当前位置:首页 » 编程语言 » pythonsumaxis1

pythonsumaxis1

发布时间: 2022-09-18 15:31:58

1. python中的sum为什么返回的还是数组

Python中的sum函数,无第二参数时,返回的是数值不是数组,数值为参数1中的数组或其它可迭代对象的全加之和。

在下列几种情况下,sum函数返回数组:(Python 3版本)

  1. 使用了第二参数为axis=0,并且参数1是二维对象,则按列相加并返回数组;

  2. 使用了第二参数为axis=1,并且参数1是二维对象,则按行相加并返回数组;

  3. 导入了Numpy模块,并使用了Numpy中的sum函数,并且参数1是二维对象,则默认就是axis=0,即按列相加并返回数组;

importnumpyasnp
#python中自带的sum
sum([[1,2,3],[4,5,5]])#返回数值20
sum([[1,2,3],[4,5,5]],axis=0)#返回数组[578]
sum([[1,2,3],[4,5,5]],axis=1)#返回数组[614]
#Numpy中的sum
a=np.sum([[1,2,3],[4,5,5]])#返回数组[578]

注:NumPy是Python的一种开源的数值计算扩展。

2. Python,的numpy模块中有没有 阶乘函数

有阶乘函数,Numpy中,mat必须是2维的,但是array可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。

在numpy中matrix的主要优势是:相对简单的乘法运算符号。例如,a和b是两个matrices,那么a*b,就是矩阵积。

若a=mat([1,2,3])是矩阵,则 a.A 则转换成了数组,反之,a.M则转换成了矩阵。

(2)pythonsumaxis1扩展阅读:

常用的Numpy运算:

取矩阵中的某一行ss[1,:]或该行的某两列ss[1,0:2]

将数组转换成矩阵randMat=mat(random.rand(4,4))

矩阵求逆randMat.I

单位阵eye(4)

零矩阵zeros((x,y))建立x行y列的零矩阵。

最大值和最小值a.max(),a.min(),而a.max(0)表示按列选取每列的最大值。最大/小元素的下标a.argmax(),a.argmin()

#作为方法x.sum() #所有元素相加x.sum(axis=0) #按列相加x.sum(axis=1) #按行相加#作为函数sum(a,axis=0)ss.mean()

mean(a,axis=0(或1)) #按列或行求均值var(a)var(a,axis=0(或1)) #按列或行求方差。

std(a)std(a,axis=0(或1)) #按列或行求标准差ss.T或ss.transpose() #转置。



3. python axis是什么意思

python axis的意思是:1、【axis=0】表述列,【axis=1】表述行;2、等式【axis=i】操作就是沿第i维变化的方向进行。
python axis的意思是:
axis=0表述列
axis=1表述行
就记住axis=i,操作就是沿第i维变化的方向进行;
对于一个4*3*2*3的数组:
axis=0,操作时只有第0维的下标变化其他不变。
axis=1,操作时只有第1维的下标变化其他不变。
axis=2,操作时只有第2维的下标变化其他不变。
axis=3,操作时只有第3维的下标变化其他不变。
相关学习推荐:python视频
以上就是小编分享的关于python axis是什么意思的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!

4. 在使用python进行编程的过程中,设置属性axis=1,表示的是什么含义

摘要 如果我们调用df.mean(axis=1),我们将得到按行计算的均值

5. python中删除数据框某个行时,语法df.drop('列名',axis=1)中,使用axis=1,axis=1不是表示行么

<pre t="code" l="python">data.drop(n)可以删除第i行
import pandas as pd
data=pd.DataFrame([[1,2,3],[4,5,6]])
print data.drop(0)输出结果为 0 1 21 4 5 6

6. python对excel操作

Python对于Excel的操作是多种多样的,掌握了相关用法就可以随心所欲的操作数据了!

操作xls文件

xlrd(读操作):

import xlrd

1、引入xlrd模块

workbook=xlrd.open_workbook("36.xls")

2、打开[36.xls]文件,获取excel文件的workbook(工作簿)对象

names=workbook.sheet_names()

3、获取所有sheet的名字

worksheet=workbook.sheet_by_index(0)

4、通过sheet索引获得sheet对象

worksheet为excel表第一个sheet表的实例化对象

worksheet=workbook.sheet_by_name("各省市")

5、通过sheet名获得sheet对象

worksheet为excel表sheet名为【各省市】的实例化对象

nrows=worksheet.nrows

6、获取该表的总行数

ncols=worksheet.ncols

7、获取该表的总列数

row_data=worksheet.row_values(n)

8、获取该表第n行的内容

col_data=worksheet.col_values(n)

9、获取该表第n列的内容

cell_value=worksheet.cell_value(i,j)

10、获取该表第i行第j列的单元格内容

xlwt(写操作):

import xlwt

1、引入xlwt模块

book=xlwt.Workbook(encoding="utf-8")

