当前位置:首页 » 编程语言 » java回溯

java回溯

发布时间: 2022-06-28 19:29:30

‘壹’ java或者C/C++怎么用回溯法解决最小长度电路板排列问题

以java为例,希望能够帮到你。

电路板排列问题

问题描述

将n块电路板以最佳排列方式插入带有n个插槽的机箱中。n块电路板的不同排列方式对应于不同的电路板插入方案。设B={1, 2, …, n}是n块电路板的集合,L={N1, N2, …, Nm}是连接这n块电路板中若干电路板的m个连接块。Ni是B的一个子集,且Ni中的电路板用同一条导线连接在一起。设x表示n块电路板的一个排列,即在机箱的第i个插槽中插入的电路板编号是x[i]。x所确定的电路板排列Density (x)密度定义为跨越相邻电路板插槽的最大连线数。

例:如图,设n=8, m=5,给定n块电路板及其m个连接块:B={1, 2, 3, 4, 5, 6, 7, 8},N1={4, 5, 6},N2={2, 3},N3={1, 3},N4={3, 6},N5={7, 8};其中两个可能的排列如图所示,则该电路板排列的密度分别是2,3。

‘贰’ JAVA怎么用回溯法打印出1,2,3,4的所有组合和排列

/*
*组合 回溯
*a为源数据,调用时用f(a,0,"")
*/
void f(int[] a,int n,String v){
if(n==a.length){
System.out.println(v);
}else{
f(a,n+1,v);
f(a,n+1,v+","+a[n]);
}
}

‘叁’ java 八皇后问题 递归 回溯

你main方法也没有加上,这样吧,我给你看代码,这个比较容易理解。

packagecom.aice.queen;
publicclassQueen{
//同栏是否有皇后,1表示有
privateint[]column;

//右上至左下是否有皇后
privateint[]rup;

//左上至右下是否有皇后
privateint[]lup;

//解答
privateint[]queen;

//解答编号
privateintnum;

publicQueen(){
column=newint[8+1];
rup=newint[(2*8)+1];
lup=newint[(2*8)+1];

for(inti=1;i<=8;i++)
column[i]=1;
for(inti=1;i<=(2*8);i++)
rup[i]=lup[i]=1;
queen=newint[8+1];
}

publicvoidbacktrack(inti){
if(i>8){
showAnswer();
}else{
for(intj=1;j<=8;j++){
if((column[j]==1)&&(rup[i+j]==1)&&
(lup[i-j+8]==1)){
queen[i]=j;
//设定为占用
column[j]=rup[i+j]=lup[i-j+8]=0;
backtrack(i+1);
column[j]=rup[i+j]=lup[i-j+8]=1;
}
}
}
}

protectedvoidshowAnswer(){
num++;
System.out.println(" 解答"+num);

for(inty=1;y<=8;y++){
for(intx=1;x<=8;x++){
if(queen[y]==x){
System.out.print("Q");
}else{
System.out.print(".");
}
}
System.out.println();
}
}

publicstaticvoidmain(String[]args){
Queenqueen=newQueen();
queen.backtrack(1);
}
}

