python3知乎
㈠ 怎样用python设计一个爬虫模拟登陆知乎
两种方法:
1.带cookielib和urllib2
import urllib2
import urllib
import cookielib
def login():
email = raw_input("请输入用户名:")
pwd = raw_input("请输入密码:") data={"email":email,"password":pwd}
post_data=urllib.urlencode(data) cj=cookielib.CookieJar()
opener=urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))headers
={"User-agent":"Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1"}website =
raw_input('请输入网址:')req=urllib2.Request(website,post_data,headers)content=opener.open(req)print
content.read()
2.使用selenium
import selenium import webdriver
browser=webdriver.Firefox()
browser.get("Url")
browser.find_element_by_id(" ").sendkey("username")
browser.find_element_by_id(" ").sendkey("pass")
browser.find_element_by_id(" ").click()
其实我这个最简单了,用的python3,requests, 只需要验证一次,就会保存cookies,下次登录使用cookies登录。
第一步、打开首页获取_xref值,验证图片 第二步、输入账号密码 第三步、看是否需要验证、要则下载验证码图片,手动输入
第四步、判断是否登录成功、登录成功后获取页面值。
㈡ python学编程用python3还是python2
如果是从零学习的话建议从python3直接学习,有基础的话两者分别学习也没有坏处。
从发展的角度未来肯定主流是3.x版本,python2与3只是在部分语法上有区别,有余力的话都学习也没有坏处。
现在在网上2和3的兼容扩展模块也都不少,也根据自己需要的情况进行选择就行~
㈢ 深度学习 python怎么入门 知乎
自学深度学习是一个漫长而艰巨的过程。您需要有很强的线性代数和微积分背景,良好的Python编程技能,并扎实掌握数据科学、机器学习和数据工程。即便如此,在你开始将深度学习应用于现实世界的问题,并有可能找到一份深度学习工程师的工作之前,你可能需要一年多的学习和实践。然而,知道从哪里开始,对软化学习曲线有很大帮助。如果我必须重新学习Python的深度学习,我会从Andrew Trask写的Grokking deep learning开始。大多数关于深度学习的书籍都要求具备机器学习概念和算法的基本知识。除了基本的数学和编程技能之外,Trask的书不需要任何先决条件就能教你深度学习的基础知识。这本书不会让你成为一个深度学习的向导(它也没有做这样的声明),但它会让你走上一条道路,让你更容易从更高级的书和课程中学习。用Python构建人工神经元
大多数深度学习书籍都是基于一些流行的Python库,如TensorFlow、PyTorch或Keras。相比之下,《运用深度学习》(Grokking Deep Learning)通过从零开始、一行一行地构建内容来教你进行深度学习。
《运用深度学习》
你首先要开发一个人工神经元,这是深度学习的最基本元素。查斯克将带领您了解线性变换的基本知识,这是由人工神经元完成的主要计算。然后用普通的Python代码实现人工神经元,无需使用任何特殊的库。
这不是进行深度学习的最有效方式,因为Python有许多库,它们利用计算机的图形卡和CPU的并行处理能力来加速计算。但是用普通的Python编写一切对于学习深度学习的来龙去是非常好的。
