当前位置:首页 » 文件管理 » 并发处理和缓存

并发处理和缓存

发布时间: 2023-02-05 06:01:36

‘壹’ 如何解决高并发场景下,缓存冷启动导致mysql负载过高,甚至瞬间被打死的问题

由于mysql是一个连接给一个线程,当并发高的时候,每秒需要几百个甚至更多的线程,其中创建和销毁线程还好说,大不了多耗费点内存,线程缓存命中率下降还有创建销毁线程的性能增加问题---这个问题不是特别大,重点是mysql底层瞬间处理这几百个线程提交的sql(有时候一个页面会有10多条sql,cpu一次只能处理一条sql)会导致cpu的上下文切换,性能抖动,然后性能下降。

‘贰’ 如何处理大量数据并发操作

处理大量数据并发操作可以采用如下几种方法:

1.使用缓存:使用程序直接保存到内存中。或者使用缓存框架: 用一个特定的类型值来保存,以区别空数据和未缓存的两种状态。

2.数据库优化:表结构优化;SQL语句优化,语法优化和处理逻辑优化;分区;分表;索引优化;使用存储过程代替直接操作。

3.分离活跃数据:可以分为活跃用户和不活跃用户。

4.批量读取和延迟修改: 高并发情况可以将多个查询请求合并到一个。高并发且频繁修改的可以暂存缓存中。

5.读写分离: 数据库服务器配置多个,配置主从数据库。写用主数据库,读用从数据库。

6.分布式数据库: 将不同的表存放到不同的数据库中,然后再放到不同的服务器中。

7.NoSql和Hadoop: NoSql,not only SQL。没有关系型数据库那么多限制,比较灵活高效。Hadoop,将一个表中的数据分层多块,保存到多个节点(分布式)。每一块数据都有多个节点保存(集群)。集群可以并行处理相同的数据,还可以保证数据的完整性。

拓展资料:

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

‘叁’ 如何处理数据库并发问题

想要知道如何处理数据并发,自然需要先了解数据并发。

什么是数据并发操作呢?
就是同一时间内,不同的线程同时对一条数据进行读写操作。

在互联网时代,一个系统常常有很多人在使用,因此就可能出现高并发的现象,也就是不同的用户同时对一条数据进行操作,如果没有有效的处理,自然就会出现数据的异常。而最常见的一种数据并发的场景就是电商中的秒杀,成千上万个用户对在极端的时间内,抢购一个商品。针对这种场景,商品的库存就是一个需要控制的数据,而多个用户对在同一时间对库存进行重写,一个不小心就可能出现超卖的情况。

针对这种情况,我们如何有效的处理数据并发呢?

第一种方案、数据库锁
从锁的基本属性来说,可以分为两种:一种是共享锁(S),一种是排它锁(X)。在MySQL的数据库中,是有四种隔离级别的,会在读写的时候,自动的使用这两种锁,防止数据出现混乱。

这四种隔离级别分别是:

读未提交(Read Uncommitted)
读提交(Read Committed)
可重复读(Repeated Read)
串行化(Serializable)
当然,不同的隔离级别,效率也是不同的,对于数据的一致性保证也就有不同的结果。而这些可能出现的又有哪些呢?

脏读(dirty read)

当事务与事务之间没有任何隔离的时候,就可能会出现脏读。例如:商家想看看所有的订单有哪些,这时,用户A提交了一个订单,但事务还没提交,商家却看到了这个订单。而这时就会出现一种问题,当商家去操作这个订单时,可能用户A的订单由于部分问题,导致数据回滚,事务没有提交,这时商家的操作就会失去目标。

不可重复读(unrepeatable read)

一个事务中,两次读操作出来的同一条数据值不同,就是不可重复读。

例如:我们有一个事务A,需要去查询一下商品库存,然后做扣减,这时,事务B操作了这个商品,扣减了一部分库存,当事务A再次去查询商品库存的时候,发现这一次的结果和上次不同了,这就是不可重复读。

幻读(phantom problem)

一个事务中,两次读操作出来的结果集不同,就是幻读。

例如:一个事务A,去查询现在已经支付的订单有哪些,得到了一个结果集。这时,事务B新提交了一个订单,当事务A再次去查询时,就会出现,两次得到的结果集不同的情况,也就是幻读了。

那针对这些结果,不同的隔离级别可以干什么呢?

