当前位置:首页 » 编程语言 » 如何用python进行数据分析

如何用python进行数据分析

发布时间: 2023-01-02 06:24:29

1. 利用python进行数据分析笔记:3.1数据结构

元组是一种固定长度、不可变的Python对象序列。创建元组最简单的办法是用逗号分隔序列值:

tuple 函数将任意序列或迭代器转换为元组:

中括号 [] 可以获取元组的元素, Python中序列索引从0开始

元组一旦创建,各个位置上的对象是无法被修改的,如果元组的一个对象是可变的,例如列表,你可以在它内部进行修改:

可以使用 + 号连接元组来生成更长的元组:

元组乘以整数,则会和列表一样,生成含有多份拷贝的元组:

将元组型的表达式赋值给变量,Python会对等号右边的值进行拆包:

拆包的一个常用场景就是遍历元组或列表组成的序列:

*rest 用于在函数调用时获取任意长度的位置参数列表:

count 用于计量某个数值在元组中出现的次数:

列表的长度可变,内容可以修改。可以使用 [] 或者 list 类型函数来定义列表:

append 方法将元素添加到列表尾部:

insert 方法可以将元素插入到指定列表位置:
插入位置范围在0到列表长度之间

pop 是 insert 的反操作,将特定位置的元素移除并返回:

remove 方法会定位第一个符合要求的值并移除它:

in 关键字可以检查一个值是否在列表中;
not in 表示不在:

+ 号可以连接两个列表:

extend 方法可以向该列表添加多个元素:

使用 extend 将元素添加到已经存在的列表是更好的方式,比 + 快。

sort 方法可以对列表进行排序:

key 可以传递一个用于生成排序值的函数,例如通过字符串的长度进行排序:

bisect.bisect 找到元素应当被插入的位置,返回位置信息
bisect.insort 将元素插入到已排序列表的相应位置保持序列排序

bisect 模块的函数并不会检查列表是否已经排序,因此对未排序列表使用bisect不会报错,但是可能导致不正确结果

切片符号可以对大多数序列类型选取子集,基本形式是 [start:stop]
起始位置start索引包含,结束位置stop索引不包含

切片还可以将序列赋值给变量:

start和stop可以省略,默认传入起始位置或结束位置,负索引可以从序列尾部进行索引:

步进值 step 可以在第二个冒号后面使用, 意思是每隔多少个数取一个值:

对列表或元组进行翻转时,一种很聪明的用法时向步进值传值-1:

dict(字典)可能是Python内建数据结构中最重要的,它更为常用的名字是 哈希表 或者 关联数组
字典是键值对集合,其中键和值都是Python对象。
{} 是创建字典的一种方式,字典中用逗号将键值对分隔:

你可以访问、插入或设置字典中的元素,:

in 检查字典是否含有一个键:

del 或 pop 方法删除值, pop 方法会在删除的同时返回被删的值,并删除键:

update 方法将两个字典合并:
update方法改变了字典元素位置,对于字典中已经存在的键,如果传给update方法的数据也含有相同的键,则它的值将会被覆盖。

字典的值可以是任何Python对象,但键必须是不可变的对象,比如标量类型(整数、浮点数、字符串)或元组(且元组内对象也必须是不可变对象)。
通过 hash 函数可以检查一个对象是否可以哈希化(即是否可以用作字典的键):

集合是一种无序且元素唯一的容器。

set 函数或者是用字面值集与大括号,创建集合:

union 方法或 | 二元操作符获得两个集合的联合即两个集合中不同元素的并集:

intersection 方法或 & 操作符获得交集即两个集合中同时包含的元素:

常用的集合方法列表:

和字典类似,集合的元素必须是不可变的。如果想要包含列表型的元素,必须先转换为元组:

2. 如何用python做数据分析

首先,是数据分析的模块,numpy 高效处理数据,提供数组支持,很多模块都依赖它,比如pandas,scipy,matplotlib都依赖他,所
以这个模块都是基础。所以必须先安装numpy。
然后,pandas 主要用于进行数据的采集与分析,scipy 主要进行数值计算。同时支持矩阵运算,并提供了很多高等数据处理功能,比如
积分,微分方程求样等。matplotlib 作图模块,结合其他数据分析模块,解决可视化问题,statsmodels 这个模块主要用于统计分析,
Gensim 这个模块主要用于文本挖掘,sklearn,keras 前者机器学习,后者深度学习。
然后,安装的numpy版本一定要是带mkl版本的,没有返回值的,修改原处的值,这里等于修改了Xx.max() # 最大值,对二维数组都管
用x.min() # 最小值,对二维数组都管用x1=x[1:3] # 取区间,和python的列表没有区别。
然后,通过pandas导入数据,pandas支持多种输入格式,我这里就简单罗列日常生活最常用的几种,对于更多的输入方式可以查看源码
后者官网。csv文件导入后显示输出的话,是按照csv文件默认的行输出的,有多少列就输出多少列。
更多学习内容,请点击《Python学习网》!

