当前位置:首页 » 编程语言 » 神经网络算法c语言

神经网络算法c语言

发布时间: 2022-12-25 01:40:34

Ⅰ 请问高手,神经网络模型与学习算法用什么语言编程比较好JAVA 、c语言还是C++等。谢谢!

神经网络模型?不会是你的课题吧,大型算法应用(有界面),当然用C++(效率高)来写,JAVA次之(略简单)。
学习算法的精髓就用C,C++和JAVA作为高级语言打包了很多基础型的算法。

Ⅱ 前馈神经网络(BP算法)和后馈神经网络(优化) 要求C语言实现!

这个太难了撒,只会用C编什么运算之类的,无能为力,惭愧啊

Ⅲ c语言编程实现 基于最小错误率的贝叶斯决策

贝叶斯决策理论(Bayesian Decision Theory)

贝叶斯决策理论概述
贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。
贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。
贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:
★已知类条件概率密度参数表达式和先验概率
★利用贝叶斯公式转换成后验概率
★根据后验概率大小进行决策分类

贝叶斯公式

设D1,D2,……,Dn为样本空间S的一个划分,如果以P(Di)表示事件Di发生的概率,且P(Di)>0(i=1,2,…,n)。对于任一事件x,P(x)>0,如图

贝叶斯决策理论分析

(1)如果我们已知被分类类别概率分布的形式和已经标记类别的训练样本集合,那我们就需要从训练样本集合中来估计概率分布的参数。在现实世界中有时会出现这种情况。(如已知为正态分布了,根据标记好类别的样本来估计参数,常见的是极大似然率和贝叶斯参数估计方法)
(2)如果我们不知道任何有关被分类类别概率分布的知识,已知已经标记类别的训练样本集合和判别式函数的形式,那我们就需要从训练样本集合中来估计判别式函数的参数。在现实世界中有时会出现这种情况。(如已知判别式函数为线性或二次的,那么就要根据训练样本来估计判别式的参数,常见的是线性判别式和神经网络)
(3)如果我们既不知道任何有关被分类类别概率分布的知识,也不知道判别式函数的形式,只有已经标记类别的训练样本集合。那我们就需要从训练样本集合中来估计概率分布函数的参数。在现实世界中经常出现这种情况。(如首先要估计是什么分布,再估计参数。常见的是非参数估计)
(4)只有没有标记类别的训练样本集合。这是经常发生的情形。我们需要对训练样本集合进行聚类,从而估计它们概率分布的参数。(这是无监督的学习)
(5)如果我们已知被分类类别的概率分布,那么,我们不需要训练样本集合,利用贝叶斯决策理论就可以设计最优分类器。但是,在现实世界中从没有出现过这种情况。这里是贝叶斯决策理论常用的地方。
问题:假设我们将根据特征矢量x 提供的证据来分类某个物体,那么我们进行分类的标准是什么?decide wj, if(p(wj|x)>p(wi|x))(i不等于j)应用贝叶斯展开后可以得到p(x|wj)p(wj)>p(x|wi)p(wi)即或然率p(x|wj)/p(x|wi)>p(wi)/p(wj),决策规则就是似然率测试规则。
结论:
对于任何给定问题,可以通过似然率测试决策规则得到最小的错误概率。这个错误概率称为贝叶斯错误率,且是所有分类器中可以得到的最好结果。最小化错误概率的决策规则就是最大化后验概率判据。

贝叶斯决策判据

贝叶斯决策理论方法是统计模式识别中的一个基本方法。贝叶斯决策判据既考虑了各类参考总体出现的概率大小,又考虑了因误判造成的损失大小,判别能力强。贝叶斯方法更适用于下列场合:
(1) 样本(子样)的数量(容量)不充分大,因而大子样统计理论不适宜的场合。
(2) 试验具有继承性,反映在统计学上就是要具有在试验之前已有先验信息的场合。用这种方法进行分类时要求两点:
第一,要决策分类的参考总体的类别数是一定的。例如两类参考总体(正常状态Dl和异常状态D2),或L类参考总体D1,D2,…,DL(如良好、满意、可以、不满意、不允许、……)。
第二,各类参考总体的概率分布是已知的,即每一类参考总体出现的先验概率P(Di)以及各类概率密度函数P(x/Di)是已知的。显然,0≤P(Di)≤1,(i=l,2,…,L),∑P(Di)=1。
对于两类故障诊断问题,就相当于在识别前已知正常状态D1的概率户(D1)和异常状态0:的概率P(D2),它们是由先验知识确定的状态先验概率。如果不做进一步的仔细观测,仅依靠先验概率去作决策,那么就应给出下列的决策规则:若P(D1)>P(D2),则做出状态属于D1类的决策;反之,则做出状态属于D2类的决策。例如,某设备在365天中,有故障是少见的,无故障是经常的,有故障的概率远小于无故障的概率。因此,若无特B,j明显的异常状况,就应判断为无故障。显然,这样做对某一实际的待检状态根本达不到诊断的目的,这是由于只利用先验概率提供的分类信息太少了。为此,我们还要对系统状态进行状态检测,分析所观测到的信息。

