当前位置:首页 » 文件管理 » gdb调试core文件夹

gdb调试core文件夹

发布时间: 2023-03-19 00:21:01

‘壹’ 怎样用GDB调试一个由脚本文件启动的程序

使用GDB
一般来说GDB主要调试的是C/C++的程序。要调试C/C++的程序,首先在编译时,我们必须要把调试信息加到可执行文件中。使用编译器(cc/gcc/g++)的 -g 参数可以做到这一点。如:
$gcc -g -Wall hello.c -o hello
$g++ -g -Wall hello.cpp -o hello
如果没有-g,你将看不见程序的函数名、变量名,所代替的全是运行时的内存地址。当你用-g把调试信息加入之后,并成功编译目标代码以后,让我们来看看如何用gdb来调试他。
启动GDB的方法有以下几种:
gdb <program>
program也就是你的执行文件,一般在当前目录下。
gdb <program> core
用gdb同时调试一个运行程序和core文件,core是程序非法执行后core mp后产生的文件。
gdb <program> <PID>
如果你的程序是一个服务程序,那么你可以指定这个服务程序运行时的进程ID。gdb会自动attach上去,并调试他。program应该在PATH环境变量中搜索得到。
以上三种都是进入gdb环境和加载被调试程序同时进行的。也可以先进入gdb环境,在加载被调试程序,方法如下:
*在终端输入:gdb
*在gdb环境中:file <program>
这两步等价于:gdb <program>
GDB启动时,可以加上一些GDB的启动开关,详细的开关可以用gdb -help查看。我在下面只例举一些比较常用的参数:
-symbols <file>
-s <file>
从指定文件中读取符号表。
-se file
从指定文件中读取符号表信息,并把他用在可执行文件中。
-core <file>
-c <file>
调试时core mp的core文件。
-directory <directory>
-d <directory>
加入一个源文件的搜索路径。默认搜索路径是环境变量中PATH所定义的路径。

‘贰’ 怎样用GDB调试core文件

一般这种情况都是因为数组越界访问,空指针或是野指针读写造成的。程序小的话还比较好办,对着源代码仔细检查就能解决。但是对于代码量较大的程序,里边包含N多函数调用,N多数组指针访问,这时想定位问题就不是很容易了(此时牛人依然可以通过在适当位置打printf加二分查找的方式迅速定位:P)。懒人的话还是直接GDB搞起吧。 神马是Core Dump文件偶尔就能听见某程序员同学抱怨“擦,又出Core了!”。简单来说,core mp说的是操作系统执行的一个动作,当某个进程因为一些原因意外终止(crash)的时候,操作系统会将这个进程当时的内存信息转储(mp)到磁盘上1。产生的文件就是core文件了,一般会以core.xxx形式命名。 如何产生Core Dump 发生doremp一般都是在进程收到某个信号的时候,linux上现在大概有60多个信号,可以使用 kill -l 命令全部列出来。sagi@sagi-laptop:~$ kill -l 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8 43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2 63) SIGRTMAX-1 64) SIGRTMAX针对特定的信号,应用程序可以写对应的信号处理函数。如果不指定,则采取默认的处理方式, 默认处理是coremp的信号如下:3)SIGQUIT 4)SIGILL 6)SIGABRT 8)SIGFPE 11)SIGSEGV 7)SIGBUS 31)SIGSYS 5)SIGTRAP 24)SIGXCPU 25)SIGXFSZ 29)SIGIOT 我们看到SIGSEGV在其中,一般数组越界或是访问空指针都会产生这个信号。另外虽然默认是这样的,但是你也可以写自己的信号处理函数改变默认行为,更多信号相关可以看参考链接33。 上述内容只是产生coremp的必要条件,而非充分条件。要产生core文件还依赖于程序运行的shell,可以通过ulimit -a命令查看,输出内容大致如下:sagi@sagi-laptop:~$ ulimit -a core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheling priority (-e) 20 file size (blocks, -f) unlimited pending signals (-i) 16382 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) unlimited open files (-n) 1024 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 8192 cpu time (seconds, -t) unlimited max user processes (-u) unlimited virtual memory (kbytes, -v) unlimited file locks (-x) unlimited 看到第一行了吧,core file size,这个值用来限制产生的core文件大小,超过这个值就不会保存了。我这里输出是0,也就是不会保存core文件,即使产生了,也保存不下来==! 要改变这个设置,可以使用ulimit -c unlimited。 OK, 现在万事具备,只缺一个能产生Core的程序了,介个对C程序员来说太容易了。#include ; #include ; int crash() { char *xxx = "crash!!"; xxx[1] = 'D'; // 写只读存储区! return 2; } int foo() { return crash(); } int main() { return foo(); } 上手调试 上边的程序编译的时候有一点需要注意,需要带上参数-g, 这样生成的可执行程序中会带上足够的调试信息。编译运行之后你就应该能看见期待已久的“Segment Fault(core mped)”或是“段错误 (核心已转储)”之类的字眼了。看看当前目录下是不是有个core或是core.xxx的文件。祭出linux下经典的调试器GDB,首先带着core文件载入程序:gdb exefile core,这里需要注意的这个core文件必须是exefile产生的,否则符号表会对不上。载入之后大概是这个样子的:sagi@sagi-laptop:~$ gdb coremp core Core was generated by ./coremp'. Program terminated with signal 11, Segmentation fault. #0 0x080483a7 in crash () at coremp.c:8 8 xxx[1] = 'D'; (gdb)我们看到已经能直接定位到出core的地方了,在第8行写了一个只读的内存区域导致触发Segment Fault信号。在载入core的时候有个小技巧,如果你事先不知道这个core文件是由哪个程序产生的,你可以先随便找个代替一下,比如/usr/bin/w就是不错的选择。比如我们采用这种方法载入上边产生的core,gdb会有类似的输出:sagi@sagi-laptop:~$ gdb /usr/bin/w core Core was generated by ./coremp'. Program terminated with signal 11, Segmentation fault. #0 0x080483a7 in ? () (gdb)可以看到GDB已经提示你了,这个core是由哪个程序产生的。 GDB 常用操作 上边的程序比较简单,不需要另外的操作就能直接找到问题所在。现实却不是这样的,常常需要进行单步跟踪,设置断点之类的操作才能顺利定位问题。下边列出了GDB一些常用的操作。 启动程序:run
设置断点:b 行号|函数名
删除断点:delete 断点编号
禁用断点:disable 断点编号
启用断点:enable 断点编号
单步跟踪:next 也可以简写 n
单步跟踪:step 也可以简写 s
打印变量:print 变量名字
设置变量:set var=value
查看变量类型:ptype var
顺序执行到结束:cont
顺序执行到某一行: util lineno打印堆栈信息:bt