“读未提(Read Uncommitted)”能预防啥?啥都预防不了。

“读提交(Read Committed)”能预防啥?使用“快照读(Snapshot Read)”方式,避免“脏读”,但是可能出现“不可重复读”和“幻读”。

“可重复读(Repeated Red)”能预防啥?使用“快照读(Snapshot Read)”方式,锁住被读取记录,避免出现“脏读”、“不可重复读”,但是可能出现“幻读”。

“串行化(Serializable)”能预防啥?有效避免“脏读”、“不可重复读”、“幻读”,不过运行效率奇差。

好了,锁说完了,但是,我们的数据库锁,并不能有效的解决并发的问题,只是尽可能保证数据的一致性,当并发量特别大时,数据库还是容易扛不住。那解决数据并发的另一个手段就是,尽可能的提高处理的速度。

因为数据的IO要提升难度比较大,那么通过其他的方式,对数据进行处理,减少数据库的IO,就是提高并发能力的有效手段了。

最有效的一种方式就是:缓存
想要减少并发出现的概率,那么读写的效率越高,读写的执行时间越短,自然数据并发的可能性就变小了,并发性能也有提高了。

还是用刚才的秒杀举例,我们为的就是保证库存的数据不出错,卖出一个商品,减一个库存,那么,我们就可以将库存放在内存中进行处理。这样,就能够保证库存有序的及时扣减,并且不出现问题。这样,我们的数据库的写操作也变少了,执行效率也就大大提高了。

当然,常用的分布式缓存方式有:Redis和Memcache,Redis可以持久化到硬盘,而Memcache不行,应该怎么选择,就看具体的使用场景了。

当然,缓存毕竟使用的范围有限,很多的数据我们还是必须持久化到硬盘中,那我们就需要提高数据库的IO能力,这样避免一个线程执行时间太长,造成线程的阻塞。

那么,读写分离就是另一种有效的方式了
当我们的写成为了瓶颈的时候,读写分离就是一种可以选择的方式了。

我们的读库就只需要执行读,写库就只需要执行写,把读的压力从主库中分离出去,让主库的资源只是用来保证写的效率,从而提高写操作的性能。

‘肆’ 高并发处理的几种方法

一、将数据存到redis缓存
二、使用高性能的服务器、高性能的数据库、高效率的编程语言、还有高性能的Web容器.
三、使用Ngnix负载均衡

‘伍’ 华为技术架构师分享:高并发场景下缓存处理的一些思路

在实际的开发当中,我们经常需要进行磁盘数据的读取和搜索,因此经常会有出现从数据库读取数据的场景出现。但是当数据访问量次数增大的时候,过多的磁盘读取可能会最终成为整个系统的性能瓶颈,甚至是压垮整个数据库,导致系统卡死等严重问题。

常规的应用系统中,我们通常会在需要的时候对数据库进行查找,因此系统的大致结构如下所示:

1.缓存和数据库之间数据一致性问题

常用于缓存处理的机制我总结为了以下几种:

首先来简单说说Cache aside的这种方式:

Cache Aside模式

这种模式处理缓存通常都是先从数据库缓存查询,如果缓存没有命中则从数据库中进行查找。

这里面会发生的三种情况如下:

缓存命中:

当查询的时候发现缓存存在,那么直接从缓存中提取。

缓存失效:

当缓存没有数据的时候,则从database里面读取源数据,再加入到cache里面去。

缓存更新:

当有新的写操作去修改database里面的数据时,需要在写操作完成之后,让cache里面对应的数据失效。

关于这种模式下依然会存在缺陷。比如,一个是读操作,但是没有命中缓存,然后就到数据库中取数据,此时来了一个写操作,写完数据库后,让缓存失效,然后,之前的那个读操作再把老的数据放进去,所以,会造成脏数据。

Facebook的大牛们也曾经就缓存处理这个问题发表过相关的论文,链接如下:

分布式环境中要想完全的保证数据一致性是一件极为困难的事情,我们只能够尽可能的减低这种数据不一致性问题产生的情况。

Read Through模式

Read Through模式是指应用程序始终从缓存中请求数据。 如果缓存没有数据,则它负责使用底层提供程序插件从数据库中检索数据。 检索数据后,缓存会自行更新并将数据返回给调用应用程序。使用Read Through 有一个好处。

我们总是使用key从缓存中检索数据, 调用的应用程序不知道数据库, 由存储方来负责自己的缓存处理,这使代码更具可读性, 代码更清晰。但是这也有相应的缺陷,开发人员需要给编写相关的程序插件,增加了开发的难度性。

Write Through模式

Write Through模式和Read Through模式类似,当数据发生更新的时候,先去Cache里面进行更新,如果命中了,则先更新缓存再由Cache方来更新database。如果没有命中的话,就直接更新Cache里面的数据。

2.缓存穿透问题

在高并发的场景中,缓存穿透是一个经常都会遇到的问题。

什么是缓存穿透?

大量的请求在缓存中没有查询到指定的数据,因此需要从数据库中进行查询,造成缓存穿透。

会造成什么后果?