在Grokking深度学习中,你的第一个人工神经元只接受一个输入,将其乘以一个随机权重,然后做出预测。然后测量预测误差,并应用梯度下降法在正确的方向上调整神经元的权重。有了单个神经元、单个输入和单个输出,理解和实现这个概念变得非常容易。您将逐渐增加模型的复杂性,使用多个输入维度、预测多个输出、应用批处理学习、调整学习速率等等。
您将通过逐步添加和修改前面章节中编写的Python代码来实现每个新概念,逐步创建用于进行预测、计算错误、应用纠正等的函数列表。当您从标量计算转移到向量计算时,您将从普通的Python操作转移到Numpy,这是一个特别擅长并行计算的库,在机器学习和深度学习社区中非常流行。
Python的深度神经网络
有了这些人造神经元的基本构造块,你就可以开始创建深层神经网络,这基本上就是你将几层人造神经元叠放在一起时得到的结果。
当您创建深度神经网络时,您将了解激活函数,并应用它们打破堆叠层的线性并创建分类输出。同样,您将在Numpy函数的帮助下自己实现所有功能。您还将学习计算梯度和传播错误通过层传播校正跨不同的神经元。
随着您越来越熟悉深度学习的基础知识,您将学习并实现更高级的概念。这本书的特点是一些流行的正规化技术,如早期停止和退出。您还将获得自己版本的卷积神经网络(CNN)和循环神经网络(RNN)。
在本书结束时,您将把所有内容打包到一个完整的Python深度学习库中,创建自己的层次结构类、激活函数和神经网络体系结构(在这一部分,您将需要面向对象的编程技能)。如果您已经使用过Keras和PyTorch等其他Python库,那么您会发现最终的体系结构非常熟悉。如果您没有,您将在将来更容易地适应这些库。
在整本书中,查斯克提醒你熟能生巧;他鼓励你用心编写自己的神经网络,而不是复制粘贴任何东西。
代码库有点麻烦
并不是所有关于Grokking深度学习的东西都是完美的。在之前的一篇文章中,我说过定义一本好书的主要内容之一就是代码库。在这方面,查斯克本可以做得更好。
在GitHub的Grokking深度学习库中,每一章都有丰富的jupiter Notebook文件。jupiter Notebook是一个学习Python机器学习和深度学习的优秀工具。然而,jupiter的优势在于将代码分解为几个可以独立执行和测试的小单元。Grokking深度学习的一些笔记本是由非常大的单元格组成的,其中包含大量未注释的代码。
这在后面的章节中会变得尤其困难,因为代码会变得更长更复杂,在笔记本中寻找自己的方法会变得非常乏味。作为一个原则问题,教育材料的代码应该被分解成小单元格,并在关键区域包含注释。
此外,Trask在Python 2.7中编写了这些代码。虽然他已经确保了代码在Python 3中也能顺畅地工作,但它包含了已经被Python开发人员弃用的旧编码技术(例如使用“for i in range(len(array))”范式在数组上迭代)。
更广阔的人工智能图景
Trask已经完成了一项伟大的工作,它汇集了一本书,既可以为初学者,也可以为有经验的Python深度学习开发人员填补他们的知识空白。
但正如泰温·兰尼斯特(Tywin Lannister)所说(每个工程师都会同意),“每个任务都有一个工具,每个工具都有一个任务。”深度学习并不是一根可以解决所有人工智能问题的魔杖。事实上,对于许多问题,更简单的机器学习算法,如线性回归和决策树,将表现得和深度学习一样好,而对于其他问题,基于规则的技术,如正则表达式和几个if-else子句,将优于两者。
关键是,你需要一整套工具和技术来解决AI问题。希望Grokking深度学习能够帮助你开始获取这些工具。
你要去哪里?我当然建议选择一本关于Python深度学习的深度书籍,比如PyTorch的深度学习或Python的深度学习。你还应该加深你对其他机器学习算法和技术的了解。我最喜欢的两本书是《动手机器学习》和《Python机器学习》。
你也可以通过浏览机器学习和深度学习论坛,如r/MachineLearning和r/deeplearning subreddits,人工智能和深度学习Facebook组,或通过在Twitter上关注人工智能研究人员来获取大量知识。
AI的世界是巨大的,并且在快速扩张,还有很多东西需要学习。如果这是你关于深度学习的第一本书,那么这是一个神奇旅程的开始。
㈣ python图像处理库 哪个好 知乎
1.scikit-image
