当前位置:首页 » 编程语言 » python优化算法

python优化算法

发布时间: 2022-12-09 12:08:47

‘壹’ 有没有用python实现的遗传算法优化BP神经网络的代码

下面是函数实现的代码部分:
clc
clear all
close all
%% 加载神经网络的训练样本 测试样本每列一个样本 输入P 输出T,T是标签
%样本数据就是前面问题描述中列出的数据
%epochs是计算时根据输出误差返回调整神经元权值和阀值的次数
load data
% 初始隐层神经元个数
hiddennum=31;
% 输入向量的最大值和最小值
threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];
inputnum=size(P,1); % 输入层神经元个数
outputnum=size(T,1); % 输出层神经元个数
w1num=inputnum*hiddennum; % 输入层到隐层的权值个数
w2num=outputnum*hiddennum;% 隐层到输出层的权值个数
N=w1num+hiddennum+w2num+outputnum; %待优化的变量的个数
%% 定义遗传算法参数
NIND=40; %个体数目
MAXGEN=50; %最大遗传代数
PRECI=10; %变量的二进制位数
GGAP=0.95; %代沟
px=0.7; %交叉概率
pm=0.01; %变异概率
trace=zeros(N+1,MAXGEN); %寻优结果的初始值
FieldD=[repmat(PRECI,1,N);repmat([-0.5;0.5],1,N);repmat([1;0;1;1],1,N)]; %区域描述器
Chrom=crtbp(NIND,PRECI*N); %初始种群
%% 优化
gen=0; %代计数器
X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换
ObjV=Objfun(X,P,T,hiddennum,P_test,T_test); %计算目标函数值
while gen

‘贰’ 如何用python实现smo算法

在ml中常见的优化算法基本都是: sgd 这种对每个单变量进行同步更新 als(交替最小二乘)/smo(序列最小优化)这种交替(固定一个单变量,优化另一个单变量)思路。如果你熟悉smo,那么als就也可以理解了。 其它(希望更多的人补充)

‘叁’ 学习多目标优化需要掌握哪些python知识

多目标优化

目标优化问题一般地就是指通过一定的优化算法获得目标函数的最优化解。当优化的目标函数为一个时称之为单目标优化(Single-
objective Optimization Problem,
SOP)。当优化的目标函数有两个或两个以上时称为多目标优化(Multi-objective Optimization Problem,
MOP)。不同于单目标优化的解为有限解,多目标优化的解通常是一组均衡解。

多目标优化算法归结起来有传统优化算法和智能优化算法两大类。
1. 传统优化算法包括加权法、约束法和线性规划法等,实质上就是将多目标函数转化为单目标函数,通过采用单目标优化的方法达到对多目标函数的求解。
2. 智能优化算法包括进化算法(Evolutionary Algorithm, 简称EA)、粒子群算法(Particle Swarm Optimization, PSO)等。

Pareto最优解:

若x*∈C*,且在C中不存在比x更优越的解x,则称x*是多目标最优化模型式的Pareto最优解,又称为有效解。
一般来说,多目标优化问题并不存在一个最优解,所有可能的解都称为非劣解,也称为Pareto解。传统优化技术一般每次能得到Pareo解集中的一个,而
用智能算法来求解,可以得到更多的Pareto解,这些解构成了一个最优解集,称为Pareto最优解。它是由那些任一个目标函数值的提高都必须以牺牲其
他目标函数值为代价的解组成的集合,称为Pareto最优域,简称Pareto集。