‘叁’ 如何调试php的Core之获取基本信息

首先, 让生成一个供举例子的Core文件: <?phpfunction recurse($num) { recurse(++$num);} recurse(0); 运行这个PHP文件: $ php test.phpSegmentation fault (core mped) 这个PHP因为无线递归, 会导致爆栈, 从而造成 segment fault而在PHP的当前工作目录产生Coremp文件(如果你的系统没有产生Coremp文件, 那请查询ulimit的相关设置). 好, 现在, 让删除掉这个test.php, 忘掉上面的代码, 我们现在仅有的是这个Core文件, 任务是, 找出这个Core产生的原因, 以及发生时候的状态. 首先, 让用gdb打开这个core文件: $ gdb php -c core.31656 会看到很多的信息, 首先让我们注意这段: Core was generated by `php test.php'.Program terminated with signal 11, Segmentation fault.

‘肆’ 怎么打开core文件

core文件是由应用程序收到系统信号后崩溃产生的,该文件中记录了程序崩溃的原因(例如收到那种信号),调用堆栈和崩溃时的内存及变量值等等的信息。 打开core文件与编译时使用的编译器有关,但绝大多数linux程序是使用gcc编译器编译的,因此可使用对应gdb调试器打开,命令格式如下: $ gdb 应用程序文件名 core文件名 举例: $ gdb /usr/bin/gedit ~/core ------ 查看由gedit崩溃产生的core文件 (gdb) bt ------ 或者backtrace, 查看程序运行到当前位置之前所有的堆栈帧情况) (gdb) quit ------ 退出 如果不知道core文件由哪个文件产生的,可使用file命令显示 $ file cor

热点内容
显卡编程语言 发布:2025-05-17 18:11:46 浏览:918
编程用什么轴机械键盘 发布:2025-05-17 18:10:35 浏览:958
金融工程编程 发布:2025-05-17 18:10:33 浏览:222
私密模式访问 发布:2025-05-17 18:09:44 浏览:787
数据库崩溃原因 发布:2025-05-17 18:09:42 浏览:306
对虾养殖增氧机如何配置 发布:2025-05-17 18:08:20 浏览:442
linux读写权限 发布:2025-05-17 18:08:12 浏览:314
导出蜂窝脚本 发布:2025-05-17 18:03:25 浏览:564
中国银行定期存储的利率 发布:2025-05-17 18:00:03 浏览:989
数据库小于 发布:2025-05-17 17:59:02 浏览:409