当前位置:首页 » 编程语言 » c语言搜索算法

c语言搜索算法

发布时间: 2022-12-20 07:45:14

① 广度优先搜索c语言算法

它没有固定的写法, 但是大框都差不多, 一定要使用队列, 因为队列的存在可以维护程序按照广度优先的方式进行搜索。即层次遍历

可以给你一份我作过的一个题的代码,大体上就是这个样子

/****************************************************\
*
* Title : Rescue
* From : HDU 1242
* AC Time : 2012.01.12
* Type : 广度优先搜索求最短步数
* Method :从目标结点向回搜索,初始结点有多个
*
\****************************************************/

#include <stdio.h>
#include <string.h>
#define DATASIZE 201
#define QUEUESIZE 65536

typedef struct
{
int x,y;
}CPOINT;

int bfs(char map[][DATASIZE], int n, int m, CPOINT cpa);
int direction[][2] = {{1,0},{-1,0},{0,1},{0,-1}};

int main(void)
{
int m,n,i,j,res;
CPOINT cpa;
char map[DATASIZE][DATASIZE];
freopen("c:\\in.data","r",stdin);
while(scanf("%d%d%*c",&n,&m) != EOF) {
for(i = 0 ; i < n ; i++) {
gets(map[i]);
for(j = 0 ; j < m ; j++) {
if(map[i][j] == 'a') {
cpa.x = i;
cpa.y = j;
}
}
}
res = bfs(map, n, m, cpa);
if(res) {
printf("%d\n",res);
} else {
printf("Poor ANGEL has to stay in the prison all his life.\n");
}
}
return 0;
}

int bfs(char map[][DATASIZE], int n, int m, CPOINT cpa)
{
CPOINT q[QUEUESIZE],u,np;
int vis[DATASIZE][DATASIZE],step[DATASIZE][DATASIZE],i,front,rear,res;
memset(q, 0, sizeof(q));
memset(vis, 0, sizeof(vis));
memset(step, 0, sizeof(step));
front = rear = res = 0;
q[rear++] = cpa;
vis[cpa.x][cpa.y] = 1;
step[cpa.x][cpa.y] = 0;
while(front <= rear) {
u = q[front++];
if(map[u.x][u.y] == 'r') {
res = step[u.x][u.y];
break;
}
for(i = 0 ; i < 4; i++) {
np.x = u.x + direction[i][0];
np.y = u.y + direction[i][1];
if(np.x >= 0 && np.x < n && np.y >= 0 && np.y < m && !vis[np.x][np.y] && map[np.x][np.y] != '#' ) {
vis[np.x][np.y] = 1;
q[rear++] = np;
step[np.x][np.y] = step[u.x][u.y] + 1;
if(map[np.x][np.y] == 'x') {
++step[np.x][np.y];
}
}
}
}
return res;
}

② c语言算法有哪些

这里整理c语言常用算法,主要有:
交换算法
查找最小值算法
冒泡排序
选择排序
插入排序
shell排序 (希尔排序)
归并排序
快速排序
二分查找算法
查找重复算法

③ c语言的折中查找法的算法

#include <stdio.h>
#define N 21
void main(void)
{
int a[N];
int i,n,num;
int top,bottom,mid;
int flag=1; //如果在表列中找到数字,则值为1,否则为0
int loc=-1;//要查找的数在表列中的位置,如果loca=-1表示表列中没有这个数;如果有这个数,则它的值为所在的位置

printf("你想在多少个数中进行折半查找,请输入(1--20):");
scanf("%d",&n);

while(n<1 || n>20)
{
printf("你输入的数不正确,请重新输入。\n");
printf("你想在多少个数中进行折半查找,请输入(1--20):");
scanf("%d",&n);
}

printf("请你输入一个整数 a[1]:");
scanf("%d",&a[1]);

i=2;
while(i<=n) //输入从小到大的表列
{
printf("请你输入一个整数 a[%d]:",i);
scanf("%d",&a[i]);
if(a[i] > a[i-1])
i++;
else
printf("你输入的数不满足要求,请重新输入。\n");
}