‘肆’ java回溯法如何执行

回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。 1、回溯法的一般描述 可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。其中Si是分量xi的定义域,且 |Si| 有限,i=1,2,…,n。我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。 解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。但显然,其计算量是相当大的。 我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,xi)满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(j<i)元组(x1,x2,…,xj)一定也满足D中仅涉及到x1,x2,…,xj的所有约束,i=1,2,…,n。换句话说,只要存在0≤j≤n-1,使得(x1,x2,…,xj)违反D中仅涉及到x1,x2,…,xj的约束之一,则以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)一定也违反D中仅涉及到x1,x2,…,xi的一个约束,n≥i>j。因此,对于约束集D具有完备性的问题P,一旦检测断定某个j元组(x1,x2,…,xj)违反D中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题P的解,因而就不必去搜索它们、检测它们。回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。 回溯法首先将问题P的n元组的状态空间E表示成一棵高为n的带权有序树T,把在E中求问题P的所有解转化为在T中搜索问题P的所有解。树T类似于检索树,它可以这样构造: 设Si中的元素可排成xi(1) ,xi(2) ,…,xi(mi-1) ,|Si| =mi,i=1,2,…,n。从根开始,让T的第I层的每一个结点都有mi个儿子。这mi个儿子到它们的双亲的边,按从左到右的次序,分别带权xi+1(1) ,xi+1(2) ,…,xi+1(mi) ,i=0,1,2,…,n-1。照这种构造方式,E中的一个n元组(x1,x2,…,xn)对应于T中的一个叶子结点,T的根到这个叶子结点的路径上依次的n条边的权分别为x1,x2,…,xn,反之亦然。另外,对于任意的0≤i≤n-1,E中n元组(x1,x2,…,xn)的一个前缀I元组(x1,x2,…,xi)对应于T中的一个非叶子结点,T的根到这个非叶子结点的路径上依次的I条边的权分别为x1,x2,…,xi,反之亦然。特别,E中的任意一个n元组的空前缀(),对应于T的根。 因而,在E中寻找问题P的一个解等价于在T中搜索一个叶子结点,要求从T的根到该叶子结点的路径上依次的n条边相应带的n个权x1,x2,…,xn满足约束集D的全部约束。在T中搜索所要求的叶子结点,很自然的一种方式是从根出发,按深度优先的策略逐步深入,即依次搜索满足约束条件的前缀1元组(x1i)、前缀2元组(x1,x2)、…,前缀I元组(x1,x2,…,xi),…,直到i=n为止。 在回溯法中,上述引入的树被称为问题P的状态空间树;树T上任意一个结点被称为问题P的状态结点;树T上的任意一个叶子结点被称为问题P的一个解状态结点;树T上满足约束集D的全部约束的任意一个叶子结点被称为问题P的一个回答状态结点,它对应于问题P的一个解。 【问题】 组合问题 问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。 例如n=5,r=3的所有组合为: (1)1、2、3 (2)1、2、4 (3)1、2、5 (4)1、3、4 (5)1、3、5 (6)1、4、5 (7)2、3、4 (8)2、3、5 (9)2、4、5 (10)3、4、5 则该问题的状态空间为: E={(x1,x2,x3)∣xi∈S ,i=1,2,3 } 其中:S={1,2,3,4,5} 约束集为: x1<x2<x3 显然该约束集具有完备性。 问题的状态空间树T: 2、回溯法的方法 对于具有完备约束集D的一般问题P及其相应的状态空间树T,利用T的层次结构和D的完备性,在T中搜索问题P的所有解的回溯法可以形象地描述为: 从T的根出发,按深度优先的策略,系统地搜索以其为根的子树中可能包含着回答结点的所有状态结点,而跳过对肯定不含回答结点的所有子树的搜索,以提高搜索效率。具体地说,当搜索按深度优先策略到达一个满足D中所有有关约束的状态结点时,即“激活”该状态结点,以便继续往深层搜索;否则跳过对以该状态结点为根的子树的搜索,而一边逐层地向该状态结点的祖先结点回溯,一边“杀死”其儿子结点已被搜索遍的祖先结点,直到遇到其儿子结点未被搜索遍的祖先结点,即转向其未被搜索的一个儿子结点继续搜索。 在搜索过程中,只要所激活的状态结点又满足终结条件,那么它就是回答结点,应该把它输出或保存。由于在回溯法求解问题时,一般要求出问题的所有解,因此在得到回答结点后,同时也要进行回溯,以便得到问题的其他解,直至回溯到T的根且根的所有儿子结点均已被搜索过为止。 例如在组合问题中,从T的根出发深度优先遍历该树。当遍历到结点(1,2)时,虽然它满足约束条件,但还不是回答结点,则应继续深度遍历;当遍历到叶子结点(1,2,5)时,由于它已是一个回答结点,则保存(或输出)该结点,并回溯到其双亲结点,继续深度遍历;当遍历到结点(1,5)时,由于它已是叶子结点,但不满足约束条件,故也需回溯。 3、回溯法的一般流程和技术 在用回溯法求解有关问题的过程中,一般是一边建树,一边遍历该树。在回溯法中我们一般采用非递归方法。下面,我们给出回溯法的非递归算法的一般流程: 在用回溯法求解问题,也即在遍历状态空间树的过程中,如果采用非递归方法,则我们一般要用到栈的数据结构。这时,不仅可以用栈来表示正在遍历的树的结点,而且可以很方便地表示建立孩子结点和回溯过程。 例如在组合问题中,我们用一个一维数组Stack[ ]表示栈。开始栈空,则表示了树的根结点。如果元素1进栈,则表示建立并遍历(1)结点;这时如果元素2进栈,则表示建立并遍历(1,2)结点;元素3再进栈,则表示建立并遍历(1,2,3)结点。这时可以判断它满足所有约束条件,是问题的一个解,输出(或保存)。这时只要栈顶元素(3)出栈,即表示从结点(1,2,3)回溯到结点(1,2)。

