减少帧序列的空域冗余,在帧内压缩及帧间预测中均使用了DCT变换。运动补偿算法是当前视频图像压缩技术中使用最普遍的方法之一。

3、 H.261-视频通信编码标准

电视电话/会议电视的建议标准H.261常称为Px64K标准,其中P是取值为 1到30的可变参数;P=l或2时支持四分之一中间格式(QCIF:Quarter Cmmon Intermedia Format)的帧率较低的视频电话传输;P>=6时支持通用中间格式(CIF:Common Intermediate Format)的帧率较高的电视会议数据传输。Px64K视频压缩算法也是一种混合编码方案。

三.遥感影像数据压缩的有效方法――小波压缩

1.针对高分辨率遥感影像,采用先进的图象压缩技术,实现对遥感影像的高保真快速压缩,以解决大规模影像的传输和存储问题。近年来,随着新型传感技术的发展,遥感影像的时间、空间和光谱分辨率不断提高,相应的数据规模呈几何级数增长,给数据的传输和存储带来了极大的困难。一般说来,图象分辨率越高,相邻采样点的相关性越高,数据水分也越大。对遥感数据进行压缩,有利于节省通信信道,提高信息的传输速率;数据压缩之后有利于实现保密通讯,提高系统的整体可靠性随着INTERNET连到千家万户,遥感图象正在逐渐成为信息传递的重要媒介。目前大多使用小波压缩处理遥感图像数据。

2 小波分析基本理论及其在图像压缩中的应用

与傅里叶变换相似,小波变换是一种同时具有时—频二维分辨率的变换。其优于傅氏变换之处在于它具有时域和频域“变焦距”特性,十分有利于信号的精细分析。第一个正交小波基是Harr于1910年构造的;但Harr小波基是不连续的。到80年代,Meyer, Daubechies等人从尺度函数的角度出发构造出了连续正交小波基。1989年,Mallat等人在前人大量工作的基础上提出多尺度分析的概念和基于多尺度分析的小波基构造方法,将小波正交基的构造纳入统一的框架之中,使小波分析成为一种实用的信号分析工具。
该方法先对遥感图像进行小波分解,然后以纹理复杂程度作为区域重要性度量,通过对纹理复杂的重要区域进行标量编码来保证恢复图像的质量,通过对平坦区(即不重要区)进行矢量编码来提高压缩比。实验结果表明该方法具有压缩率较高,图像恢复质量好,速度快等优点,十分适合遥感数据的高保真压缩。

小波变换在压缩中提供了如下优点:(1) 多尺度分解提供了不同尺度下图像的信息,并且变换后的能量大部分集中在低频部分,方便了我们对不同尺度下的小波系数分别设计量化编码方案,在提高图像压缩比的情况下保持好的视觉效果和较高的PSNR。(2) 小波分解和重构算法是循环使用的,易于硬件实现.

JPEG的8×8分块压缩方法压缩纹理复杂的块时恢复误差较大,具有比较明显的方块效应,而基于小波变换的图像压缩方法较好地克服了方块效应的影响。通过对不同区域采用不同编码方法,可以较好地保持原图的纹理信息,并达到较高的压缩比.