//输出表列
printf("\n输出表列\n");
for(i=1; i<=n; i++)
{
printf("%6d",a[i]);
}
printf("\n");

printf("请你输入要查找的数:");
scanf("%d",&num);

flag=1; //假设输入的数在表列中

top=n;
bottom=1;
mid=(top+bottom)/2;

while(flag)
{
printf("top=%d, bottom=%d, mid=%d, a[%d]=%d\n",top,bottom,mid,mid,a[mid]);
if( (num>a[top]) || (num<a[bottom]) ) //输入的数 num>a[top] 或者 num<a[bottom],肯定num不在这个表列中
{
loc=-1;
flag=0;
}
else if(a[mid]==num) //如果num 等于找到的数
{
loc=mid;
printf("找到数 %6d 的位置%2d\n",num,loc);
break;
}
else if(a[mid]>num) //若 a[mid]>num,则num 一定在 a[bottom]和a[mid-1]范围之内
{
top=mid-1;
mid=(top+bottom)/2;
}
else if(a[mid]<num) //若 a[mid]<num,则num 一定在 a[mid+1]和a[top]范围之内
{
bottom=mid+1;
mid=(top+bottom)/2;
}
}

if(loc==-1)
{
printf("%d 这个数在表列中没有找到。\n",num);
}
printf("折半查找结束:");
scanf("%d",&n);
}

④ c语言常用算法有哪些

0) 穷举法
穷举法简单粗暴,没有什么问题是搞不定的,只要你肯花时间。同时对于小数据量,穷举法就是最优秀的算法。就像太祖长拳,简单,人人都能会,能解决问题,但是与真正的高手过招,就颓了。
1) 贪婪算法
贪婪算法可以获取到问题的局部最优解,不一定能获取到全局最优解,同时获取最优解的好坏要看贪婪策略的选择。特点就是简单,能获取到局部最优解。就像打狗棍法,同一套棍法,洪七公和鲁有脚的水平就差太多了,因此同样是贪婪算法,不同的贪婪策略会导致得到差异非常大的结果。
2) 动态规划算法
当最优化问题具有重复子问题和最优子结构的时候,就是动态规划出场的时候了。动态规划算法的核心就是提供了一个memory来缓存重复子问题的结果,避免了递归的过程中的大量的重复计算。动态规划算法的难点在于怎么将问题转化为能够利用动态规划算法来解决。当重复子问题的数目比较小时,动态规划的效果也会很差。如果问题存在大量的重复子问题的话,那么动态规划对于效率的提高是非常恐怖的。就像斗转星移武功,对手强它也会比较强,对手若,他也会比较弱。
3)分治算法
分治算法的逻辑更简单了,就是一个词,分而治之。分治算法就是把一个大的问题分为若干个子问题,然后在子问题继续向下分,一直到base cases,通过base cases的解决,一步步向上,最终解决最初的大问题。分治算法是递归的典型应用。
4) 回溯算法
回溯算法是深度优先策略的典型应用,回溯算法就是沿着一条路向下走,如果此路不同了,则回溯到上一个
分岔路,在选一条路走,一直这样递归下去,直到遍历万所有的路径。八皇后问题是回溯算法的一个经典问题,还有一个经典的应用场景就是迷宫问题。
5) 分支限界算法
回溯算法是深度优先,那么分支限界法就是广度优先的一个经典的例子。回溯法一般来说是遍历整个解空间,获取问题的所有解,而分支限界法则是获取一个解(一般来说要获取最优解)。

⑤ A*搜寻算法的代码实现(C语言实现)