scikit-image是一个开源的Python包,适用于numpy数组。它实现了用于研究,教育和工业应用的算法和实用工具。即使是那些刚接触Python生态系统的人,它也是一个相当简单直接的库。此代码是由活跃的志愿者社区编写的,具有高质量和同行评审的性质。
2.Numpy
Numpy是Python编程的核心库之一,并为数组提供支持。图像本质上是包含数据点像素的标准Numpy数组。因此,我们可以通过使用基本的NumPy操作,例如切片、掩膜和花式索引,来修改图像的像素值。可以使用skimage加载图像并使用matplotlib显示图像。
3.Scipy
scipy是Python的另一个类似Numpy的核心科学模块,可用于基本的图像操作和处理任务。特别是子模块scipy.ndimage,提供了在n维NumPy数组上操作的函数。该包目前包括线性和非线性滤波,二值形态学,B样条插值和对象测量等功能函数。
4. PIL/Pillow
PIL是Python编程语言的一个免费库,它支持打开、操作和保存许多不同的文件格式的图像。然而,随着2009年的最后一次发布,它的开发停滞不前。但幸运的是还有Pillow,一个PIL积极开发的且更容易安装的分支,它能运行在所有主要的操作系统,并支持Python3。这个库包含了基本的图像处理功能,包括点运算、使用一组内置卷积核的滤波和色彩空间的转换。
5.OpenCV-Python
OpenCV是计算机视觉应用中应用最广泛的库之一
。OpenCV-Python是OpenCV的python版API。OpenCV-Python的优点不只有高效,这源于它的内部组成是用C/C++编写的,而且它还容易编写和部署。这使得它成为执行计算密集型计算机视觉程序的一个很好的选择。
6.SimpleCV
SimpleCV也是一个用于构建计算机视觉应用程序的开源框架。有了它,你就可以访问几个高性能的计算机视觉库,如OpenCV,而且不需要先学习了解位深度、文件格式、颜色空间等。它的学习曲线大大小于OpenCV,正如它们的口号所说“计算机视觉变得简单”。
7.Mahotas
Mahotas是另一个计算机视觉和图像处理的Python库。它包括了传统的图像处理功能例如滤波和形态学操作以及更现代的计算机视觉功能用于特征计算,包括兴趣点检测和局部描述符。该接口是Python语言,适合于快速开发,但是算法是用C语言实现的,并根据速度进行了调优。Mahotas库速度快,代码简洁,甚至具有最小的依赖性。
8.SimpleITK
ITK或者Insight Segmentation and Registration
Toolkit是一个开源的跨平台系统,为开发人员提供了一套广泛的图像分析软件工具
。其中,SimpleITK是建立在ITK之上的简化层,旨在促进其在快速原型设计、教育、解释语言中的应用。SimpleITK是一个图像分析工具包,包含大量支持一般过滤操作、图像分割和匹配的组件。SimpleITK本身是用C++写的,但是对于包括Python以内的大部分编程语言都是可用的。
9.pgmagick
pgmagick是GraphicsMagick库的一个基于python的包装。GraphicsMagick图像处理系统有时被称为图像处理的瑞士军刀。它提供了一个具有强大且高效的工具和库集合,支持以88种主要格式读取、写入和操作图像。
10.Pycairo
Pycairo是图像处理库cairo的一组Python捆绑。Cairo是一个用于绘制矢量图形的2D图形库。矢量图形很有趣,因为它们在调整大小或转换时不会失去清晰度。Pycairo是cairo的一组绑定,可用于从Python调用cairo命令。
㈤ 如何学习python知乎
对于Python的学习人员需要掌握以下技术。
1.网络编程。
网络编程在生活和开发中无处不在,哪里有通讯就有网络,它可以称为是一切开发的"基石"。对于所有编程开发人员必须要知其然并知其所以然,所以网络部分将从协议、封包、解包等底层进行深入剖析。
2. 爬虫开发。
将网络一切数据作为资源,通过自动化程序进行有针对性的数据采集以及处理。爬虫开发项目包含跨越防爬虫策略、高性能异步IO、分布式爬虫等,并针对Scrapy框架源码进行深入剖析,从而理解其原理并实现自定义爬虫框架。
3.Web开发。
Web开发包含前端以及后端两大部分,前端部分,带你从"黑白"到"彩色"世界,手把手开发动态网页;后端部分,带你从10行代码开始到n万行来实现并使用自己的微型Web框架,框架讲解中涵盖了数据、组件、安全等多领域的知识,从底层了解其工作原理并可驾驭任何业内主流的Web框架。