‘伍’ java异常处理的机制有哪几种

Java语言提供两种异常处理机制:捕获异常和声明抛弃异常;

1)捕获异常:在Java程序运行过程中系统得到一个异常对象是,它将会沿着方法的调用栈逐层回溯,寻找处理这一异常的代码。找到能够处理这种类型异常的方法后,运行时系统把当前异常交给这个方法处理;如果找不到可以捕获异常的方法,则运行时系统将终止,相应的Java程序也将退出。捕获异常是通过try-catch-finally语句实现的。语法为:

try{

...

}catch(ExceptionName1 e){

...

}catch(ExceptionName2 e){

...

}

...

}finally{

...

}

‘陆’ java回溯和递归的区别,主要什么回溯怎么用,有代码最好

N皇后问题的非递归迭代回溯法java代码实现
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class NQueen {

static int n; // 皇后个数
static int[] x; // 当前解如{0,2,4,1,3}分别代表第1、2、3、4列的行值
static int totle; // 可行方案个数
public static void main(String[] args) {
int input = 0; //输入n值
int sum = 0; //可行方案个数
String temp; //临时存储输入值
System.out.println("请输入N后问题的N值:");

try {
BufferedReader br = new BufferedReader(new InputStreamReader(
System.in));
temp = br.readLine();
input = Integer.parseInt(temp); //将输入值转换为int保存
if(input<=0){
throw new IOException("别输负数好不?");
}
System.out.println("输入的数是:" + input);

sum = nQueen(input); //调用nqueen方法

System.out.println("可行方案个数为:" + sum); //输出sum

} catch (IOException e) {
System.out.println(e.getMessage());

}catch (NumberFormatException e){
System.out.println("请输入数字。。。");
}
}
private static int nQueen(int input) {
n = input; //把输入给全局变量n
totle = 0; //初始化totle
x = new int[n + 1];
for (int i = 0; i <= n; i++)
x[i] = 0; //初始化x
backtrack(); //调用回溯算法
return totle;
}
private static void backtrack() {
int k = 1;
while (k > 0) {
x[k] += 1; //第k列皇后向下移一行
while ((x[k] <= n) && !(place(k))){ //如果当前第k列皇后未出界或者和其他皇后冲突
x[k] += 1; //第k列皇后向下移一行继续寻找
System.out.println("在第"+k+"行 "+"第"+x[k]+"列放置皇后");
System.out.print("当前方案为 ");
for(int i=1;i<=k;i++) //打印寻找策略
System.out.print(x[i]+" ");
System.out.println();
}
if (x[k] <= n) //找到一个值并且未出界
if (k == n) { //已是最后一列说明已找到一个方案
totle++;
System.out.print("可行方案为: ");
for (int i = 1; i <= n; i++)
System.out.print(x[i] + " ");
System.out.println();
} else { //不是最后一列故寻找下一列
k++;
x[k] = 0;
}
else //找到的值已经出界,回退到上一列
k--;
}
}
//判断皇后是否冲突
private static boolean place(int k) {
for (int j = 1; j < k; j++)
if ((Math.abs(k - j) == Math.abs(x[j] - x[k])) || (x[j] == x[k]))
return false;
return true;
}
}