Ⅳ 深入学习C语言的具体步骤

1、入门后多看代码
在有一定基础以后一定要多看别人的代码。 注意代码中的算法和数据结构。 毕竟学C之后的关口就是算法和数据结构。提到数据结构,指针是其中重要的一环,绝大多数的数据结构是建立在指针之上的,如链表、队列、树、图等等,所以只有学好指针才能真正学好C。别的方面也要关注一下,诸如变量的命名、库函数的用法等等。有些库函数是经常用到的。对于这些函数的用法就要牢牢记住。
2、要自己动手
编程序是个实干的活,光说不练不行。刚开始学的时候可以多练习书上的习题。 对于自己不明白的地方,自己编个小程序实验一下是最好的方法,能给自己留下深刻的印象。 自己动手的过程中要不断纠正自己不好的编程习惯和认识错误。有一定的基础以后可以尝试编一点小游戏,照着编作为练习。基础很扎实的时候,可以编一些关于数据结构方面的东西。之后.....学汇编、硬件知识。
3、选择一个好的编译
GCC或者VS都是一个号的选择
4、关于养成良好的编程习惯

Ⅳ 神经网络算法

20 世纪五、六⼗年代,科学家 Frank Rosenblatt其受到 Warren McCulloch 和 Walter Pitts早期的⼯作的影响,发明了感知机(Perceptrons)。

⼀个感知器接受⼏个⼆进制输⼊, ,并产⽣⼀个⼆进制输出:

如上图所示的感知机有三个输⼊: 。通常可以有更多或更少输⼊。 我们再引⼊权重: ,衡量输入对输出的重要性。感知机的输出为0 或者 1,则由分配权重后的总和 ⼩于等于或者⼤于阈值决定。和权重⼀样,阈值(threshold)是⼀个实数,⼀个神经元的参数。⽤更精确的代数形式如下:

给三个因素设置权重来作出决定:

可以把这三个因素对应地⽤⼆进制变量 来表⽰。例如,如果天⽓好,我们把

,如果不好, 。类似地,如果你的朋友陪你去, ,否则 。 也类似。

这三个对于可能对你来说,“电影好不好看”对你来说最重要,而天气显得不是那么的重要。所以你会这样分配权值: ,然后定义阈值threshold=5。

现在,你可以使⽤感知器来给这种决策建⽴数学模型。

例如:

随着权重和阈值的变化,你可以得到不同的决策模型。很明显,感知机不是⼈做出决策使⽤的全部模型。但是这个例⼦说明了⼀个感知机如何能权衡不同的依据来决策。这看上去也可以⼤致解释⼀个感知机⽹络有时确实能够做出一些不错的决定。

现在我们队上面的结构做一点变化,令b=-threshold,即把阈值移到不等号左边,变成偏置, 那么感知器的规则可以重写为:

引⼊偏置只是我们描述感知器的⼀个很⼩的变动,但是我们后⾯会看到它引导更进⼀步的符号简化。因此,我们不再⽤阈值,⽽总是使⽤偏置。

感知机是首个可以学习的人工神经网络,它的出现引起的神经网络的第一层高潮。需要指出的是,感知机只能做简单的线性分类任务,而且Minsky在1969年出版的《Perceptron》书中,证明了感知机对XOR(异或)这样的问题都无法解决。但是感知机的提出,对神经网络的发展是具有重要意义的。

通过上面的感知机的观察我们发现一个问题,每个感知机的输出只有0和1,这就意味着有时我们只是在单个感知机上稍微修改了一点点权值w或者偏置b,就可能造成最终输出完全的反转。也就是说,感知机的输出是一个阶跃函数。如下图所示,在0附近的时候,输出的变化是非常明显的,而在远离0的地方,我们可能调整好久参数也不会发生输出的变化。

这样阶跃的跳变并不是我们想要的,我们需要的是当我们队权值w或者偏置b做出微小的调整后,输出也相应的发生微小的改变。这同时也意味值我们的输出不再只是0和1,还可以输出小数。由此我们引入了S型神经元。

S型神经元使用 S 型函数,也叫Sigmoid function函数,我们用它作为激活函数。其表达式如下:

图像如下图所示:

利⽤实际的 σ 函数,我们得到⼀个,就像上⾯说明的,平滑的感知器。 σ 函数的平滑特性,正是关键因素,⽽不是其细部形式。 σ 的平滑意味着权重和偏置的微⼩变化,即 ∆w 和 ∆b,会从神经元产⽣⼀个微⼩的输出变化 ∆output。实际上,微积分告诉我们

∆output 可以很好地近似表⽰为:

上面的式子是⼀个反映权重、偏置变化和输出变化的线性函数。这⼀线性使得我们可以通过选择权重和偏置的微⼩变化来达到输出的微⼩变化。所以当 S 型神经元和感知器本质上是相同的,但S型神经元在计算处理如何变化权重和偏置来使输出变化的时候会更加容易。

有了对S型神经元的了解,我们就可以介绍神经网络的基本结构了。具体如下:

在⽹络中最左边的称为输⼊层,其中的神经元称为输⼊神经元。最右边的,即输出层包含有输出神经元,在图中,输出层只有⼀个神经元。中间层,既然这层中的神经元既不是输⼊也不是输出,则被称为隐藏层。

这就是神经网络的基本结构,随着后面的发展神经网络的层数也随之不断增加和复杂。

我们回顾一下神经网络发展的历程。神经网络的发展历史曲折荡漾,既有被人捧上天的时刻,也有摔落在街头无人问津的时段,中间经历了数次大起大落。

从单层神经网络(感知机)开始,到包含一个隐藏层的两层神经网络,再到多层的深度神经网络,一共有三次兴起过程。详见下图。

我们希望有⼀个算法,能让我们找到权重和偏置,以⾄于⽹络的输出 y(x) 能够拟合所有的 训练输⼊ x。为了量化我们如何实现这个⽬标,我们定义⼀个代价函数:

这⾥ w 表⽰所有的⽹络中权重的集合, b 是所有的偏置, n 是训练输⼊数据的个数,
a 是表⽰当输⼊为 x 时输出的向量,求和则是在总的训练输⼊ x 上进⾏的。当然,输出 a 取决于 x, w和 b,但是为了保持符号的简洁性,我没有明确地指出这种依赖关系。符号 ∥v∥ 是指向量 v 的模。我们把 C 称为⼆次代价函数;有时也称被称为均⽅误差或者 MSE。观察⼆次代价函数的形式我们可以看到 C(w, b) 是⾮负的,因为求和公式中的每⼀项都是⾮负的。此外,代价函数 C(w,b)的值相当⼩,即 C(w; b) ≈ 0,精确地说,是当对于所有的训练输⼊ x, y(x) 接近于输出 a 时。因

此如果我们的学习算法能找到合适的权重和偏置,使得 C(w; b) ≈ 0,它就能很好地⼯作。相反,当 C(w; b) 很⼤时就不怎么好了,那意味着对于⼤量地输⼊, y(x) 与输出 a 相差很⼤。因此我们的训练算法的⽬的,是最⼩化权重和偏置的代价函数 C(w; b)。换句话说,我们想要找到⼀系列能让代价尽可能⼩的权重和偏置。我们将采⽤称为梯度下降的算法来达到这个⽬的。

下面我们将代价函数简化为C(v)。它可以是任意的多元实值函数, 。
注意我们⽤ v 代替了 w 和 b 以强调它可能是任意的函数,我们现在先不局限于神经⽹络的环境。

为了使问题更加简单我们先考虑两个变量的情况,想象 C 是⼀个只有两个变量 和 的函数,我们的目的是找到 和 使得C最小。

如上图所示,我们的目的就是找到局部最小值。对于这样的一个问题,一种方法就是通过微积分的方法来解决,我们可以通过计算导数来求解C的极值点。但是对于神经网络来说,我们往往面对的是非常道的权值和偏置,也就是说v的维数不只是两维,有可能是亿万维的。对于一个高维的函数C(v)求导数几乎是不可能的。

在这种情况下,有人提出了一个有趣的算法。想象一下一个小球从山顶滚下山谷的过程, 我们的⽇常经验告诉我们这个球最终会滚到⾕底。我们先暂时忽略相关的物理定理, 对球体的⾁眼观察是为了激发我们的想象⽽不是束缚我们的思维。因此与其陷进物理学⾥凌乱的细节,不如我们就这样问⾃⼰:如果我们扮演⼀天的上帝,能够构造⾃⼰的物理定律,能够⽀配球体可以如何滚动,那么我们将会采取什么样的运动学定律来让球体能够总是滚落到⾕底呢?