4. IT自动化开发。
IT运维自动化是一组将静态的设备结构转化为根据IT服务需求动态弹性响应的策略,目的就是实现减少人工干预、降低人员成本以及出错概率,真刀真枪的带你开发企业中最常用的项目,从设计层面、框架选择、灵活性、扩展性、故障处理、以及如何优化等多个层面接触真实的且来源于各大互联网公司真实案例,如:堡垒机、CMDB、全网监控、主机管理等。
5. 金融分析。
金融分析包含金融知识和Python相关模块的学习,手把手带你从金融小白到开发量化交易策略的大拿。学习内容囊括Numpy\Pandas\Scipy数据分析模块等,以及常见金融分析策略如"双均线"、"周规则交易"、"羊驼策略"、"Dual Thrust 交易策略"等,让梦想照进现实,进入金融行业不再是个梦。
6. 人工智能+机器学习。
人工智能时代来临,率先引入深度机器学习课程。其中包含机器学习的基础概念以及常用知识,如:分类、聚类、回归、神经网络以及常用类库,并根据身边事件作为案例,一步一步经过预处理、建模、训练以及评估和参调等。人工智能是未来科技发展的新趋势,Python作为最主要的编程语言,势必有很好的发展前景,现在学习Python也是一个很好的机会。
㈥ Python3零基础自学方法
Python3零基础自学方法?
Python是人工智能(AI)和数据分析第一语言。
不但要学写代码,还要学会看代码,更要会调试代码。读懂你自己程序的报错信息。再去找些github上的程序,读懂别人的代码。
学会查官方文档,用好搜索引擎和开发者社区。
学习任何知识最重要的都是兴趣,如果经过一段时间的学习感觉不喜欢,那可能强迫自己学习是很痛苦的,效果也不会好,毕竟这很可能就是以后很多年生存的技能。
所以,想要学好Python,你一定要先爱上Python!
㈦ python最佳入门教程(1): python的安装
本教程基于python3.x, 是针对初学者的一系列python入门教程,在知乎上常有人问我计算机该怎么学,如何自学编程,笔者也是通过自学编程而进入IT这一行业的,回顾入行的这几年,从音视频流媒体辗转到人工智能深度学习,机器视觉,我是下了不少苦心的,对于如何学习有自己的一套理论和实践方法,很多人自言学编程不得其门,把学不会归咎于天分,其实芸芸众生,智力无别,你现在所看到的是技术大牛们一个个超凡绝顶(然知此绝顶非彼绝顶),看不到的是曾经的他们,也在每个昼夜里用心苦学。再者学一门技术,需要勤学刻苦,是需要讲究方法和基础的,方法对了就事半功倍,所谓的天才也无不是建立在扎实的基础之上。
在windows中安装python
首先打开python官网https://www.python.org/,点击页面downloads导航按钮,下载windows最新的基于web安装的安装器,右键以管理员身份运行 安装包,会出现如下界面:
将Add Python 3.7 to PATH 进行勾选,勾选此项的目的在于将python解释器加入系统环境变量,则在后续的python开发中可直接在windows 命令行中执行python脚本。所谓的环境变量是系统运行环境的一系列参数,比如这里的系统环境变量是PATH,PATH保存了与路径相关的参数,系统在路径查找中,会对PATH保存的路径进行搜索。
点击install Now按钮执行python的安装
打开windows命令行界面(按windows键输入cmd命令),输入python -V,出现python版本的相关输出,即表示安装成功。
在Linux系统中安装python
笔者的系统是CentOS, Linux系统默认有安装python,但是其版本是2.x,在这里笔者以源码安装的形式来安装python 3.X。首先进入python源码包页面 点击下载最新的gzip格式的python源码包,上传到服务器然后进行解压,解压后的目录结构如下图所示:
Linux中的configure与make
configure是Linux中的脚本配置工具,用来对源码的当前安装环境进行检测,若检测无误,会在当前目录生成一个供源码编译的Makefile脚本文件。
make是Linux系统下的编译安装工具,用来解释执行makefile文件中的脚本命令,编译命令。
