当前位置:首页 » 编程语言 » c语言字节对齐

c语言字节对齐

发布时间: 2022-12-26 15:55:29

❶ 关于C语言中的结构体字节对齐

仔细看一下书中的说明吧,这三言两语介绍起来有点累
或从网上查阅相关的技术资料,有详细描述。
一般简单来说,结构体从第一个变量开始检查空间的“对齐字节数”,
默认以第一个字节大小作为对齐字节数,如果遇上的下一个字节与当前对齐字节数不同时,就按两者中较大的来进行结构体空间分配,接下来的对齐就全按此值来对齐,直到再遇上不同的才进行检查或改变。

❷ 什么是C语言结构体字节对齐,为什么要对齐

arm支持16bit和32bit的地址访问,即变量地址能够被2或4整除,这时性能比较好,也便于移植。结构体的对齐就是指的结构体内部的每个成员变量地址尽可能对齐到2或4字节位置,如定义为:
struct{
char
ch1;
char
ch2;
short
ss;
int
i;
}var;
字符变量ch1,
ch2为字节对齐,短整型变量ss为半字对齐,整型变量i为字对齐,结构体内的变量比较紧凑,且已自然对齐,结构体变量var占用总空间为8个字节。如果改为这样:
struct{
char
ch1;
short
ss;
char
ch2;
short
ss;
int
i;
}var;
var变量最终占用的空间为12个字节,存取这个结构体时比前面那个需要的时间要多,另外如果用pack(1)指定结构体字节对齐的话,后面的方式移植到其它系统可能会出现死机问题。

❸ C语言结构体长度字节对齐问题

因为当结构体中有多个数据类型时,结构体的长度对齐是按数据类型长度最长的那个来对齐的,double类型占8个字节,所以每个成员变量都按8个字节的长度来算,就是5*8=40,验证程序如下:

#include<stdio.h>
structchji
{
charname[9];
intnumber;
charsex;
doublescore;
floataa;
};
structchjistu;
intmain()
{
printf("sizeof(structchji)=%d ",sizeof(structchji));
return0;
}

运行结果:sizeof(struct chji)=40

如果要按单个字节的长度来对齐的话,代码如下:

#include<stdio.h>

#pragmapack(1)
structchji
{
charname[9];//9
intnumber;//4
charsex;//1
doublescore;//8
floataa;//4
};
structchjistu;
#pragmapack()

intmain()
{
printf("sizeof(structchji)=%d ",sizeof(structchji));
return0;
}

运行结果:sizeof(struct chji)=26

即9+4+1+8+4=26,你可以查下#pragma pack()相关的资料的,就会清楚了。

❹ C语言里,联合体要不要像结构体一样对齐如果要,是几的倍数

也要对齐。首先,联合体要能容纳其中最大的元素;然后,联合体的对齐字节数要跟内部元素的最大对齐字节数一致。
例如,联合体中含有以下几个元素:
union
example
{
char
a;
int
b;
double
c;
struct
d
{
int
x;
int
y;
int
z;
};
};
1.
联合体要能容纳struct
d,因为d是12字节,所以联合体的大小要大于等于12。
2.
联合体的对齐要以double
c为准,因为c是8字节对齐的,最长。
所以最终,联合体的大小是16个字节。

❺ C语言字节对齐怎么操作

成为一名合格的IT人才

❻ C语言字节对齐问题

目前编译器上(我是说visual c++)如果没有特别设置的话, 默认的对齐方式按下面几个规律
1. 每个成员对齐到它长度的整数倍
2. 整个结构的长度对齐到它最长成员长度的整数倍
3. 上面所说的长度,超过4的按4算。
就这个来说, b字段会被对齐到2字节位置, 最后整个会被对齐到6字节长
我不知道这几点是标准还是实现, 以后会不会有变化

❼ C语言字节对齐问题

看样子跟你用的编译器有关系,
你用的是gcc 什么版本的,最新的是4.9吧

❽ C语言字节对齐

应该是把A当成了 char 和 int 类型来进行对齐吧

❾ 下载程序时字节对齐

一、快速理解

1、内存对齐原则:

第一个成员的首地址为0.
每个成员的首地址是自身大小的整数倍
结构体的总大小,为其成员中所含最大类型的整数倍。
2、什么是字节对齐?

在C语言中,结构是一种复合数据类型,其构成元素既可以是基本数据类型(如int、long、float等)的变量,也可以是一些复合数据类型(如数组、结构、联合等)的数据单元。在结构中,编译器为结构的每个成员按其自然边界(alignment)分配空间。各个成员按照它们被声明的顺序在内存中顺序存储,第一个成员的地址和整个结构的地址相同。
为了使CPU能够对变量进行快速的访问,变量的起始地址应该具有某些特性,即所谓的”对齐”.
比如4字节的int型,其起始地址应该位于4字节的边界上,即起始地址能够被4整除.
3、 字节对齐有什么作用?