为了更精确地描述这个问题,让我们思考⼀下,当我们在 和 ⽅向分别将球体移动⼀个很⼩的量,即 ∆ 和 ∆ 时,球体将会发⽣什么情况。微积分告诉我们 C 将会有如下变化:

也可以用向量表示为

现在我们的问题就转换为不断寻找一个小于0的∆C,使得C+∆C不断变小。

假设我们选取:

这⾥的 η 是个很⼩的正数(称为学习速率),于是

由于 ∥∇C∥2 ≥ 0,这保证了 ∆C ≤ 0,即,如果我们按照上述⽅程的规则去改变 v,那么 C
会⼀直减⼩,不会增加。

所以我们可以通过不断改变v来C的值不断下降,是小球滚到最低点。

总结⼀下,梯度下降算法⼯作的⽅式就是重复计算梯度 ∇C,然后沿着相反的⽅向移动,沿着⼭⾕“滚落”。我们可以想象它像这样:

为了使梯度下降能够正确地运⾏,我们需要选择合适的学习速率η,确保C不断减少,直到找到最小值。

知道了两个变量的函数 C 的梯度下降方法,我们可以很容易的把它推广到多维。我们假设 C 是⼀个有 m 个变量 的多元函数。 ∆C 将会变为:

其中, ∇C为

∆v为:

更新规则为:

在回到神经网络中,w和b的更新规则为:

前面提到神经⽹络如何使⽤梯度下降算法来学习他们⾃⾝的权重和偏置。但是,这⾥还留下了⼀个问题:我们并没有讨论如何计算代价函数的梯度。这里就需要用到一个非常重要的算法:反向传播算法(backpropagation)。

反向传播算法的启示是数学中的链式法则。

四个方程:

输出层误差方程:

当前层误差方程:

误差方程关于偏置的关系:

误差方程关于权值的关系

算法描述:

检视这个算法,你可以看到为何它被称作反向传播。我们从最后⼀层开始向后计算误差向量δ。这看起来有点奇怪,为何要从后⾯开始。但是如果你认真思考反向传播的证明,这种反向移动其实是代价函数是⽹络输出的函数的结果。为了理解代价随前⾯层的权重和偏置变化的规律,我们需要重复作⽤链式法则,反向地获得需要的表达式。

参考链接: http://neuralnetworksanddeeplearning.com/

Ⅵ “高精度神经网络(NN)算法C语言开发”这个项目能赚多少钱

装多少钱,首先要看你的项目的成熟度,功能强大好用等。

其次就是销售 公关能力。一个软件,没人能说出它的真实价值。最多是个估计,而且不准确。
就好比oracle 你卖一套给学校,装不了多少钱,人家也知道学校没多少钱。可能几万就卖了。
但是买个企业 如移动 肯定几十上百万。

可以说只要成熟的项目都能赚钱,多少是看个人情况。

Ⅶ 用C语言解决BP神经网络算法

囧,用C语言干嘛,matlab里面带有神经网络函数库的……

55555,我的论文也是用神经网络仿真……

我的隐藏层个数都没确定……输入节点数也没有定……

matlab神经网络函数库的程序,在ilovematlab论坛上有。

Ⅷ c语言实现*/遗传算法改进BP神经网络原理和算法实现怎么弄

遗传算法有相当大的引用。遗传算法在游戏中应用的现状在遗传编码时, 一般将瓦片的坐标作为基因进行实数编码, 染色体的第一个基因为起点坐标, 最后一个基因为终点坐标, 中间的基因为路径经过的每一个瓦片的坐标。在生成染色体时, 由起点出发, 随机选择当前结点的邻居节点中的可通过节点, 将其坐标加入染色体, 依此循环, 直到找到目标点为止, 生成了一条染色体。重复上述操作, 直到达到指定的种群规模。遗传算法的优点:1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。遗传算法的缺点:遗传算法在进行编码时容易出现不规范不准确的问题。

Ⅸ 用c语言写一个神经网络分类器大概要多少行代码

RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
简单说明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。BP网络就是一个典型的例子。
如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。

热点内容
在配置更新的时候没电关机怎么办 发布:2024-05-18 20:36:10 浏览:926
win7访问win2000 发布:2024-05-18 20:27:41 浏览:387
青岛人社局密码多少 发布:2024-05-18 20:19:10 浏览:733
无法存储呼叫转移 发布:2024-05-18 20:18:30 浏览:125
数据库的调优 发布:2024-05-18 20:18:29 浏览:345
sqlserver注册表清理 发布:2024-05-18 20:13:14 浏览:990
linux删除连接 发布:2024-05-18 20:06:56 浏览:821
linux搭建云服务器平台 发布:2024-05-18 19:52:21 浏览:401
安卓怎么关闭美易订阅 发布:2024-05-18 19:29:16 浏览:643
苹果手机配置代理服务器怎么开 发布:2024-05-18 19:29:07 浏览:230