新闻爬虫python
Ⅰ python如何简单爬取腾讯新闻网前五页文字内容
可以使用python里面的一个爬虫库,beautifulsoup,这个库可以很方便的爬取数据。爬虫首先就得知道网页的链接,然后获取网页的源代码,通过正则表达式或者其他方法来获取所需要的内容,具体还是要对着网页源代码进行操作,查看需要哪些地方的数据,然后通过beautifulsoup来爬取特定html标签的内容。网上有很多相关的内容,可以看看。
Ⅱ Python的爬虫框架哪个最好用
1、Scrapy:是一个为了抓取网站数据,提取数据结构性数据而编写的应用框架,可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中,用这个框架可以轻松爬下来各种信息数据。
2、Pyspider:是一个用Python实现的功能强大的网络爬虫系统,能在浏览器界面上进行脚本的编写,功能的调度和爬取结果的实时查看,后端使用常用的数据库进行抓取结构的存储,还能定时设置任务与任务优先级等。
3、Crawley:可以高速抓取对应网站内容,支持关系和非关系数据库,数据可以导出为json、xml等。
4、Portia:是一个开源可视化爬虫工具,可以让您在不需要任何编程知识的情况下抓取网站,简单地注解您感兴趣的页面,创建一个蜘蛛来从类似的页面抓取数据。
5、Newspaper:可以用来提取新闻、文章和内容分析,使用多线程,支持10多种编程语言。
6、Beautiful Soup:是一个可以从HTML或者xml文件中提取数据的Python库,它能通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式;同时帮你节省数小时甚至数天的工作时间。
7、Grab:是一个用于创建web刮板的Python框架,借助Grab,您可以创建各种复杂的网页抓取工具,从简单的五行脚本到处理数万个网页的复杂异步网站抓取工具。Grab提供一个api用于执行网络请求和处理接收到的内容。
8、Cola:是一个分布式的爬虫框架,对于用户来说,只需要编写几个特定的函数,而无需关注分布式运行的细节,任务会自动分配到多台机器上,整个过程对用户是透明的。
Ⅲ Python中的爬虫框架有哪些呢
实现爬虫技术的编程环境有很多种,java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实现你想要的功能。更重要的,Python也是数据挖掘和分析的好能手。那么,Python爬虫一般用什么框架比较好?
一般来讲,只有在遇到比较大型的需求时,才会使用Python爬虫框架。这样的做的主要目的,是为了方便管理以及扩展。本文我将向大家推荐十个Python爬虫框架。
1、Scrapy:Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。它是很强大的爬虫框架,可以满足简单的页面爬取,比如可以明确获知url pattern的情况。用这个框架可以轻松爬下来如亚马逊商品信息之类的数据。但是对于稍微复杂一点的页面,如weibo的页面信息,这个框架就满足不了需求了。它的特性有:HTML, XML源数据 选择及提取 的内置支持;提供了一系列在spider之间共享的可复用的过滤器(即 Item Loaders),对智能处理爬取数据提供了内置支持。
2、Crawley:高速爬取对应网站的内容,支持关系和非关系数据库,数据可以导出为JSON、XML等。
3、Portia:是一个开源可视化爬虫工具,可让使用者在不需要任何编程知识的情况下爬取网站!简单地注释自己感兴趣的页面,Portia将创建一个蜘蛛来从类似的页面提取数据。简单来讲,它是基于scrapy内核;可视化爬取内容,不需要任何开发专业知识;动态匹配相同模板的内容。
4、newspaper:可以用来提取新闻、文章和内容分析。使用多线程,支持10多种语言等。作者从requests库的简洁与强大得到灵感,使用Python开发的可用于提取文章内容的程序。支持10多种语言并且所有的都是unicode编码。
5、Python-goose:Java写的文章提取工具。Python-goose框架可提取的信息包括:文章主体内容、文章主要图片、文章中嵌入的任何Youtube/Vimeo视频、元描述、元标签。
6、Beautiful Soup:名气大,整合了一些常用爬虫需求。它是一个可以从HTML或XML文件中提取数据的Python库。它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式.Beautiful Soup会帮你节省数小时甚至数天的工作时间。Beautiful Soup的缺点是不能加载JS。