Pareto有效(最优)解非劣解集是指由这样一些解组成的集合:与集合之外的任何解相比它们至少有一个目标函数比集合之外的解好。

求解多目标优化问题最有名的就是NSGA-II了,是多目标遗传算法,但其对解的选择过程可以用在其他优化算法上,例如粒子群,蜂群等等。这里简单介绍一下NSGA-II的选择算法。主要包含三个部分:
1. 快速非支配排序
要先讲一下支配的概念,对于解X1和X2,如果X1对应的所有目标函数都不比X2大(最小问题),且存在一个目标值比X2小,则X2被X1支配。
快速非支配排序是一个循环分级过程:首先找出群体中的非支配解集,记为第一非支配层,irank=1(irank是个体i的非支配值),将其从群体中除去,继续寻找群体中的非支配解集,然后irank=2。
2. 个体拥挤距离
为了使计算结果在目标空间比较均匀的分布,维持种群多样性,对每个个体计算拥挤距离,选择拥挤距离大的个体,拥挤距离的定义为:
L[i]d=L[i]d+(L[i+1]m−L[i−1]m)/(fmaxm−fminm)
L[i+1]m是第i+1个个体的第m目标函数值,fmaxm 和 fminm是集合中第m个目标函数的最大和最小值。
3. 精英策略选择
精英策略就是保留父代中的优良个体直接进入子代,防止获得的Pareto最优解丢失。将第t次产生的子代种群和父代种群合并,然后对合并后的新种群进行非支配排序,然后按照非支配顺序添加到规模为N的种群中作为新的父代。

‘肆’ python人脸识别所用的优化算法有什么

python三步实现人脸识别

Face Recognition软件包

这是世界上最简单的人脸识别库了。你可以通过Python引用或者命令行的形式使用它,来管理和识别人脸。

该软件包使用dlib中最先进的人脸识别深度学习算法,使得识别准确率在《Labled Faces in the world》测试基准下达到了99.38%。

它同时提供了一个叫face_recognition的命令行工具,以便你可以用命令行对一个文件夹中的图片进行识别操作。

特性

在图片中识别人脸

找到图片中所有的人脸

这里是一个例子:

1
  • https://github.com/ageitgey/face_recognition/blob/master/examples/recognize_faces_in_picture
  • ‘伍’ Python怎么做最优化

    一、概观scipy中的optimize子包中提供了常用的最优化算法函数实现。我们可以直接调用这些函数完成我们的优化问题。optimize中函数最典型的特点就是能够从函数名称上看出是使用了什么算法。下面optimize包中函数的概览:1.非线性最优化fmin -- 简单Nelder-Mead算法fmin_powell -- 改进型Powell法fmin_bfgs -- 拟Newton法fmin_cg -- 非线性共轭梯度法fmin_ncg -- 线性搜索Newton共轭梯度法leastsq -- 最小二乘2.有约束的多元函数问题fmin_l_bfgs_b ---使用L-BFGS-B算法fmin_tnc ---梯度信息fmin_cobyla ---线性逼近fmin_slsqp ---序列最小二乘法nnls ---解|| Ax - b ||_2 for x=03.全局优化anneal ---模拟退火算法brute --强力法4.标量函数fminboundbrentgoldenbracket5.拟合curve_fit-- 使用非线性最小二乘法拟合6.标量函数求根brentq ---classic Brent (1973)brenth ---A variation on the classic Brent(1980)ridder ---Ridder是提出这个算法的人名bisect ---二分法newton ---牛顿法fixed_point7.多维函数求根fsolve ---通用broyden1 ---Broyden’s first Jacobian approximation.broyden2 ---Broyden’s second Jacobian approximationnewton_krylov ---Krylov approximation for inverse Jacobiananderson ---extended Anderson mixingexcitingmixing ---tuned diagonal Jacobian approximationlinearmixing ---scalar Jacobian approximationdiagbroyden ---diagonal Broyden Jacobian approximation8.实用函数line_search ---找到满足强Wolfe的alpha值check_grad ---通过和前向有限差分逼近比较检查梯度函数的正确性二、实战非线性最优化fmin完整的调用形式是:fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None)不过我们最常使用的就是前两个参数。一个描述优化问题的函数以及初值。后面的那些参数我们也很容易理解。如果您能用到,请自己研究。下面研究一个最简单的问题,来感受这个函数的使用方法:f(x)=x**2-4*x+8,我们知道,这个函数的最小值是4,在x=2的时候取到。from scipy.optimize import fmin #引入优化包def myfunc(x):return x**2-4*x+8 #定义函数x0 = [1.3] #猜一个初值xopt = fmin(myfunc, x0) #求解print xopt #打印结果运行之后,给出的结果是:Optimization terminated successfully.Current function value: 4.000000Iterations: 16Function evaluations: 32[ 2.00001953]程序准确的计算得出了最小值,不过最小值点并不是严格的2,这应该是由二进制机器编码误差造成的。除了fmin_ncg必须提供梯度信息外,其他几个函数的调用大同小异,完全类似。我们不妨做一个对比:from scipy.optimize import fmin,fmin_powell,fmin_bfgs,fmin_cgdef myfunc(x):return x**2-4*x+8x0 = [1.3]xopt1 = fmin(myfunc, x0)print xopt1printxopt2 = fmin_powell(myfunc, x0)print xopt2printxopt3 = fmin_bfgs(myfunc, x0)print xopt3printxopt4 = fmin_cg(myfunc,x0)print xopt4给出的结果是:Optimization terminated successfully.Current function value: 4.000000Iterations: 16Function evaluations: 32[ 2.00001953]Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 531.99999999997Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 12Gradient evaluations: 4[ 2.00000001]Optimization terminated successfully.Current function value: 4.000000Iterations: 2Function evaluations: 15Gradient evaluations: 5[ 2.]我们可以根据给出的消息直观的判断算法的执行情况。每一种算法数学上的问题,请自己看书学习。个人感觉,如果不是纯研究数学的工作,没必要搞清楚那些推导以及定理云云。不过,必须了解每一种算法的优劣以及能力所及。在使用的时候,不妨多种算法都使用一下,看看效果分别如何,同时,还可以互相印证算法失效的问题。在from scipy.optimize import fmin之后,就可以使用help(fmin)来查看fmin的帮助信息了。帮助信息中没有例子,但是给出了每一个参数的含义说明,这是调用函数时候的最有价值参考。有源码研究癖好的,或者当你需要改进这些已经实现的算法的时候,可能需要查看optimize中的每种算法的源代码。在这里:https:/ / github. com/scipy/scipy/blob/master/scipy/optimize/optimize.py聪明的你肯定发现了,顺着这个链接往上一级、再往上一级,你会找到scipy的几乎所有源码!