2、创建一个Workbook对象,相当于创建了一个Excel文件

sheet = book.add_sheet('test')

3、创建一个sheet对象,一个sheet对象对应Excel文件中的一张表格。

sheet.write(i, j, '各省市')

4、向sheet表的第i行第j列,写入'各省市'

book.save('Data\\36.xls')

5、保存为Data目录下【36.xls】文件

操作xlsx文件

openpyxl(读操作):

import openpyxl

1、引入openpyxl模块

workbook=openpyxl.load_workbook("36.xlsx")

2、打开[36.xlsx]文件,获取excel文件的workbook(工作簿)对象

names=workbook.sheetnames

worksheet=workbook.worksheets[0]

worksheet=workbook["各省市"]

ws = workbook.active

6、获取当前活跃的worksheet,默认就是第一个worksheet

nrows=worksheet.max_row

7、获取该表的总行数

ncols=worksheet.max_column

8、获取该表的总列数

content_A1= worksheet['A1'].value

9、获取该表A1单元格的内容

content_A1=worksheet.cell(row=1,column=1).value

10、获取该表第1列第1列的内容

openpyxl(写操作):

workbook=openpyxl.Workbook()worksheet = workbook.active

3、获取当前活跃的worksheet,默认就是第一个worksheet

worksheet.title="test"

4、worksheet的名称设置为"test"

worksheet = workbook.create_sheet()

5、创建一个新的sheet表,默认插在工作簿末尾

worksheet.cell(i,j,'空')

6、第i行第j列的值改成'空'

worksheet["B2"]="空"

7、将B2的值改成'空'

worksheet.insert_cols(1)

8、在第一列之前插入一列

worksheet.append(["新增","台湾省"])

9、添加行

workbook.save("Data\\36.xlsx")

10、保存为Data目录下【36.xlsx】文件

pandas处理excel文件

pandas操作:

import pandas as pd

1、引入pandas模块

data = pd.read_excel('36.xls')

2、读取[36.xls]或者[36.xlsx]文件

data = pd.read_csv('36.csv')

3、读取[36.csv]文件

data=data.dropna(subset=['店铺'])

4、过滤掉data店铺列有缺失的数据

data.sort_values("客户网名", inplace=True)

5、将data数据按照客户网名列进行从小到大排序

data = pd.read_csv(36.csv, skiprows = [0,1,2],sep = None, skipfooter = 4)

6、读取[36.csv]文件,前三行和后四行的数据略过

data = data.fillna('空')

7、将data中的空白处填充成'空'

data.drop_plicates('订单','first',inplace=True)

8、data中的数据,按照【订单】列做去重处理,保留第一条数据

data=pd.DataFrame(data,columns=['订单','仓库'])

9、只保留data中【订单】【仓库】列的数据

data = data[(data[u'展现量'] > 0)]

10、只保留【展现量】列中大于0的数据

data= data[data["订单"].str.contains('000')]

11、只保留【订单】列中包含'000'的数据

data= data[data["仓库"]=='正品仓']

12、只保留【仓库】列是'正品仓'的数据

xs= data[data["店铺"]=='南极人']['销售额']

13、获取店铺是南极人的销售额数据

data['订单'] = data['订单'].str[3:7]

14、【订单】列的值只保留4-8个字节的值

data["邮资"] = np.where((data['店铺'].str.contains('T|t')) & -(data['仓库'] == '代发仓'), 8, data['邮资'])

15、满足店铺列包含 T 或 t 并且仓库不等于'代发仓'的话,将邮资的值改成8,否则值不变

data = np.array(data).tolist()

16、将data从DataFrame转换成列表

data=pd.DataFrame(data)

17、将列表转换成DataFrame格式

zhan = data[u'展现'].sum().round(2)

18、将data中所有展现列数据求和,并取两位小数

sum=data.groupby(['店铺'])['刷单'].sum()

19、将data中按照店铺对刷单进行求和

counts=data['店铺'].value_counts()

20、将data按照店铺进行计算

avg=data.groupby(['店铺'])['刷单'].mean()

21、将data按照店铺对刷单进行求平均数

count = pd.concat([counts,sum], axis=1, ignore_index=True, sort=True)

22、将counts和sum两个DataFrame进行了组合

count=count.rename(index=str, columns={0: "订单", 1: "成本"})

23、将新生成的DataFrame列名进行修改

data = pd.merge(sum, counts, how='left', left_on='店铺', right_on='店铺')

24、将列表转换成DataFrame格式

from openpyxl import Workbook 

wb=Workbook()  

ws1=wb.active 

data.to_excel('36.xlsx') 

wb.close()

25、data完整的写入到关闭过程,执行此操作的时候【36.xlsx】不能是打开状态

excel格式操作

样式处理:

1、打开【36.xlsx】

sheet=workbook.worksheets[0]