字节对齐的作用不仅是便于cpu快速访问。
同时合理的利用字节对齐可以有效地节省存储空间。
对于32位机来说,4字节对齐能够使cpu访问速度提高,比如说一个long类型的变量,如果跨越了4字节边界存储,那么cpu要读取两次,这样效率就低了。
但是在32位机中使用1字节或者2字节对齐,反而会使变量访问速度降低。所以这要考虑处理器类型,另外还得考虑编译器的类型。在vc中默认是4字节对齐的,GNU gcc 是默认4字节对齐。
4、 更改C编译器的缺省字节对齐方式

在缺省情况下,C编译器为每一个变量或是数据单元按其自然对界条件分配空间。一般地,可以通过下面的方法来改变缺省的对界条件:

使用伪指令#pragma pack (n),C编译器将按照n个字节对齐。
使用伪指令#pragma pack(),取消自定义字节对齐方式。
另外,还有如下的一种方式:

__attribute((aligned (n))),让所作用的结构成员对齐在n字节自然边界上。如果结构中有成员的长度大于n,则按照最大成员的长度来对齐。 ·
attribute ((packed)),取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐。
5、 举例说明

例1

struct test
{
char x1;
short x2;
float x3;
char x4;
};
1
2
3
4
5
6
7
1
2
3
4
5
6
7
由于编译器默认情况下会对这个struct作自然边界(有人说“自然对界”我觉得边界更顺口)对齐,结构的第一个成员x1,其偏移地址为0,占据了第1个字节。第二个成员x2为short类型,其起始地址必须2字节对界。
因此,编译器在x2和x1之间填充了一个空字节。结构的第三个成员x3和第四个成员x4恰好落在其自然边界地址上,在它们前面不需要额外的填充字节。
在test结构中,成员x3要求4字节对界,是该结构所有成员中要求的最大边界单元,因而test结构的自然对界条件为4字节,编译器在成员x4后面填充了3个空字节。整个结构所占据空间为12字节。

例2

#pragma pack(1) //让编译器对这个结构作1字节对齐
struct test
{
char x1;
short x2;
float x3;
char x4;
};
#pragma pack() //取消1字节对齐,恢复为默认4字节对齐
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
这时候sizeof(struct test)的值为8。

例3

#define GNUC_PACKED __attribute__((packed))
struct PACKED test
{
char x1;
short x2;
float x3;
char x4;
}GNUC_PACKED;
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
这时候sizeof(struct test)的值仍为8。

二、深入理解

①什么是字节对齐,为什么要对齐?
现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始。
但实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。
对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数据。显然在读取效率上下降很多。
②字节对齐对程序的影响:

先让我们看几个例子吧(32bit,x86环境,gcc编译器):

设结构体如下定义:

struct A
{
int a;
char b;
short c;
};
struct B
{
char b;
int a;
short c;
};
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
现在已知32位机器上各种数据类型的长度如下:
char:1(有符号无符号同)
short:2(有符号无符号同)
int:4(有符号无符号同)
long:4(有符号无符号同)
float:4 double:8
那么上面两个结构大小如何呢?
结果是:
sizeof(strcut A)值为8
sizeof(struct B)的值却是12一、快速理解

1、内存对齐原则:

第一个成员的首地址为0.
每个成员的首地址是自身大小的整数倍
结构体的总大小,为其成员中所含最大类型的整数倍。
2、什么是字节对齐?

在C语言中,结构是一种复合数据类型,其构成元素既可以是基本数据类型(如int、long、float等)的变量,也可以是一些复合数据类型(如数组、结构、联合等)的数据单元。在结构中,编译器为结构的每个成员按其自然边界(alignment)分配空间。各个成员按照它们被声明的顺序在内存中顺序存储,第一个成员的地址和整个结构的地址相同。
为了使CPU能够对变量进行快速的访问,变量的起始地址应该具有某些特性,即所谓的”对齐”.
比如4字节的int型,其起始地址应该位于4字节的边界上,即起始地址能够被4整除.
3、 字节对齐有什么作用?