    ‘陆’ python 循环内要处理大量数据时怎么优化

    先尝试优化程序的时间复杂度,寻找更有效的算法

    确保了算法复杂度在可接受范围之内后,开始进行常数优化,以下是Python优化的几个小技巧:

    1. 实测表明,for语句一般比while语句效率更高

    2. 同样实测表明,xrange一般比range要高效

    3. 如果要存储动态数据(即有可能频繁变动的数据)少用list和str,多用dict

    4. 实测表明,

      两个str的连接效率从高到低+=,join,+

      多个str的连接效率从高到低join,+=,+

    5. 尽可能使用列表解析表达式和生成器表达式代替循环一遍来构建list

    6. 避免使用global关键字,无论是从代码效率还是可移植性的方面考虑

    ‘柒’ Python实现基于遗传算法的排课优化

    排课问题的本质是将课程、教师和学生在合适的时间段内分配到合适的教室中,涉及到的因素较多,是一个多目标的调度问题,在运筹学中被称为时间表问题(Timetable Problem,TTP)。设一个星期有n个时段可排课,有m位教师需要参与排课,平均每位教师一个星期上k节课,在不考虑其他限制的情况下,能够推出的可能组合就有 种,如此高的复杂度是目前计算机所无法承受的。因此众多研究者提出了多种其他排课算法,如模拟退火,列表寻优搜索和约束满意等。

    Github : https://github.com/xiaochus/GeneticClassSchele

    遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法的流程如下所示:

    遗传算法首先针对待解决问题随机生成一组解,我们称之为种群(Population)。种群中的每个个体都是问题的解,在优化的过程中,算法会计算整个种群的成本函数,从而得到一个与种群相关的适应度的序列。如下图所示:

    为了得到新的下一代种群,首先根据适应度对种群进行排序,从中挑选出最优的几个个体加入下一代种群,这一个过程也被称为精英选拔。新种群余下的部分通过对选拔出来的精英个体进行修改得到。