2、将第一个sheet对象赋值给sheet

sheet.column_dimensions['A'].width = 20.0

3、将A列的宽度设置为20

sheet.row_dismensions[1].height = 20.0

4、将第一行的行高设置为20

sheet.merge_cells('A1:A2')

5、将sheet表A1和A2单元格合并

sheet.unmerge_cells('A1:A2')

6、将sheet表A1和A2单元格取消合并

sheet.insert_rows(2,2)

7、将sheet表从第2行插入2行

sheet.insert_cols(3,2)

8、将sheet表从第3列插入2列

sheet.delete_rows(2)

9、删除第2行

sheet.delete_cols(3, 2)

10、将sheet表从第3列开始删除2列

from openpyxl.styles import Font, Border, PatternFill, colors, Alignment

11、分别引入字体、边框、图案填充、颜色、对齐方式

sheet.cell(i,j).font = Font(name='Times New Roman', size=14, bold=True, color=colors.WHITE)

12、设置sheet表第 i 行第 j 列的字体

sheet.cell(i,j).alignment = Alignment(horizontal='center', vertical='center')

13、设置sheet表第 i 行第 j 列的字体对齐方式

left, right, top, bottom = [Side(style='thin', color='000000')] * 4sheet.cell(i,j).border = Border(left=left, right=right, top=top, bottom=bottom)

14、引入边框样式并调用

fill = PatternFill("solid", fgColor="1874CD")sheet.cell(1,j).fill = fill

15、引入填充样式,并调用

import xlrd

from openpyxl import Workbook

from openpyxl import load_workbook

workbook=load_workbook(filename='C:/Users/EDZ/Desktop/工作/2021.08.03/大兄弟.xlsx')

sheet=workbook.active

sheet.insert_cols(idx=1)

sheet.merge_cells(A1:A3)

sheet['A1']=['上海','山东','浙江']

7. python中删除数据框某个行时,语法df.drop('列名',axis=1)中,使用axis=1,axis=1不是表示行么

其实问题理解axis有问题,也许简单的来记就是axis=0代表往跨行(down),而axis=1代表跨列(across),作为方法动作的副词。换句话说:使用0值表示沿着每一列或行标签\索引值向下执行方法;使用1值表示沿着每一行或者列标签模向执行对应的方法。
轴axis用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。
所以问题当中df.drop(‘列名’,
axis=1)代表将‘列名’对应的列标签(们)沿着水平的方向依次删掉。

8. python数组求和

在数组和矩阵中使用sum: 对数组b和矩阵c,代码b.sum(),np.sum(b),c.sum(),np.sum(c)都能将b、c中的所有元素求和并返回单个数值。

但是对于二维数组b,代码b.sum(axis=0)指定对数组b对每列求和,b.sum(axis=1)是对每行求和,返回的都是一维数组(维度降了一维)。

而对应矩阵c,c.sum(axis=0)和c.sum(axis=1)也能实现对列和行的求和,但是返回结果仍是二维矩阵。

# 定义函数,arr 为数组,n 为数组长度,可作为备用参数,这里没有用到。

def_sum(arr,n):

# 使用内置的 sum 函数计算。

return(sum(arr))

# 调用函数

arr=[]

# 数组元素

arr=[12,3,4,15]

# 计算数组元素的长度

n=len(arr)

ans=_sum(arr,n)

# 输出结果

print('数组元素之和为',ans)

(8)pythonsumaxis1扩展阅读:

python数组使用:

python 数组支持所有list操作,包括 .pop、.insert 和 .extend。另外,数组还提供从文件,读取和存入文件的更快的方法,列如如 .frombytes 和 .tofile,如下所示我们定义一个数组。

from array import arrayarr=array('d',(a for a in range(5)))print(arr)。

arr=array('d',(a for a in range(5)))从这个代码中可以看出,一个数组的定义需要传入的不只是值还有类型。

可以是(must be c, b, B, u, h, H, i, I, l, L, f or d)。



热点内容
sql2008服务器 发布:2025-05-15 11:03:27 浏览:305
我的世界pe服务器创造 发布:2025-05-15 10:51:17 浏览:608
移动端打吃鸡要什么配置 发布:2025-05-15 10:48:16 浏览:756
我的世界哪五个服务器被炸了 发布:2025-05-15 10:36:16 浏览:994
ehcache存储对象 发布:2025-05-15 10:35:31 浏览:528
搭建虚拟电脑的服务器 发布:2025-05-15 10:29:31 浏览:270
湖人双核配置哪个最好 发布:2025-05-15 10:09:48 浏览:980
手机热点密码怎么查看 发布:2025-05-15 09:54:47 浏览:109
生意发力云存储 发布:2025-05-15 09:54:45 浏览:617
编写一个shell脚本添加用户 发布:2025-05-15 09:54:43 浏览:506