3. 新手Python数据分析如何入门

1、数据获取Python具有灵活易用,便利读写的特点,其能够非常便利地调用数据库和本地的数据,同时,Python也是当下网络爬虫的首选东西。Scrapy爬虫,Python开发的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,能够用于数据挖掘、监测和自动化测验。
2、数据整理NumPy供给了许多高档的数值编程东西,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司运用,以及核心的科学核算组织如:Lawrence
Livermore,NASA用其处理一些原本运用C++,Fortran或Matlab等所做的使命。PandasPandas是根据NumPy的一种东西,该东西是为了处理数据剖析使命而创立的。Pandas纳入了大量库和一些标准的数据模型,供给了高效地操作大型数据集所需的东西。pandas供给了大量能使咱们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强壮而高效的数据剖析环境的重要因素之一。
3、建模剖析Scikit-learn从事数据剖析建模必学的包,供给及汇总了当时数据剖析范畴常见的算法及处理问题,如分类问题、回归问题、聚类问题、降维、模型挑选、特征工程。
4、数据可视化如果在Python中看可视化,你可能会想到Matplotlib。除此之外,Seaborn是一个类似的包,这是用于统计可视化的包。关于自学python入门,Python数据剖析怎么入门,以上就是一个根本的学习路线规划了。

4. 可以让你快速用Python进行数据分析的10个小技巧

一些小提示和小技巧可能是非常有用的,特别是在编程领域。有时候使用一点点黑客技术,既可以节省时间,还可能挽救“生命”。

一个小小的快捷方式或附加组件有时真是天赐之物,并且可以成为真正的生产力助推器。所以,这里有一些小提示和小技巧,有些可能是新的,但我相信在下一个数据分析项目中会让你非常方便。

Pandas中数据框数据的Profiling过程

Profiling(分析器)是一个帮助我们理解数据的过程,而Pandas Profiling是一个Python包,它可以简单快速地对Pandas 的数据框数据进行 探索 性数据分析。

Pandas中df.describe()和df.info()函数可以实现EDA过程第一步。但是,它们只提供了对数据非常基本的概述,对于大型数据集没有太大帮助。 而Pandas中的Profiling功能简单通过一行代码就能显示大量信息,且在交互式HTML报告中也是如此。

对于给定的数据集,Pandas中的profiling包计算了以下统计信息:

由Pandas Profiling包计算出的统计信息包括直方图、众数、相关系数、分位数、描述统计量、其他信息——类型、单一变量值、缺失值等。

安装

用pip安装或者用conda安装

pip install pandas-profiling

conda install -c anaconda pandas-profiling

用法

下面代码是用很久以前的泰坦尼克数据集来演示多功能Python分析器的结果。

#importing the necessary packages

import pandas as pd

import pandas_profiling

df = pd.read_csv('titanic/train.csv')

pandas_profiling.ProfileReport(df)

一行代码就能实现在Jupyter Notebook中显示完整的数据分析报告,该报告非常详细,且包含了必要的图表信息。

还可以使用以下代码将报告导出到交互式HTML文件中。

profile = pandas_profiling.ProfileReport(df)

profile.to_file(outputfile="Titanic data profiling.html")

Pandas实现交互式作图

Pandas有一个内置的.plot()函数作为DataFrame类的一部分。但是,使用此功能呈现的可视化不是交互式的,这使得它没那么吸引人。同样,使用pandas.DataFrame.plot()函数绘制图表也不能实现交互。 如果我们需要在不对代码进行重大修改的情况下用Pandas绘制交互式图表怎么办呢?这个时候就可以用Cufflinks库来实现。

Cufflinks库可以将有强大功能的plotly和拥有灵活性的pandas结合在一起,非常便于绘图。下面就来看在pandas中如何安装和使用Cufflinks库。

安装

pip install plotly

# Plotly is a pre-requisite before installing cufflinks

pip install cufflinks

用法

#importing Pandas

import pandas as pd

#importing plotly and cufflinks in offline mode

import cufflinks as cf

import plotly.offline

cf.go_offline()

cf.set_config_file(offline=False, world_readable=True)

是时候展示泰坦尼克号数据集的魔力了。

df.iplot()

df.iplot() vs df.plot()

右侧的可视化显示了静态图表,而左侧图表是交互式的,更详细,并且所有这些在语法上都没有任何重大更改。

Magic命令

Magic命令是Jupyter notebook中的一组便捷功能,旨在解决标准数据分析中的一些常见问题。使用命令%lsmagic可以看到所有的可用命令。

所有可用的Magic命令列表

Magic命令有两种:行magic命令(line magics),以单个%字符为前缀,在单行输入操作;单元magic命令(cell magics),以双%%字符为前缀,可以在多行输入操作。如果设置为1,则不用键入%即可调用Magic函数。

接下来看一些在常见数据分析任务中可能用到的命令:

% pastebin

%pastebin将代码上传到Pastebin并返回url。Pastebin是一个在线内容托管服务,可以存储纯文本,如源代码片段,然后通过url可以与其他人共享。事实上,Github gist也类似于pastebin,只是有版本控制。