    对种群进行修改的方法参考了生物DAN进化的方法,一般使用两种方法: 变异 和 交叉 。 变异 的做法是对种群做一个微小的、随机的改变。如果解的编码方式是二进制,那么就随机选取一个位置进行0和1的互相突变;如果解的编码方式是十进制,那么就随机选取一个位置进行随机加减。 交叉 的做法是随机从最优种群中选取两个个体,以某个位置为交叉点合成一个新的个体。

    经过突变和交叉后我们得到新的种群(大小与上一代种群一致),对新种群重复重复上述过程,直到达到迭代次数(失败)或者解的适应性达到我们的要求(成功),GA算法就结束了。

    算法实现

    首先定义一个课程类,这个类包含了课程、班级、教师、教室、星期、时间几个属性,其中前三个是我们自定义的,后面三个是需要算法来优化的。

    接下来定义cost函数,这个函数用来计算课表种群的冲突。当被测试课表冲突为0的时候,这个课表就是个符合规定的课表。冲突检测遵循下面几条规则:

    使用遗传算法进行优化的过程如下,与上一节的流程图过程相同。

    init_population :随机初始化不同的种群。
    mutate :变异操作,随机对 Schele 对象中的某个可改变属性在允许范围内进行随机加减。
    crossover :交叉操作,随机对两个对象交换不同位置的属性。
    evolution :启动GA算法进行优化。

    实验结果

    下面定义了3个班,6种课程、教师和3个教室来对排课效果进行测试。

    优化结果如下,迭代到第68次时,课程安排不存在任何冲突。

    选择1203班的课表进行可视化,如下所示,算法合理的安排了对应的课程。

    ‘捌’ 用python处理一个1G左右的数据集,运行速度非常慢,怎样优化

    第一个办法,降低数据集的大小。python处理数据,如果数据结构中的数据超过2GB,通常都会很慢。如何降低数据集大小,需要修改算法。

    第二个办法,将数据结构采用数组array或者是numarray存贮。这样内存数量与查找效率都会提高。尽量不要使用大的dict。使用一个省内存的blist代替list

    第三个办法,将数据通过共享内存,让C++扩展模块来处理。

    常用的是第二种办法。就是换个数据结构就可以提高效率。

    ‘玖’ 建议收藏!10 种 Python 聚类算法完整操作示例

    聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。完成本教程后,你将知道:

    聚类分析,即聚类,是一项无监督的机器学习任务。它包括自动发现数据中的自然分组。与监督学习(类似预测建模)不同,聚类算法只解释输入数据,并在特征空间中找到自然组或群集。

    群集通常是特征空间中的密度区域,其中来自域的示例(观测或数据行)比其他群集更接近群集。群集可以具有作为样本或点特征空间的中心(质心),并且可以具有边界或范围。

    聚类可以作为数据分析活动提供帮助,以便了解更多关于问题域的信息,即所谓的模式发现或知识发现。例如:

    聚类还可用作特征工程的类型,其中现有的和新的示例可被映射并标记为属于数据中所标识的群集之一。虽然确实存在许多特定于群集的定量措施,但是对所识别的群集的评估是主观的,并且可能需要领域专家。通常,聚类算法在人工合成数据集上与预先定义的群集进行学术比较,预计算法会发现这些群集。

    有许多类型的聚类算法。许多算法在特征空间中的示例之间使用相似度或距离度量,以发现密集的观测区域。因此,在使用聚类算法之前,扩展数据通常是良好的实践。

    一些聚类算法要求您指定或猜测数据中要发现的群集的数量,而另一些算法要求指定观测之间的最小距离,其中示例可以被视为“关闭”或“连接”。因此,聚类分析是一个迭代过程,在该过程中,对所识别的群集的主观评估被反馈回算法配置的改变中,直到达到期望的或适当的结果。scikit-learn 库提供了一套不同的聚类算法供选择。下面列出了10种比较流行的算法:

    每个算法都提供了一种不同的方法来应对数据中发现自然组的挑战。没有最好的聚类算法,也没有简单的方法来找到最好的算法为您的数据没有使用控制实验。在本教程中,我们将回顾如何使用来自 scikit-learn 库的这10个流行的聚类算法中的每一个。这些示例将为您复制粘贴示例并在自己的数据上测试方法提供基础。我们不会深入研究算法如何工作的理论,也不会直接比较它们。让我们深入研究一下。