现在我们开始编译安装python
(1) 在当前目录执行./configure(2) 输入 make && sudo make install
若无指定安装目录,python会被默认安装在/usr/local目录中, 读者可以执行./configure --prefix=“你自定义的安装目录”来配置安装路径。安装完毕以后进入/usr/local/bin目录,输入 “python3.x -V” (这里的python3.x为你所安装的python版本),若出现与python版本的相关输出,即表示安装成功。
为安装的python设置软链接
安装的python可以以绝对路径的方式来执行,每次敲一大段路径来执行python未免麻烦,通常我们会给安装的python设置软链接,这里的软链接类似于windows的快捷方式。
输入以下命令来给python设置软链接,笔者安装的版本是python3.7, pip是python的包管理工具,会在教程的后续章节中进行详细讲解。
ln -s /usr/bin/python3 /usr/local/bin/python3.7 # 表示设置python3 为 /usr/local/bin/python3.7的快捷方式ln -s /usr/bin/pip3 /usr/local/bin/pip3.7 # 表示设置pip3 为 /usr/local/bin/pip3.7的快捷方式
㈧ 为什么python3不兼容 知乎
灵活、方便、高效、库全、上手快,经常编程就会体会到里面的好了。 同等情况下,一段程序不要求语言,我都会用Python写。 nostmabole手打,望采纳。
㈨ centos 7 为什么 python3 知乎
1–下载python3.5的包
在python官网https://www.python.org/downloads/release/python-351/
下载tgz包就可以了。其实下面的2个包其一都可以使用
Python-3.5.1.tgz (这个不是编译过的东西,不能解压之后直接使用)
Python-3.5.1.tar.xz (这个是pthon的源码)
2–解压文件
tar -xf Python-3.5.1.tgz
3–解压之后有一个目录Python-3.5.1,进入目录
cd Python-3.5.1
4–开始安装,使用编译的方法进行安装
在python的目录中有一个README文件,他介绍了如何安装python。 但是我们要指定这个安装目录
mkdir /usr/python3.5./configure --prefix=/usr/python3.5makemake install
说明./configure命令执行完毕之后创建一个文件creating Makefile,供下面的make命令使用 执行make install之后就会把程序安装到我们指定的目录中去
5–让系统默认使用Python 3.5.1
在/usr/bin中有python、python2、python2.7三个文件依次指向后者,我们将python备份
cd /usr/bin mv python python.bak ln -s /usr/python3.5/bin/python3 /usr/bin/python
注意我们编译安装之后在/usr/python3.5/bin下会自动生成一个python3的连接,他指向bin目录中的python3.5
6–因为yum使用python2,因此替换为python3后可能无法正常工作,继续使用这个python2.7.5
因此修改yum配置文件(sudo vi /usr/bin/yum)。 把文件头部的#!/usr/bin/python改成#!/usr/bin/python2.7保存退出即可
㈩ request库用python3怎么伪装header爬取知乎
可以尝试安装一个简单实用的库:fake-useragent
网址链接:https://pypi.python.org/pypi/fake-useragent
下载后,在命令行里面输入:pip install fake-useragent就可以了
尝试输入下面代码:
from fake_useragent import UserAgent
ua = UserAgent()
#ie浏览器的user agent
print(ua.ie)