‘柒’ JAVA中八皇后问题算法和流程图。要求用回溯法,求大神解答,在线等如果有代码就完美了

[cpp] view plainprint?
//--------------------------------------
//利用函数递归,解决八皇后问题
//
// zssure 2014-03-12
//--------------------------------------

#include <stdio.h>
#include <cmath>

int count=0;//全局计数变量

/*--------------------四个皇后----------------------*/
//#define QUEEN_NUM 4
//int label[QUEEN_NUM][QUEEN_NUM]={ 0,0,0,0,
// 0,0,0,0,
// 0,0,0,0,
// 0,0,0,0 };

/*--------------------五个皇后----------------------*/
//#define QUEEN_NUM 5
//int label[QUEEN_NUM][QUEEN_NUM]={ 0,0,0,0,0,
// 0,0,0,0,0,
// 0,0,0,0,0,
// 0,0,0,0,0,
// 0,0,0,0,0 };

/*--------------------六个皇后----------------------*/
//#define QUEEN_NUM 6
//int label[QUEEN_NUM][QUEEN_NUM]={ 0,0,0,0,0,0,
// 0,0,0,0,0,0,
// 0,0,0,0,0,0,
// 0,0,0,0,0,0,
// 0,0,0,0,0,0,
// 0,0,0,0,0,0
// };

/*--------------------七个皇后----------------------*/
//#define QUEEN_NUM 7
//int label[QUEEN_NUM][QUEEN_NUM]={ 0,0,0,0,0,0,0,
// 0,0,0,0,0,0,0,
// 0,0,0,0,0,0,0,
// 0,0,0,0,0,0,0,
// 0,0,0,0,0,0,0,
// 0,0,0,0,0,0,0,
// 0,0,0,0,0,0,0
// };

/*--------------------八个皇后----------------------*/
#define QUEEN_NUM 8
int label[QUEEN_NUM][QUEEN_NUM]={0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0,
0,0,0,0};

void FillChessbox(int m,int n,int num)
{
for(int i=0;i<QUEEN_NUM;++i)
for(int j=0;j<QUEEN_NUM;++j)
if(abs(i-m)==abs(j-n))//对角区域填充
{
if(label[i][j]==0)
label[i][j]=num;
}

int i=0,j=0;
while(i<QUEEN_NUM)//行填充
{
if(label[i][n]==0)
label[i][n]=num;
++i;
}
while(j<QUEEN_NUM)//列填充
{
if(label[m][j]==0)
label[m][j]=num;
++j;
}

}
void ClearChessBox(int m,int n,int num)
{
for(int i=0;i<QUEEN_NUM;++i)
for(int j=0;j<QUEEN_NUM;++j)
if(abs(i-m)==abs(j-n) && label[i][j]==num)
label[i][j]=0;
int i=0,j=0;
while(i<QUEEN_NUM)
{
if(label[i][n]==num)
label[i][n]=0;
++i;
}
while(j<QUEEN_NUM)
{
if(label[m][j]==num)
label[m][j]=0;
++j;
}
}
void AllClear()
{
for(int i=0;i<QUEEN_NUM;++i)
for(int j=0;j<QUEEN_NUM;++j)
label[i][j]=0;

}
void PrintResult()
{
for(int i=0;i<QUEEN_NUM;++i)
{
for(int j=0;j<QUEEN_NUM;++j)
printf("%d ",label[i][j]);
printf("\n");