    在本节中,我们将回顾如何在 scikit-learn 中使用10个流行的聚类算法。这包括一个拟合模型的例子和可视化结果的例子。这些示例用于将粘贴复制到您自己的项目中,并将方法应用于您自己的数据。

    1.库安装

    首先,让我们安装库。不要跳过此步骤,因为你需要确保安装了最新版本。你可以使用 pip Python 安装程序安装 scikit-learn 存储库,如下所示:

    接下来,让我们确认已经安装了库,并且您正在使用一个现代版本。运行以下脚本以输出库版本号。

    运行该示例时,您应该看到以下版本号或更高版本。

    2.聚类数据集

    我们将使用 make _ classification ()函数创建一个测试二分类数据集。数据集将有1000个示例,每个类有两个输入要素和一个群集。这些群集在两个维度上是可见的,因此我们可以用散点图绘制数据,并通过指定的群集对图中的点进行颜色绘制。这将有助于了解,至少在测试问题上,群集的识别能力如何。该测试问题中的群集基于多变量高斯,并非所有聚类算法都能有效地识别这些类型的群集。因此,本教程中的结果不应用作比较一般方法的基础。下面列出了创建和汇总合成聚类数据集的示例。

    运行该示例将创建合成的聚类数据集,然后创建输入数据的散点图,其中点由类标签(理想化的群集)着色。我们可以清楚地看到两个不同的数据组在两个维度,并希望一个自动的聚类算法可以检测这些分组。

    已知聚类着色点的合成聚类数据集的散点图接下来,我们可以开始查看应用于此数据集的聚类算法的示例。我已经做了一些最小的尝试来调整每个方法到数据集。3.亲和力传播亲和力传播包括找到一组最能概括数据的范例。

    它是通过 AffinityPropagation 类实现的,要调整的主要配置是将“ 阻尼 ”设置为0.5到1,甚至可能是“首选项”。下面列出了完整的示例。

    运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法取得良好的结果。

    数据集的散点图,具有使用亲和力传播识别的聚类

    4.聚合聚类

    聚合聚类涉及合并示例,直到达到所需的群集数量为止。它是层次聚类方法的更广泛类的一部分,通过 AgglomerationClustering 类实现的,主要配置是“ n _ clusters ”集,这是对数据中的群集数量的估计,例如2。下面列出了完整的示例。

    运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组。

    使用聚集聚类识别出具有聚类的数据集的散点图

    5.BIRCHBIRCH

    聚类( BIRCH 是平衡迭代减少的缩写,聚类使用层次结构)包括构造一个树状结构,从中提取聚类质心。

    它是通过 Birch 类实现的,主要配置是“ threshold ”和“ n _ clusters ”超参数,后者提供了群集数量的估计。下面列出了完整的示例。

    运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个很好的分组。

    使用BIRCH聚类确定具有聚类的数据集的散点图

    6.DBSCANDBSCAN

    聚类(其中 DBSCAN 是基于密度的空间聚类的噪声应用程序)涉及在域中寻找高密度区域,并将其周围的特征空间区域扩展为群集。

    它是通过 DBSCAN 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。

    运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,尽管需要更多的调整,但是找到了合理的分组。

    使用DBSCAN集群识别出具有集群的数据集的散点图

    7.K均值

    K-均值聚类可以是最常见的聚类算法,并涉及向群集分配示例,以尽量减少每个群集内的方差。

    它是通过 K-均值类实现的,要优化的主要配置是“ n _ clusters ”超参数设置为数据中估计的群集数量。下面列出了完整的示例。

    运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组,尽管每个维度中的不等等方差使得该方法不太适合该数据集。

    使用K均值聚类识别出具有聚类的数据集的散点图

    8.Mini-Batch

    K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的样本而不是整个数据集对群集质心进行更新,这可以使大数据集的更新速度更快,并且可能对统计噪声更健壮。