大量的请求短时间内涌入到database中进行查询会增加database的压力,最终导致database无法承载客户单请求的压力,出现宕机卡死等现象。

常用的解决方案通常有以下几类:

1.空值缓存

在某些特定的业务场景中,对于数据的查询可能会是空的,没有实际的存在,并且这类数据信息在短时间进行多次的反复查询也不会有变化,那么整个过程中,多次的请求数据库操作会显得有些多余。

不妨可以将这些空值(没有查询结果的数据)对应的key存储在缓存中,那么第二次查找的时候就不需要再次请求到database那么麻烦,只需要通过内存查询即可。这样的做法能够大大减少对于database的访问压力。

2.布隆过滤器

通常对于database里面的数据的key值可以预先存储在布隆过滤器里面去,然后先在布隆过滤器里面进行过滤,如果发现布隆过滤器中没有的话,就再去redis里面进行查询,如果redis中也没有数据的话,再去database查询。这样可以避免不存在的数据信息也去往存储库中进行查询情况。

什么是缓存雪崩?

当缓存服务器重启或者大量缓存集中在某一个时间段失效,这样在失效的时候,也会给后端系统(比如DB)带来很大压力。

如何避免缓存雪崩问题?

1.使用加锁队列来应付这种问题。当有多个请求涌入的时候,当缓存失效的时候加入一把分布式锁,只允许抢锁成功的请求去库里面读取数据然后将其存入缓存中,再释放锁,让后续的读请求从缓存中取数据。但是这种做法有一定的弊端,过多的读请求线程堵塞,将机器内存占满,依然没有能够从根本上解决问题。

2.在并发场景发生前,先手动触发请求,将缓存都存储起来,以减少后期请求对database的第一次查询的压力。数据过期时间设置尽量分散开来,不要让数据出现同一时间段出现缓存过期的情况。

3.从缓存可用性的角度来思考,避免缓存出现单点故障的问题,可以结合使用 主从+哨兵的模式来搭建缓存架构,但是这种模式搭建的缓存架构有个弊端,就是无法进行缓存分片,存储缓存的数据量有限制,因此可以升级为Redis Cluster架构来进行优化处理。(需要结合企业实际的经济实力,毕竟Redis Cluster的搭建需要更多的机器)

4.Ehcache本地缓存 + Hystrix限流&降级,避免MySQL被打死。

使用 Ehcache本地缓存的目的也是考虑在 Redis Cluster 完全不可用的时候,Ehcache本地缓存还能够支撑一阵。

使用 Hystrix进行限流 & 降级 ,比如一秒来了5000个请求,我们可以设置假设只能有一秒 2000个请求能通过这个组件,那么其他剩余的 3000 请求就会走限流逻辑。

然后去调用我们自己开发的降级组件(降级),比如设置的一些默认值呀之类的。以此来保护最后的 MySQL 不会被大量的请求给打死。

‘陆’ 如何使用redis缓存加索引处理数据库百万级并发

1.总的老说,优化方案中只有两种,一种是给查询的字段加组合索引。另一种是给在用户和数据库中增加缓存
2.添加索引方案:面对1~2千的并发是没有压力的,在往上则限制的瓶颈就是数据库最大连接数了,在上面中我用show global status like 'Max_used_connections’查看数据库可以知道数据库最大响应连接数是5700多,超过这个数tomcat直接报错连接被拒绝或者连接已经失效
3.缓存方案:在上面的测试可以知道,要是我们事先把数据库的千万条数据同步到redis缓存中,瓶颈就是我们的设备硬件性能了,假如我们的主机有几百个核心CPU,就算是千万级的并发下也可以完全无压力,带个用户很好的。
4.索引+缓存方案:缓存事先没有要查询的数据,在一万的并发下测试数据库毫无压力,程序先通过查缓存再查数据库大大减轻了数据库的压力,即使缓存不命中在一万的并发下也能正常访问,在10万并发下数据库依然没压力,但是redis服务器设置最大连接数300去处理10万的线程,4核CPU处理不过来,很多redis连接不了。我用show global status like 'Max_used_connections'查看数据库发现最大响应连接数是388,这么低所以数据库是不会挂掉的。雷达下载更专业。
5.使用场景:a.几百或者2000以下并发直接加上组合索引就可以了。b.不想加索引又高并发的情况下可以先事先把数据放到缓存中,硬件设备支持下可解决百万级并发。c.加索引且缓存事先没有数据,在硬件设备支持下可解决百万级并发问题。d.不加索引且缓存事先没有数据,不可取,要80多秒才能得到结果,用户体验极差。
6.原理:其实使用了redis的话为什么数据库不会崩溃是因为redis最大连接数为300,这样数据库最大同时连接数也是300多,所以不会挂掉,至于redis为什么设置为300是因为设置的太高就会报错(连接被拒绝)或者等待超时(就算设置等待超时的时间很长也会报这个错)。