}
}
bool EightQueen(int n/*皇后个数*/,int c/*已经放置的皇后个数*/)
{
//static int count=0;
//小于3x3的棋盘是无解的
if(n<4)
return false;

for(int i=0;i<n;++i)
{
if(label[c-1][i]==0)//存在可以放置第c个皇后的位置
{
label[c-1][i]=c+1;
if(c==n)/*已经放置完毕所有的皇后*/
{
++count;
PrintResult();
printf("**************************\n");
ClearChessBox(c-1,i,c+1);
//AllClear();
return true;
}
FillChessbox(c-1,i,c+1);
EightQueen(n,c+1);
ClearChessBox(c-1,i,c+1);
/*-------------------------------------------------------------------------------------------------------------------------
// 现场恢复,无论下一个皇后是否顺利放置,都应该恢复现场。原因是
//
// 如果下一个皇后放置失败,那么自然应该将本次放置的皇后去除,重新放置,所以需要进行现场恢复(即回溯);
// 如果下一个皇后放置成功,意味着本次放置已经满足条件,是一个解,此时需要恢复现场,进行下一次的重新放置,寻找下一个解。
//
//------------------------------------------------------------------------------------------------------------------------*/
//if(!EightQueen(n,c+1))
// ClearChessBox(c-1,i,c+1);

}
}
return false;
}

int main()
{
EightQueen(QUEEN_NUM,1);
printf("%d\n",count);
return 0;
}

‘捌’ java 深度优先搜索(回溯法)求集合的幂集

import java.util.ArrayList;
import java.util.List;

public class BackTrack {
public static void main(String[] args) {
//初始化一个集合,放在list里面
List<String> list=new ArrayList<String>();
list.add("1");
list.add("2");
list.add("3");
list.add("f");
List<String> li=new ArrayList<String>();
PowerSet(0,list,li);
}
//回溯法求幂集
public static void PowerSet(int i,List<String> list,List<String> li){

if(i>list.size()-1){System.out.println(li);}
else{
li.add(list.get(i));//左加
PowerSet(i+1,list,li); //递归方法
li.remove(list.get(i)); //右去
PowerSet(i+1, list, li);
}
}

}

注:该方法采用中序遍历二叉树(实际这棵树是不存在的)。对于第一个元素,左节点加进去,右节点去掉。对于第i一个节点,左加,右去。直到i大于元素的总个数。

输出结果:
[1, 2, 3, 4]
[1, 2, 3]
[1, 2, 4]
[1, 2]
[1, 3, 4]
[1, 3]
[1, 4]
[1]
[2, 3, 4]
[2, 3]
[2, 4]
[2]
[3, 4]
[3]
[4]
[]

‘玖’ 20 java回溯和递归的区别,主要什么回溯怎么用,有代码最好

递归的精华就在于大问题的分解,要学会宏观的去看问题,如果这个大问题可以分解为若干个性质相同的规模更小的问题,那么我们只要不断地去做分解,当这些小问题分解到我们能够轻易解决的时候,大问题也就能迎刃而解了。如果你能独立写完递归创建二叉树,前序、中序、后序递归遍历以及递归计算二叉树的最大深度,递归就基本能掌握了。回溯本人用得很少,仅限于八皇后问题,所以帮不上啥了。

热点内容
哪个型号的安卓机性价比好 发布:2024-05-08 11:05:10 浏览:657
苹果存储空在哪里 发布:2024-05-08 10:37:16 浏览:641
python获取系统时间 发布:2024-05-08 10:32:24 浏览:634
浏览器上传文件 发布:2024-05-08 10:31:17 浏览:92
编程强度高 发布:2024-05-08 10:24:59 浏览:279
电脑如何查看型号和配置 发布:2024-05-08 10:19:56 浏览:421
大地电子保单pdf密码多少 发布:2024-05-08 09:54:21 浏览:861
ftp扫描免费主机 发布:2024-05-08 09:50:05 浏览:340
听说ftpmp4 发布:2024-05-08 09:39:51 浏览:476
退货上传图片 发布:2024-05-08 09:38:38 浏览:80