    它是通过 MiniBatchKMeans 类实现的,要优化的主配置是“ n _ clusters ”超参数,设置为数据中估计的群集数量。下面列出了完整的示例。

    运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,会找到与标准 K-均值算法相当的结果。

    带有最小批次K均值聚类的聚类数据集的散点图

    9.均值漂移聚类

    均值漂移聚类涉及到根据特征空间中的实例密度来寻找和调整质心。

    它是通过 MeanShift 类实现的,主要配置是“带宽”超参数。下面列出了完整的示例。

    运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以在数据中找到一组合理的群集。

    具有均值漂移聚类的聚类数据集散点图

    10.OPTICSOPTICS

    聚类( OPTICS 短于订购点数以标识聚类结构)是上述 DBSCAN 的修改版本。

    它是通过 OPTICS 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。

    运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法在此数据集上获得合理的结果。

    使用OPTICS聚类确定具有聚类的数据集的散点图

    11.光谱聚类

    光谱聚类是一类通用的聚类方法,取自线性线性代数。

    它是通过 Spectral 聚类类实现的,而主要的 Spectral 聚类是一个由聚类方法组成的通用类,取自线性线性代数。要优化的是“ n _ clusters ”超参数,用于指定数据中的估计群集数量。下面列出了完整的示例。

    运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,找到了合理的集群。

    使用光谱聚类聚类识别出具有聚类的数据集的散点图

    12.高斯混合模型

    高斯混合模型总结了一个多变量概率密度函数,顾名思义就是混合了高斯概率分布。它是通过 Gaussian Mixture 类实现的,要优化的主要配置是“ n _ clusters ”超参数,用于指定数据中估计的群集数量。下面列出了完整的示例。

    运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我们可以看到群集被完美地识别。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的。

    使用高斯混合聚类识别出具有聚类的数据集的散点图

    在本文中,你发现了如何在 python 中安装和使用顶级聚类算法。具体来说,你学到了:

    ‘拾’ #Python干货#python实现——最优化算法

    函数详见rres,此代码使该算法运行了两次

    收获:
    这是我第一个实现的代码。学习完该算法以后,逻辑框架基本上就有了,剩下需要明确的就是对应的python的语言。于是我就开始了查找“如何定义函数”(详见mofan的优酷),“循环体”和“if条件语句”的格式(https://blog.csdn.net/qq_39407518/article/details/79822498)“数学符号”(详见mofan的优酷),以及print的使用

    1.def是python中指定义,一般用来定义函数,如果需要深度学习搭建网络可用来定义网络。值得注意的一点是

    我不清楚为什么,但是如果没有加的话,那个函数公式就是一个花瓶,就像一个结果输不出去。

    2.最坑的就是逻辑。一开始逻辑没理清楚,或者说在代码上有疏漏,导致我将left和right放在了循环体里,结果可想而知。不过也是因为这个错误,我知道pycharm中的debug怎么用,挺简单的,网络一下就出来了。

    3.不知道什么原因,看的莫烦视频中的print多个变量一起输出是没有办法在我的pycharm中使用的,出来的结果很奇怪。可能是因为我是win10不是ios吧。print如果多个变量一起输出必须是print("名字:%s,名字2:%s"%(a,b))结果输出就是名字:a ,名字2:b

    关于python中数据变量。第一遍运行结果出现很明显不对,于是我采用了debug。结果发现,mid1处一直为1而不是1.5,于是就开始了解数据变量。起初我猜测python默认所有变量为整型,但是根据二分法的结果我意识到此猜测不对,所以要改整个file的变量格式没有必要。所以我就在mid1式子前面加了一个float,结果就显示为1.5了。但是如果我将整个式子用()括起来,前面加float,结果还是1。我不太理解为什么。不过我知道了python的数据格式是根据输入量决定的,也就是说你的输入量如果是整型,那么与其直接相关的计算输出结果一定是整型,而且还是不采用进位的整型。在我没有采用+float/+.0这两种方法之前,mid1~3全部是整型。

    或者不再mid1前面加float,直接将输入量后面点个点就行
    真的很想吐槽一下print,好麻烦啊啊啊啊每次都得弄个%s,而且有时候还不能放一起!!!!