3. 自适应标量、矢量混合量化编码方案

基于小波分解的图像压缩方法的一个重要因素是量化方案的选择。一般说来,量化方法分为标量量化和矢量量化两种。近年来,人们开始研究将标量、矢量量化相结合的方法,以同时获取较高的压缩比、恢复质量和时间性能,这是图像压缩技术的一个重要发展方向。
标量量化的关键是去相关和编码。目前主要的去相关技术是预测方法,如DPCM预测;而编码仍以熵编码为主。标量量化的特点是可保持较高的图像恢复质量,但压缩率一般较低。目前最有效的基于小波分解的矢量量化方法有法国M. Barlaud等人提出的PLVQ塔式格型矢量量化方法和美国J. M. Shapiro提出的EZW方法。这两种方法编码效率较高,但计算非常复杂,不能适用于实时性要求较高的场合。
本文提出的编码方案对图像小波细节子图划分为4×4的块,采用块内的方差作为块的纹理复杂度和重要性度量,对纹理复杂的重要块用较多的位进行编码,而对于较平坦的区域用较少的位进行编码。这实际上相当于将各块的元素组成一个矢量,对不重要的子块采用矢量编码方案,而对重要子块采用标量编码,使得各子块的恢复误差大致平衡。
本压缩方法的具体步骤如下。
(1) 对图像进行3层小波分解,对LL3子图进行熵编码,对HH1不编码(解码时以0填充)。
(2) 把小波分解图的其它各细节子图按4×4块划分,设定阈值0<T0<T1<T2。将方差小于T0的块划分为平坦区;方差大于T0小于T1的块划分为次平坦区;方差大于T1小于T2的块划分为次纹理区;方差大于T2的块划分为纹理区。
(3) 按各块在图中的位置进行块的类别编码。由于块的类别数为4,采用两位编码。对不同类别的块采用下述编码方案:
● 对于平坦区,假设其均值为0,可认为块中所有元素均为0;
● 对于次平坦区,用1位表示整个块的均值,对于块中每个元素再各用1位进行编码,即块中大于均值的元素对应码号为1,否则对应码号为0;
● 对于次纹理区,用2位表示整个块的均值,对于块中每个元素再各用2位进行编码,把块中各元素值对应到0—3这4个码号上去;
● 对于纹理区,用6位表示整个块的均值,用6位表示块内方差,对块中每个元素再各用5位进行编码,把块中各元素值对应到0—31这32个码号上去。
(4) 对上述结果进行算术编码。
上述算法对于原图4×4块的128位数据,平坦区只用2位编码,次平坦区用19位编码,次纹理区用36位编码,纹理区用2+16×5+6+6=94位编码。

四. 算法关键问题

4.1 小波基的选取

多尺度分析中小波基的选择注意5个方面的因素。我们选择了4组小波基对应的二次镜面滤波器(QMF)研究它们的性质: (1) Battle和Lemarie的27-系数滤波器(简称B-L小波);(2) I. Daubechies的4-系数滤波器(简称D-4小波);(3) I. Daubechies的20-系数滤波器(简称D-20小波);(4) Antonini的一组双正交小波基对应的滤波器。
(1) 正交性。用正交小波基由多尺度分解得到的各子带数据分别落在相互正交的L2(R2)的子空间中,使各子带数据相关性减小。但能准确重建的、正交的、线性相位、有限冲击响应滤波器组是不存在的,此时一般放宽正交性条件为双正交。
(2) 支撑集。为了得到有限长度的滤波器组h(n),g(n);避免滤波过程中的截断误差,要求小波基是紧支集的。

(3) 对称性。对称滤波器组具有两个优点:(1)人类的视觉系统对边缘附近对称的量化误差较非对称误差更不敏感;(2)对称滤波器组具有线性相位特性,对图像边缘作对称边界扩展时,重构图像边缘部分失真较小,有利于复杂特性的分析(如序列目标检测和分类)〔9〕。

(4) 规则性(Regularity)。

(5) 消失矩阶数。

可见,本系统采用的双正交小波基具有良好的性能。

4.2 阈值的选取

本方法的一个关键因素是3个阈值T0,T1和T2的选取。直观地说,3个阈值越大,压缩比越高,而图像恢复质量越差。另外,根据人类的视觉生理、心理特点以及实验结果,不同级别的小波分解系数所含的能量是不同的,因而在图像重构时其重要性也有差异,应区别对待。级别越高,小波系数所含能量越大,量化应越精细。在矢量编码方案中,一般采取级别高的小波子图矢量维数低就是这个道理。通过对不同级别的子图采用不同的阈值可以实现对不同级别子图的区别对待,即级别越高,阈值越小。
进一步,上述3个阈值的选取有两条途径: 一是由用户根据需要交互地给出,而由系统给出一个较优的缺省值。通过对图遥感图像进行实验可以获得各阈值与压缩系统性能指标PSNR和CR(峰值信噪比和压缩比)的关系。

另一种方法是通过对小波分解子图进行统计分析后自适应获得,由前面的讨论我们认为这是不必要的,理由有二: (1) 不同阈值的选取以及同一设定对不同图像造成的压缩性能影响不太大;(2) 自适应选取方法时间性能大大降低,不适合于实时性要求较高的场合。