用C语言实现A*最短路径搜索算法,作者 Tittup frog(跳跳蛙)。 #include<stdio.h>#include<math.h>#defineMaxLength100 //用于优先队列(Open表)的数组#defineHeight15 //地图高度#defineWidth20 //地图宽度#defineReachable0 //可以到达的结点#defineBar1 //障碍物#definePass2 //需要走的步数#defineSource3 //起点#defineDestination4 //终点#defineSequential0 //顺序遍历#defineNoSolution2 //无解决方案#defineInfinity0xfffffff#defineEast(1<<0)#defineSouth_East(1<<1)#defineSouth(1<<2)#defineSouth_West(1<<3)#defineWest(1<<4)#defineNorth_West(1<<5)#defineNorth(1<<6)#defineNorth_East(1<<7)typedefstruct{ signedcharx,y;}Point;constPointdir[8]={ {0,1},//East {1,1},//South_East {1,0},//South {1,-1},//South_West {0,-1},//West {-1,-1},//North_West {-1,0},//North {-1,1}//North_East};unsignedcharwithin(intx,inty){ return(x>=0&&y>=0 &&x<Height&&y<Width);}typedefstruct{ intx,y; unsignedcharreachable,sur,value;}MapNode;typedefstructClose{ MapNode*cur; charvis; structClose*from; floatF,G; intH;}Close;typedefstruct//优先队列(Open表){ intlength; //当前队列的长度 Close*Array[MaxLength]; //评价结点的指针}Open;staticMapNodegraph[Height][Width];staticintsrcX,srcY,dstX,dstY; //起始点、终点staticCloseclose[Height][Width];//优先队列基本操作voidinitOpen(Open*q) //优先队列初始化{ q->length=0; //队内元素数初始为0}voidpush(Open*q,Closecls[Height][Width],intx,inty,floatg){ //向优先队列(Open表)中添加元素 Close*t; inti,mintag; cls[x][y].G=g; //所添加节点的坐标 cls[x][y].F=cls[x][y].G+cls[x][y].H; q->Array[q->length++]=&(cls[x][y]); mintag=q->length-1; for(i=0;i<q->length-1;i++) { if(q->Array[i]->F<q->Array[mintag]->F) { mintag=i; } } t=q->Array[q->length-1]; q->Array[q->length-1]=q->Array[mintag]; q->Array[mintag]=t; //将评价函数值最小节点置于队头}Close*shift(Open*q){ returnq->Array[--q->length];}//地图初始化操作voidinitClose(Closecls[Height][Width],intsx,intsy,intdx,intdy){ //地图Close表初始化配置 inti,j; for(i=0;i<Height;i++) { for(j=0;j<Width;j++) { cls[i][j].cur=&graph[i][j]; //Close表所指节点 cls[i][j].vis=!graph[i][j].reachable; //是否被访问 cls[i][j].from=NULL; //所来节点 cls[i][j].G=cls[i][j].F=0; cls[i][j].H=abs(dx-i)+abs(dy-j); //评价函数值 } } cls[sx][sy].F=cls[sx][sy].H; //起始点评价初始值 // cls[sy][sy].G=0; //移步花费代价值 cls[dx][dy].G=Infinity;}voidinitGraph(constintmap[Height][Width],intsx,intsy,intdx,intdy){ //地图发生变化时重新构造地 inti,j; srcX=sx; //起点X坐标 srcY=sy; //起点Y坐标 dstX=dx; //终点X坐标 dstY=dy; //终点Y坐标 for(i=0;i<Height;i++) { for(j=0;j<Width;j++) { graph[i][j].x=i;//地图坐标X graph[i][j].y=j;//地图坐标Y graph[i][j].value=map[i][j]; graph[i][j].reachable=(graph[i][j].value==Reachable); //节点可到达性 graph[i][j].sur=0;//邻接节点个数 if(!graph[i][j].reachable) { continue; } if(j>0) { if(graph[i][j-1].reachable) //left节点可以到达 { graph[i][j].sur|=West; graph[i][j-1].sur|=East; } if(i>0) { if(graph[i-1][j-1].reachable &&graph[i-1][j].reachable &&graph[i][j-1].reachable) //up-left节点可以到达 { graph[i][j].sur|=North_West; graph[i-1][j-1].sur|=South_East; } } } if(i>0) { if(graph[i-1][j].reachable) //up节点可以到达 { graph[i][j].sur|=North; graph[i-1][j].sur|=South; } if(j<Width-1) { if(graph[i-1][j+1].reachable &&graph[i-1][j].reachable &&map[i][j+1]==Reachable)//up-right节点可以到达 { graph[i][j].sur|=North_East; graph[i-1][j+1].sur|=South_West; } } } } }}intbfs(){ inttimes=0; inti,curX,curY,surX,surY; unsignedcharf=0,r=1; Close*p; Close*q[MaxLength]={&close[srcX][srcY]}; initClose(close,srcX,srcY,dstX,dstY); close[srcX][srcY].vis=1; while(r!=f) { p=q[f]; f=(f+1)%MaxLength; curX=p->cur->x; curY=p->cur->y; for(i=0;i<8;i++) { if(!