    不要问我掌握了什么,要问我现在写完这个代码后有多么的爱python的精度表示 :-)我决定以后只要再编写数学公式的代码都将输入量的小数学点后面补很多0
    fibonacci函数定义,每次debug后我的手都是抖的O( _ )O~

    不知道自己什么时候有的强迫症,只要是代码下面有“~”我就必须要消掉。笑哭。这个很简单,前四个除了费波纳茨,都很简单。

    这个公式看起来很麻烦,便写的时候更要谨慎。我上回把那个2搁在了分号下面,结果很大,所以还是换算成0.5更好(PS:勿忘那长河般的0)。
    虽然代码很长,但是主要是因为print太多。本打算在开头print,最后结果会漏掉最后一部分。懒得想其他办法了,直接就这样吧

    一开始while里面写成了>,导致run不出来。继而,debug也没法用。在网上一查才知道 “没联网”+“没选断点”。最后想尝试将else里面的内容输出来,结果发现run以后被刷屏了。于是改成i<7以后还是不行,于是想着加一个break跳出循环,结果成效了。
    然后刚刚由debug了一下,才知道原来是i+1在if里面,因为没有办法+1,所以i=6一直存在,就不断循环。因为加break也好,i+1也好,都可以。

    这是我第一组自己实现的python代码,就是数学公式用python语言组装起来。刚开始的时候知道大概需要在语言中体现什么,但不太清楚。于是我就在网上找了几个二分法的,他们都各有不同,但框架都差不多,不过如果要用到我们的那个公式里还需要改变很多。然后我就开始分析我们的题,我发现大体需要两部分,一部分函数定义,一部分循环体。但我不知道如何定义函数,如何写数学公式,如何弄变量,也就是说一些小点不太会,所以我选择直接网络。因为我知道自己阅读的能力不错,相比于从视频中提取要素,我更擅长通过阅读获得要点。有目的性地找知识点,掌握地更牢固。
    于是我就开始了第一个——二分法的编写。我发现,自己出现了很多错误而且有很多地方都很基础。但我依然没选择视频,而是将这些问题直接在网络上找,因为视频讲完或许你也没找到点。当然,这是一步一步走的,不是直接就将程序摆上去,一点一点改。
    随着前两个的成功,我发现自己对于这些代码有了自信,似乎看透了他们的伪装,抓住了本质。除此之外,我还意识到自己自从8月份以后,学习能力似乎提高了不少,而且有了更为有效的学习方法。各方面都有了一定的觉醒。除了第一个找了几个牛头不对马嘴的代码,其他都是根据自己的逻辑写,逻辑通下来以后,对应语言中某一部分不知道如何翻译就去网络,其实这几个套路都一样或者说数学公式转化的套路都一样。
    我还意识到,汇编其实是最难的语言,目前为止所学到的,因为很多都需要自己去定义,去死抠,需要记住大量的指令且不能灵活变通。但是其他的却只需要将一些对应的记下来就好。python真的挺简单的。而且,我发现自己今天似乎打开了新世界的大门,我爱上了这种充满了灵性的东西,充满了严谨的美丽,还有那未知的变化,我发现我似乎爱上了代码。可能不仅仅局限于python,这些语言都充满了挑战性。我觉得当你疑惑的时候,就需要相信直觉,至少我发现它很准

    热点内容
    cs服务器ip在哪里 发布:2024-04-27 14:25:58 浏览:36
    华为安卓怎么上脸书 发布:2024-04-27 14:24:20 浏览:840
    我的世界手机版服务器冷知识 发布:2024-04-27 14:11:10 浏览:789
    文件横向加密 发布:2024-04-27 14:06:38 浏览:496
    python列表推导 发布:2024-04-27 14:01:46 浏览:356
    寻仙干坤脚本 发布:2024-04-27 13:56:44 浏览:333
    idalinux 发布:2024-04-27 13:23:41 浏览:28
    浙江税务登陆密码是多少 发布:2024-04-27 13:22:55 浏览:494
    动感单车哪个配置好 发布:2024-04-27 13:09:49 浏览:832
    vb开文件夹 发布:2024-04-27 13:09:46 浏览:779