7、mechanize:它的优点是可以加载JS。当然它也有缺点,比如文档严重缺失。不过通过官方的example以及人肉尝试的方法,还是勉强能用的。
8、selenium:这是一个调用浏览器的driver,通过这个库你可以直接调用浏览器完成某些操作,比如输入验证码。Selenium是自动化测试工具,它支持各种浏览器,包括 Chrome,Safari,Firefox等主流界面式浏览器,如果在这些浏览器里面安装一个 Selenium 的插件,可以方便地实现Web界面的测试. Selenium支持浏览器驱动。Selenium支持多种语言开发,比如 Java,C,Ruby等等,PhantomJS 用来渲染解析JS,Selenium 用来驱动以及与Python的对接,Python进行后期的处理。
9、cola:是一个分布式的爬虫框架,对于用户来说,只需编写几个特定的函数,而无需关注分布式运行的细节。任务会自动分配到多台机器上,整个过程对用户是透明的。项目整体设计有点糟,模块间耦合度较高。
10、PySpider:一个国人编写的强大的网络爬虫系统并带有强大的WebUI。采用Python语言编写,分布式架构,支持多种数据库后端,强大的WebUI支持脚本编辑器,任务监视器,项目管理器以及结果查看器。Python脚本控制,可以用任何你喜欢的html解析包。
Ⅳ python网络爬虫可以干啥
Python爬虫开发工程师,从网站某一个页面(通常是首页)开始,读取网页的内容,找到在网页中的其它链接地址,然后通过这些链接地址寻找下一个网页,这样一直循环下去,直到把这个网站所有的网页都抓取完为止。如果把整个互联网当成一个网站,那么网络蜘蛛就可以用这个原理把互联网上所有的网页都抓取下来。
网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁,自动索引,模拟程序或者蠕虫。爬虫就是自动遍历一个网站的网页,并把内容都下载下来
Ⅳ 最高效的python爬虫框架有几个
1、Scrapy:Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。它是很强大的爬虫框架,可以满足简单的页面爬取,比如可以明确获知url pattern的情况。用这个框架可以轻松爬下来如亚马逊商品信息之类的数据。但是对于稍微复杂一点的页面,如weibo的页面信息,这个框架就满足不了需求了。它的特性有:HTML, XML源数据 选择及提取 的内置支持;提供了一系列在spider之间共享的可复用的过滤器(即 Item Loaders),对智能处理爬取数据提供了内置支持。
2、Crawley:高速爬取对应网站的内容,支持关系和非关系数据库,数据可以导出为JSON、XML等。
3、Portia:是一个开源可视化爬虫工具,可让使用者在不需要任何编程知识的情况下爬取网站!简单地注释自己感兴趣的页面,Portia将创建一个蜘蛛来从类似的页面提取数据。简单来讲,它是基于scrapy内核;可视化爬取内容,不需要任何开发专业知识;动态匹配相同模板的内容。
4、newspaper:可以用来提取新闻、文章和内容分析。使用多线程,支持10多种语言等。作者从requests库的简洁与强大得到灵感,使用Python开发的可用于提取文章内容的程序。支持10多种语言并且所有的都是unicode编码。
5、Python-goose:Java写的文章提取工具。Python-goose框架可提取的信息包括:文章主体内容、文章主要图片、文章中嵌入的任何Youtube/Vimeo视频、元描述、元标签。
6、Beautiful Soup:名气大,整合了一些常用爬虫需求。它是一个可以从HTML或XML文件中提取数据的Python库。它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式.Beautiful Soup会帮你节省数小时甚至数天的工作时间。Beautiful Soup的缺点是不能加载JS。
7、mechanize:它的优点是可以加载JS。当然它也有缺点,比如文档严重缺失。不过通过官方的example以及人肉尝试的方法,还是勉强能用的。