4.3 算法的实时性问题

目前小波分解已经有快速算法,并可用硬件实现,使研制基于小波分解的实时图像压缩技术成为可能,这对于星上数据压缩具有十分重要的意义。为了提高编码过程的速度,我们没有采用一般用于度量数据能量的方差指标,而代之以4×4子块的块内数据变化范围(即最大最小值之差),从而减少了一次对块中所有元素的扫描,且避免了求方差时的乘法运算,只需作16次浮点数比较(即减法)操作,缩短了编码时间,而图像恢复质量基本没有下降。
另外,对于多波段遥感数据,我们先对它们进行K-L变换,然后对各K-L变换子图使用上述方法进行压缩,效果良好。

4.4 实验结果分析

以上方法在保持较高的保真度情况下压缩比远高于无损压缩,而压缩比和PSNR值均优于JPEG方法。显然,在性能基本不变的情况下,使用变化范围的方法速度要快约40%。该方法在多波段遥感数据的高保真压缩方面也具有良好的效果。

五.图象压缩方法比较:

与现有的彩色序列图象压缩与解压算法相比,我们的算法有了很大的改进。根据遥感图像局部相关性较弱、纹理复杂丰富的特点,提出了基于小波分析理论的自适应标量、矢量混合量化压缩方法。该方法根据遥感图像小波变换后高频子图的局部块纹理强弱将这些块划分为4类,对平坦块进行高倍压缩,对纹理块进行高保真压缩,使各块的恢复误差大致平衡。其主要特点是避免了矢量编码过程中的码书训练和码书搜索,因而时间性能好,并且对单幅图像的压缩比和峰值信噪比(PSNR)优于JPEG方法。此方法与K-L变换去波段相关技术相结合,应用于多波段遥感图像压缩领域,收到了良好的效果。

㈩ 多媒体压缩标准有哪些

H.261:由CCITT(国际电报电话咨询委员会)通过的用于音频视频服务的视频编码解码器(也称Px64标准),它使用两种类型的压缩:一帧中的有损压缩(基于DCT)和用于帧间压缩的无损编码,并在此基础上使编码器采用带有运动估计的DCT和DPCM(差分脉冲编码调制)的混合方式。这种标准与JPEG及MPEG标准间有明显的相似性,但关键区别是它是为动态使用设计的,并提供完全包含的组织和高水平的交互控制。
JPEG:全称是Joint Photogragh Coding Experts Group(联合照片专家组),是一种基于DCT的静止图像压缩和解压缩算法,它由ISO(国际标准化组织)和CCITT(国际电报电话咨询委员会)共同制定,并在1992年后被广泛采纳后成为国际标准。它是把冗长的图像信号和其它类型的静止图像去掉,甚至可以减小到原图像的百分之一(压缩比100:1)。但是在这个级别上,图像的质量并不好;压缩比为20:1时,能看到图像稍微有点变化;当压缩比大于20:1时,一般来说图像质量开始变坏。
MPEG:是Moving Pictures Experts Group(动态图像专家组)的英文缩写,实际上是指一组由ITU和ISO制定发布的视频、音频、数据的压缩标准。它采用的是一种减少图像冗余信息的压缩算法,它提供的压缩比可以高达200:1,同时图像和音响的质量也非常高。现在通常有三个版本:MPEG-1、MPEG-2、MPEG-4以适用于不同带宽和数字影像质量的要求。它的三个最显着优点就是兼容性好、压缩比高(最高可达200:1)、数据失真小。
DVI:其视频图像的压缩算法的性能与MPEG-1相当,即图像质量可达到VHS的水平,压缩后的图像数据率约为1.5Mb/s。

热点内容
如何在服务器里做算 发布:2025-09-20 08:12:33 浏览:1000
易游源码 发布:2025-09-20 08:12:18 浏览:460
qq密码破解器怎么用 发布:2025-09-20 08:10:58 浏览:250
代谢数据库 发布:2025-09-20 07:46:06 浏览:11
b612存储位置 发布:2025-09-20 07:37:56 浏览:619
党政网是什么服务器 发布:2025-09-20 07:33:35 浏览:8
网易邮箱上传插件 发布:2025-09-20 07:21:09 浏览:232
在哪里看自己设置的qq密码 发布:2025-09-20 07:18:54 浏览:332
lg电视密码如何解锁 发布:2025-09-20 06:51:34 浏览:870
电信宽带代理服务器地址 发布:2025-09-20 06:26:31 浏览:327