在file.py文件中写一个包含以下内容的python脚本,并试着运行看看结果。

#file.py

def foo(x):

return x

在Jupyter Notebook中使用%pastebin生成一个pastebin url。

%matplotlib notebook

函数用于在Jupyter notebook中呈现静态matplotlib图。用notebook替换inline,可以轻松获得可缩放和可调整大小的绘图。但记得这个函数要在导入matplotlib库之前调用。

%run

用%run函数在notebook中运行一个python脚本试试。

%run file.py

%%writefile

%% writefile是将单元格内容写入文件中。以下代码将脚本写入名为foo.py的文件并保存在当前目录中。

%%latex

%%latex函数将单元格内容以LaTeX形式呈现。此函数对于在单元格中编写数学公式和方程很有用。

查找并解决错误

交互式调试器也是一个神奇的功能,我把它单独定义了一类。如果在运行代码单元时出现异常,请在新行中键入%debug并运行它。 这将打开一个交互式调试环境,它能直接定位到发生异常的位置。还可以检查程序中分配的变量值,并在此处执行操作。退出调试器单击q即可。

Printing也有小技巧

如果您想生成美观的数据结构,pprint是首选。它在打印字典数据或JSON数据时特别有用。接下来看一个使用print和pprint来显示输出的示例。

让你的笔记脱颖而出

我们可以在您的Jupyter notebook中使用警示框/注释框来突出显示重要内容或其他需要突出的内容。注释的颜色取决于指定的警报类型。只需在需要突出显示的单元格中添加以下任一代码或所有代码即可。

蓝色警示框:信息提示

<p class="alert alert-block alert-info">

<b>Tip:</b> Use blue boxes (alert-info) for tips and notes.

If it’s a note, you don’t have to include the word “Note”.

</p>

黄色警示框:警告

<p class="alert alert-block alert-warning">

<b>Example:</b> Yellow Boxes are generally used to include additional examples or mathematical formulas.

</p>

绿色警示框:成功

<p class="alert alert-block alert-success">

Use green box only when necessary like to display links to related content.

</p>

红色警示框:高危

<p class="alert alert-block alert-danger">

It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc.

</p>

打印单元格所有代码的输出结果

假如有一个Jupyter Notebook的单元格,其中包含以下代码行:

In [1]: 10+5

11+6

Out [1]: 17

单元格的正常属性是只打印最后一个输出,而对于其他输出,我们需要添加print()函数。然而通过在notebook顶部添加以下代码段可以一次打印所有输出。

添加代码后所有的输出结果就会一个接一个地打印出来。

In [1]: 10+5

11+6

12+7

Out [1]: 15

Out [1]: 17

Out [1]: 19

恢复原始设置:

InteractiveShell.ast_node_interactivity = "last_expr"

使用'i'选项运行python脚本

从命令行运行python脚本的典型方法是:python hello.py。但是,如果在运行相同的脚本时添加-i,例如python -i hello.py,就能提供更多优势。接下来看看结果如何。

首先,即使程序结束,python也不会退出解释器。因此,我们可以检查变量的值和程序中定义的函数的正确性。

其次,我们可以轻松地调用python调试器,因为我们仍然在解释器中:

import pdb

pdb.pm()

这能定位异常发生的位置,然后我们可以处理异常代码。

自动评论代码

Ctrl / Cmd + /自动注释单元格中的选定行,再次命中组合将取消注释相同的代码行。

删除容易恢复难

你有没有意外删除过Jupyter notebook中的单元格?如果答案是肯定的,那么可以掌握这个撤消删除操作的快捷方式。

如果您删除了单元格的内容,可以通过按CTRL / CMD + Z轻松恢复它。

如果需要恢复整个已删除的单元格,请按ESC + Z或EDIT>撤消删除单元格。

结论

在本文中,我列出了使用Python和Jupyter notebook时收集的一些小提示。我相信它们会对你有用,能让你有所收获,从而实现轻松编码!

5. python如何做数据分析

Python做数据分析比较好用且流行的是numpy、pandas库,有兴趣的话,可以深入了解、学习一下。

6. 如何利用python进行数据分析

利用python进行数据分析

链接: https://pan..com/s/15VdW4dcuPuIUEPrY3RehtQ

?pwd=3nfn 提取码: 3nfn

本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。


热点内容
登录时设置密码保存在哪里 发布:2025-07-04 04:34:23 浏览:530
网站开发源码 发布:2025-07-04 04:30:45 浏览:338
魔戒护卫队是什么配置 发布:2025-07-04 04:25:33 浏览:564
数据库外网 发布:2025-07-04 04:19:48 浏览:110
固件解压包 发布:2025-07-04 04:15:02 浏览:925
卡罗拉顶配都有什么配置 发布:2025-07-04 04:12:50 浏览:671
python3435 发布:2025-07-04 04:12:07 浏览:827
数据库日志满了 发布:2025-07-04 04:09:15 浏览:515
尚硅谷java视频ftp 发布:2025-07-04 04:09:13 浏览:646
编程的苦难 发布:2025-07-04 04:08:16 浏览:355