8、selenium:这是一个调用浏览器的driver,通过这个库你可以直接调用浏览器完成某些操作,比如输入验证码。Selenium是自动化测试工具,它支持各种浏览器,包括 Chrome,Safari,Firefox等主流界面式浏览器,如果在这些浏览器里面安装一个 Selenium 的插件,可以方便地实现Web界面的测试. Selenium支持浏览器驱动。Selenium支持多种语言开发,比如 Java,C,Ruby等等,PhantomJS 用来渲染解析JS,Selenium 用来驱动以及与Python的对接,Python进行后期的处理。
9、cola:是一个分布式的爬虫框架,对于用户来说,只需编写几个特定的函数,而无需关注分布式运行的细节。任务会自动分配到多台机器上,整个过程对用户是透明的。项目整体设计有点糟,模块间耦合度较高。
10、PySpider:一个国人编写的强大的网络爬虫系统并带有强大的WebUI。采用Python语言编写,分布式架构,支持多种数据库后端,强大的WebUI支持脚本编辑器,任务监视器,项目管理器以及结果查看器。Python脚本控制,可以用任何你喜欢的html解析包。
Ⅵ [内附完整源码和文档] 基于python的新闻检索系统
1 系统介绍
1.1 系统需求
新闻检索系统:定向采集不少于 4 个中文社会新闻网站或频道,实现这些网站新闻信息及评论信息的自动爬取、抽取、索引和检索。本项目未使用 lucene,Goose 等成熟开源框架。
1.2 系统思路与框架
本系统总体的实现思路如图 1 所示:
一个完整的搜索系统主要的步骤是:
对新闻网页进行爬虫得到语料库
抽取新闻的主体内容,得到结构化的 xml 数据
内存式单遍扫描索引构建方法构建倒排索引,供检索模块使用
用户输入查询,得到相关文档返回给用户
2 设计方案
2.1 新闻爬取
2.1.1 算法简述
该模块针对搜狐,网易,腾讯三大主流新闻网站及官方的参考消息网站进行了新闻获取。并基于其网站结构,设计了不同的爬取模式。由于网站架构两两相似,以下选取两种类型的典型代表进行介绍:
(1)搜狐新闻
搜狐新闻除正常主页外,存在隐藏的列表式新闻页 , 如 http://news.sohu.com/1/0903/62/subject212846206.shtml 。
(2)网易新闻
可以将网易新闻及腾讯新闻归结为一般类型的新闻主页,我们采用了自新闻主页开始的广度优先的递归爬取策略。注意到新闻的正文页往往是静态网页.html,因此,我们将网页中出现的所有以.html 结尾的网页的 URL 均记录下来,在爬取到一定量时,进行一次去重。
对于一些不是新闻的错分网页,容错处理即通过检查新闻正文标签
时会被剔除。
新闻正文页中我们重点关注内容,时间,评论获取。
2.1.2 创新点
实现了对新闻网页动态加载的评论进行爬取,如搜狐新闻评论爬取
未借助开源新闻爬取工具,自己实现了对新闻标题,正文,时间,评论内容,评论数目的高效爬取
2.2 索引构建
分词,我们借助开源的 jieba 中文分词组件来完成,jieba 分词能够将一个中文句子切成一个个词项,这样就可以统计 tf, df 了
去停用词,去停词的步骤在 jieba 分词之后完成
倒排记录表存储,词典用 B-树或 hash 存储,倒排记录表用邻接链表存储方式,这样能大大减少存储空间
倒排索引构建算法使用内存式单遍扫描索引构建方法(SPIMI),就是依次对每篇新闻进行分词,如果出现新的词项则插入到词典中,否则将该文档的信息追加到词项对应的倒排记录表中。
2.3 检索模块
2.3.1 检索模式
(1)关键词检索
查询即根据用户输入的关键字,返回其相应的新闻。首先根据用户的查询进行 jieba 分词,记录分词后词项的数量以字典形式进行存储。
完整的源码和详细的文档,上传到了 WRITE-BUG技术共享平台 上,需要的请自取:
https://www.write-bug.com/article/3122.html
Ⅶ 如何用Python做爬虫
1)首先你要明白爬虫怎样工作。
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?
很简单
import Queue
initial_page = "初始化页"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example
注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...
那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)
考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)
有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...