(p->cur->sur&(1<<i))) { continue; } surX=curX+dir[i].x; surY=curY+dir[i].y; if(!close[surX][surY].vis) { close[surX][surY].from=p; close[surX][surY].vis=1; close[surX][surY].G=p->G+1; q[r]=&close[surX][surY]; r=(r+1)%MaxLength; } } times++; } returntimes;}intastar(){ //A*算法遍历 //inttimes=0; inti,curX,curY,surX,surY; floatsurG; Openq;//Open表 Close*p; initOpen(&q); initClose(close,srcX,srcY,dstX,dstY); close[srcX][srcY].vis=1; push(&q,close,srcX,srcY,0); while(q.length) { //times++; p=shift(&q); curX=p->cur->x; curY=p->cur->y; if(!p->H) { returnSequential; } for(i=0;i<8;i++) { if(!(p->cur->sur&(1<<i))) { continue; } surX=curX+dir[i].x; surY=curY+dir[i].y; if(!close[surX][surY].vis) { close[surX][surY].vis=1; close[surX][surY].from=p; surG=p->G+sqrt((curX-surX)*(curX-surX)+(curY-surY)*(curY-surY)); push(&q,close,surX,surY,surG); } } } //printf("times:%d ",times); returnNoSolution;//无结果}constintmap[Height][Width]={ {0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1}, {0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}, {0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,1}, {0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1}, {0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, {0,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0}, {0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0}, {0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0}, {0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,1,0,0,0,1}, {0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0}};constcharSymbol[5][3]={"□","▓","▽","☆","◎"};voidprintMap(){ inti,j; for(i=0;i<Height;i++) { for(j=0;j<Width;j++) { printf("%s",Symbol[graph[i][j].value]); } puts(""); } puts("");}Close*getShortest(){ //获取最短路径 intresult=astar(); Close*p,*t,*q=NULL; switch(result) { caseSequential: //顺序最近 p=&(close[dstX][dstY]); while(p) //转置路径 { t=p->from; p->from=q; q=p; p=t; } close[srcX][srcY].from=q->from; return&(close[srcX][srcY]); caseNoSolution: returnNULL; } returnNULL;}staticClose*start;staticintshortestep;intprintShortest(){ Close*p; intstep=0; p=getShortest(); start=p; if(!p) { return0; } else { while(p->from) { graph[p->cur->x][p->cur->y].value=Pass; printf("(%d,%d)→ ",p->cur->x,p->cur->y); p=p->from; step++; } printf("(%d,%d) ",p->cur->x,p->cur->y); graph[srcX][srcY].value=Source; graph[dstX][dstY].value=Destination; returnstep; }}voidclearMap(){ //ClearMapMarksofSteps Close*p=start; while(p) { graph[p->cur->x][p->cur->y].value=Reachable; p=p->from; } graph[srcX][srcY].value=map[srcX][srcY]; graph[dstX][dstY].value=map[dstX][dstY];}voidprintDepth(){ inti,j; for(i=0;i<Height;i++) { for(j=0;j<Width;j++) { if(map[i][j]) { printf("%s",Symbol[graph[i][j].value]); } else { printf("%2.0lf",close[i][j].G); } } puts(""); } puts("");}voidprintSur(){ inti,j; for(i=0;i<Height;i++) { for(j=0;j<Width;j++) { printf("%02x",graph[i][j].sur); } puts(""); } puts("");}voidprintH(){ inti,j; for(i=0;i<Height;i++) { for(j=0;j<Width;j++) { printf("%02d",close[i][j].H); } puts(""); } puts("");}intmain(intargc,constchar**argv){ initGraph(map,0,0,0,0); printMap(); while(scanf("%d%d%d%d",&srcX,&srcY,&dstX,&dstY)!=EOF) { if(within(srcX,srcY)&&within(dstX,dstY)) { if(shortestep=printShortest()) { printf("从(%d,%d)到(%d,%d)的最短步数是:%d ", srcX,srcY,dstX,dstY,shortestep); printMap(); clearMap(); bfs(); //printDepth(); puts((shortestep==close[dstX][dstY].G)?"正确":"错误"); clearMap(); } else { printf("从(%d,%d)不可到达(%d,%d) ", srcX,srcY,dstX,dstY); } } else { puts("输入错误!"); } } return(0);}