字节对齐的作用不仅是便于cpu快速访问。
同时合理的利用字节对齐可以有效地节省存储空间。
对于32位机来说,4字节对齐能够使cpu访问速度提高,比如说一个long类型的变量,如果跨越了4字节边界存储,那么cpu要读取两次,这样效率就低了。
但是在32位机中使用1字节或者2字节对齐,反而会使变量访问速度降低。所以这要考虑处理器类型,另外还得考虑编译器的类型。在vc中默认是4字节对齐的,GNU gcc 是默认4字节对齐。
4、 更改C编译器的缺省字节对齐方式

在缺省情况下,C编译器为每一个变量或是数据单元按其自然对界条件分配空间。一般地,可以通过下面的方法来改变缺省的对界条件:

使用伪指令#pragma pack (n),C编译器将按照n个字节对齐。
使用伪指令#pragma pack(),取消自定义字节对齐方式。
另外,还有如下的一种方式:

__attribute((aligned (n))),让所作用的结构成员对齐在n字节自然边界上。如果结构中有成员的长度大于n,则按照最大成员的长度来对齐。 ·
attribute ((packed)),取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐。
5、 举例说明

例1

struct test
{
char x1;
short x2;
float x3;
char x4;
};
1
2
3
4
5
6
7
1
2
3
4
5
6
7
由于编译器默认情况下会对这个struct作自然边界(有人说“自然对界”我觉得边界更顺口)对齐,结构的第一个成员x1,其偏移地址为0,占据了第1个字节。第二个成员x2为short类型,其起始地址必须2字节对界。
因此,编译器在x2和x1之间填充了一个空字节。结构的第三个成员x3和第四个成员x4恰好落在其自然边界地址上,在它们前面不需要额外的填充字节。
在test结构中,成员x3要求4字节对界,是该结构所有成员中要求的最大边界单元,因而test结构的自然对界条件为4字节,编译器在成员x4后面填充了3个空字节。整个结构所占据空间为12字节。

例2

#pragma pack(1) //让编译器对这个结构作1字节对齐
struct test
{
char x1;
short x2;
float x3;
char x4;
};
#pragma pack() //取消1字节对齐,恢复为默认4字节对齐
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
这时候sizeof(struct test)的值为8。

例3

#define GNUC_PACKED __attribute__((packed))
struct PACKED test
{
char x1;
short x2;
float x3;
char x4;
}GNUC_PACKED;
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
这时候sizeof(struct test)的值仍为8。

二、深入理解

①什么是字节对齐,为什么要对齐?
现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始。
但实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。
对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数据。显然在读取效率上下降很多。
②字节对齐对程序的影响:

先让我们看几个例子吧(32bit,x86环境,gcc编译器):

设结构体如下定义:

struct A
{
int a;
char b;
short c;
};
struct B
{
char b;
int a;
short c;
};
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
现在已知32位机器上各种数据类型的长度如下:
char:1(有符号无符号同)
short:2(有符号无符号同)
int:4(有符号无符号同)
long:4(有符号无符号同)
float:4 double:8
那么上面两个结构大小如何呢?
结果是:
sizeof(strcut A)值为8
sizeof(struct B)的值却是12

❿ C语言里面的字节对齐的计算方法能讲解1下吗

首先你要知道为什么会出现字节对齐,这是一种用空间换时间的做法,因为对齐之后可以提高取数的效率。结构体的大小一般是4或者8的倍数,具体是以最大的变量类型的大小为基数的。也就是说在内存中,数据一般是放在一个4的整数倍的起始地址。
sturct S
{
char c;
short s;
int i;
}
它的大小是8个字节,因为前面两个占了4字节。如果写成下面这种形式,它就是12字节了
struct S
{
char c;
int i;
short s;
}
因为为了提高存取效率,所以第一个成员变量占了四个字节的空间,最后一个成员也占了四个字节

你非要说计算方法的话要根据具体情况来算了,首先看结构体中哪一个变量所占的字节数最大,然后后面的对齐计算都以这个为基数(我这里以4字节为例)。接着,你把每一个成员变量的大小依次相加(按照结构体定义中的顺序,从第一个加到最后一个)。当你加到某一个变量的时候,发现超过了4个字节,那么就把这个变量之前的内容当作是一个整体,它们一共点4个字节,后面的再继续这个过程

热点内容
安卓网卡免驱动如何实现 发布:2024-05-18 15:25:15 浏览:859
8加6算法 发布:2024-05-18 15:04:25 浏览:737
名图16款尊享什么配置 发布:2024-05-18 14:55:37 浏览:584
我的世界怎样刷出32k服务器 发布:2024-05-18 14:32:32 浏览:565
c语言程序设计江宝钏 发布:2024-05-18 14:32:22 浏览:780
右击文件夹总是转圈圈 发布:2024-05-18 14:31:10 浏览:696
新建数据库phpmyadmin 发布:2024-05-18 14:22:38 浏览:736
安卓手机设备连接在哪里 发布:2024-05-18 14:08:28 浏览:820
路由器的密码最多是多少位 发布:2024-05-18 13:58:18 浏览:420
扫描服务器名称如何填 发布:2024-05-18 13:36:29 浏览:115