及时更新(预测这个网页多久会更新一次)
如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。
所以,不要问怎么入门,直接上路就好了:)
Ⅷ python爬虫框架哪个好用
说实话感觉大同小异。各有优缺点吧~
常见python爬虫框架
1)Scrapy:很强大的爬虫框架,可以满足简单的页面爬取(比如可以明确获知url pattern的情况)。用这个框架可以轻松爬下来如亚马逊商品信息之类的数据。但是对于稍微复杂一点的页面,如weibo的页面信息,这个框架就满足不了需求了。
2)Crawley: 高速爬取对应网站的内容,支持关系和非关系数据库,数据可以导出为JSON、XML等
3)Portia:可视化爬取网页内容
4)newspaper:提取新闻、文章以及内容分析
5)python-goose:java写的文章提取工具
6)Beautiful Soup:名气大,整合了一些常用爬虫需求。缺点:不能加载JS。
7)mechanize:优点:可以加载JS。缺点:文档严重缺失。不过通过官方的example以及人肉尝试的方法,还是勉强能用的。
8)selenium:这是一个调用浏览器的driver,通过这个库你可以直接调用浏览器完成某些操作,比如输入验证码。
9)cola:一个分布式爬虫框架。项目整体设计有点糟,模块间耦合度较高。
资料来源:网页链接
希望我的回答对你有帮助~
Ⅸ 从零开始学python爬虫(八):selenium提取数据和其他使用方法
知识点:
知识点:了解 driver对象的常用属性和方法
注意:最新版本的selenium已经取消了这种格式,取而代之的是:
你要先导入:
然后再:
知识点:掌握 driver对象定位标签元素获取标签对象的方法
代码实现,如下,获取腾讯新闻首页的新闻标签的内容。
知识点:掌握 元素对象的操作方法
参考代码示例:
知识点:掌握 selenium控制标签页的切换
知识点:掌握 selenium控制frame标签的切换
知识点:掌握 利用selenium获取cookie的方法
知识点:掌握 selenium控制浏览器执行js代码的方法
知识点:掌握 手动实现页面等待
知识点:掌握 selenium开启无界面模式
知识点:了解 selenium使用代理ip
知识点:了解 selenium替换user-agent
Ⅹ python爬虫用什么框架
python爬虫框架概述
爬虫框架中比较好用的是 Scrapy 和PySpider。pyspider上手更简单,操作更加简便,因为它增加了 WEB 界面,写爬虫迅速,集成了phantomjs,可以用来抓取js渲染的页面。Scrapy自定义程度高,比 PySpider更底层一些,适合学习研究,需要学习的相关知识多,不过自己拿来研究分布式和多线程等等是非常合适的。
PySpider
PySpider是binux做的一个爬虫架构的开源化实现。主要的功能需求是:
抓取、更新调度多站点的特定的页面
需要对页面进行结构化信息提取
灵活可扩展,稳定可监控
pyspider的设计基础是:以python脚本驱动的抓取环模型爬虫
通过python脚本进行结构化信息的提取,follow链接调度抓取控制,实现最大的灵活性
通过web化的脚本编写、调试环境。web展现调度状态
抓取环模型成熟稳定,模块间相互独立,通过消息队列连接,从单进程到多机分布式灵活拓展
pyspider的架构主要分为 scheler(调度器), fetcher(抓取器), processor(脚本执行):
各个组件间使用消息队列连接,除了scheler是单点的,fetcher 和 processor 都是可以多实例分布式部署的。 scheler 负责整体的调度控制
任务由 scheler 发起调度,fetcher 抓取网页内容, processor 执行预先编写的python脚本,输出结果或产生新的提链任务(发往 scheler),形成闭环。
每个脚本可以灵活使用各种python库对页面进行解析,使用框架API控制下一步抓取动作,通过设置回调控制解析动作。
Scrapy
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试
Scrapy主要包括了以下组件:
引擎(Scrapy): 用来处理整个系统的数据流处理, 触发事务(框架核心)
调度器(Scheler): 用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想象成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
下载器(Downloader): 用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
爬虫(Spiders): 爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
项目管道(Pipeline): 负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
下载器中间件(Downloader Middlewares): 位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
爬虫中间件(Spider Middlewares): 介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
调度中间件(Scheler Middewares): 介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
Scrapy运行流程大概如下:
首先,引擎从调度器中取出一个链接(URL)用于接下来的抓取
引擎把URL封装成一个请求(Request)传给下载器,下载器把资源下载下来,并封装成应答包(Response)
然后,爬虫解析Response
若是解析出实体(Item),则交给实体管道进行进一步的处理。
若是解析出的是链接(URL),则把URL交给Scheler等待抓取