⑥ c语言排序和查找

1)利用readData()函数从data1.txt中读入不同规模的数据存入数组,
编写基于数组的顺序查找算法,测试数据量为1万、5万、10万、20万、
30万、40万和50万时的数据查询时间。
算法代码如下:

1 int seqsearch(int a[],int n,int key)
2 {
3 int k=n-1;
4 while(k>=0&&a[k]!=key)
5 k--;
6 return (k);
7 }

2)利用readData()函数从data2.txt中读入不同规模的有序数据存入数组,
编写基于数组的二分查找算法,测试数据量为1万、5万、10万、20万、30万、
40万和50万时的数据查询时间。
算法代码如下:

1 int binSearch(int a[],int n,int key)
2 {
3 int low=0;
4 int high=n-1;
5 int mid;
6 while(low<=high)
7 {
8 mid=(low+high)/2;
9 if(a[mid]==key) return mid;
10 if(a[mid]>key)
11 high=mid-1;
12 else
13 low=mid+1;
14 }
15 return -1;
16 }

3)请设计冒泡排序算法函数void bubbleSort(int a[],int n),对a[1]..a[n]进行升序排序。
并测试在不同数据规模下的排序效率。
算法代码如下:


1 void bubbleSort(int a[],int n)
2 {
3 int i=1,j,flag=1;
4 while(i<=n-1&&flag)
5 {
6 flag=0;
7 for(j=1;j<=n-1-i;j++)
8 if(a[j+1]<a[j])
9 {
10 a[0]=a[j];
11 a[j]=a[j+1];
12 a[j+1]=a[0];
13 flag=1;
14 }
15 i++;
16 }
17 }

热点内容
wemall微商城源码 发布:2025-05-14 22:15:20 浏览:803
隆地优选交易密码是什么 发布:2025-05-14 21:53:23 浏览:94
强酸强碱存储柜 发布:2025-05-14 21:45:16 浏览:564
车辆参数配置包括什么 发布:2025-05-14 21:31:03 浏览:163
怎么引入安卓项目 发布:2025-05-14 21:26:39 浏览:824
游戏辅编程 发布:2025-05-14 21:18:49 浏览:687
三菱plc一段二段密码什么意思 发布:2025-05-14 21:17:16 浏览:528
电脑开机密码忘记了怎么破解 发布:2025-05-14 21:09:40 浏览:57
pythondict格式 发布:2025-05-14 21:09:38 浏览:887
落叶片拍摄脚本 发布:2025-05-14 20:40:49 浏览:800