‘柒’ [PHP]关于使用缓存技术处理并发请求的解决方案

  1. 爬到的数据丢到redis/memcache里面,是在不会,就丢mysql里面。

  2. 用户每次访问,先从缓存里面读,读不到就去爬,爬完再丢进去,设个有效期。

  3. 像这样就是一个闭环,访问缓存-》不存在就爬数据-》存缓存。

    如果memcache redis不会就去看看教程,不难的,实在不行就存数据库,读的时候对比一下时间就好了


‘捌’ 如何解决高并发问题

使用高性能的服务器、高性能的数据库、高效率的编程语言、还有高性能的Web容器,(对架构分层+负载均衡+集群)这几个解决思路在一定程度上意味着更大的投入。

1、高并发:在同一个时间点,有大量的客户来访问我们的网站,如果访问量过大,就可能造成网站瘫痪。

2、高流量:当网站大后,有大量的图片,视频,这样就会对流量要求高,需要更多更大的带宽。

3、大存储:可能对数据保存和查询出现问题。

解决方案:

1、提高硬件能力、增加系统服务器。(当服务器增加到某个程度的时候系统所能提供的并发访问量几乎不变,所以不能根本解决问题)

2、本地缓存:本地可以使用JDK自带的Map、Guava Cache.分布式缓存:Redis、Memcache.本地缓存不适用于提高系统并发量,一般是用处用在程序中。

Spiring把已经初始过的变量放在一个Map中,下次再要使用这个变量的时候,先判断Map中有没有,这也就是系统中常见的单例模式的实现。

‘玖’ 高并发三种解决方法

处理高并发的方法不止三种。

1:系统拆分

将一个系统拆分为多个子系统,用bbo来搞。然后每个系统连一个数据库,这样本来就一个库,现在多个数据库,这样就可以抗高并发。

2:缓存,必须得用缓存

大部分的高并发场景,都是读多写少,那你完全可以在数据库和缓存里都写一份,然后读的时候大量走缓存不就得了。毕竟人家redis轻轻松松单机几万的并发,没问题的。所以可以考的虑考虑项目里,那些承载主要请求读场景,怎么用缓存来抗高并发。

3:MQ(消息队列),必须得用MQ

可能还是会出现高并发写的场景,比如说一个业务操作里要频繁搞数据库几十次,增删改增删改,那高并发绝对搞挂系统,人家是缓存你要是用redis来承载写那肯定不行,数据随时就被LRU(淘汰掉最不经常使用的)了,数据格式还无比简单,没有事务支持。

所以该用mysql还得用mysql,用MQ,大量的写请求灌入MQ里,排队慢慢玩儿,后边系统消费后慢慢写,控制在mysql承载范围之内。所以得考虑考虑你的项目里,那些承载复杂写业务逻辑的场景里,如何用MQ来异步写,提升并发性。MQ单机抗几万并发也是可以的。

4:分库分表

可能到了最后数据库层面还是免不了抗高并发的要求,那么就将一个数据库拆分为多个库,多个库来抗更高的并发;然后将一个表拆分为多个表,每个表的数据量保持少一点,提高sql跑的性能。

5:读写分离

这个就是说大部分时候数据库可能也是读多写少,没必要所有请求都集中在一个库上,可以搞个主从架构,主库写入,从库读取,搞一个读写分离。读流量太多的时候,还可以加更多的从库。

‘拾’ 高并发如何处理 和并发量是多少 还有缓存服务器

数据要立即处理:(并发数*单连接平均传输数据=关口带宽)+(减少IO频率+低延+缓存并发情况数据=做缓存)+高性能服务器

--数据--

热点内容
java返回this 发布:2025-10-20 08:28:16 浏览:712
制作脚本网站 发布:2025-10-20 08:17:34 浏览:975
python中的init方法 发布:2025-10-20 08:17:33 浏览:686
图案密码什么意思 发布:2025-10-20 08:16:56 浏览:837
怎么清理微信视频缓存 发布:2025-10-20 08:12:37 浏览:744
c语言编译器怎么看执行过程 发布:2025-10-20 08:00:32 浏览:1085
邮箱如何填写发信服务器 发布:2025-10-20 07:45:27 浏览:314
shell脚本入门案例 发布:2025-10-20 07:44:45 浏览:194
怎么上传照片浏览上传 发布:2025-10-20 07:44:03 浏览:882
python股票数据获取 发布:2025-10-20 07:39:44 浏览:840