python自动化运维pdf
① 学python职业前景怎么样
Python自身强大的优势决定其不可限量的发展前景。而且从最新Python招聘岗位需求来看,Python工程师的岗位需求量是非常大的Python作为一种通用语言,几乎可以用在任何领域和场合,角色几乎是无限的。它是一种很灵活的语言,能帮你轻松完成编程工作。强大的类库支持,使编写文件处理、正则表达式、网络连接等程序变得相当容易。其次再说python人才的需求,过去五年里,市场对 Python 开发者的需求呈爆发性增长趋势。Python+人工智能人才缺口高达80万,供不应求。【更系统全面的学习资料,点击查看】
首先从国家的层面上来说,国务院发布《新一代人工智能发展规划》,人工智能正式纳入国家发展战略,在教育上,教育部已将人工智能、物联网、大数据处理划入高中新课标。因为Python在大数据和人工智能领域的爆发性发展, 导致Python方向岗位的薪水在水涨船高,从数据分析来看,月薪在20K-50K不等。千锋教育拥有多年Python培训服务经验,采用全程面授高品质、高体验培养模式,拥有国内一体化教学管理及学员服务,助力更多学员实现高薪梦想。【千锋IT培训机构,热门IT课程试听名额限时领取】
② 学Python职业前景怎么样
一、人工智能
Python作为人工智能的黄金语言,选择人工智能作为就业方向是理所当然的,而且就业前景好,薪资普遍较高,拉勾网上,人工智能工程师的招聘起薪普遍在20K-35K,当然,如果是初级工程师,起薪也已经超过了12500元/月。
二、大数据
我们目前正处于大数据时代,Python这门语言在大数据上比Java更加有效率,大数据虽然难学,但是Python可以更好地和大数据对接,用Python做大数据的薪资也至少是20K以上了,大数据持续火爆,未来做大数据工程师,薪资还将逐渐上涨。
三、网络爬虫工程师
网络爬虫作为数据采集的利器,在大数据时代作为数据的源头,十分有用武之地。利用Python可以更快的提升对数据抓取的精准程度和速度,是数据分析师的福祉,通过网络爬虫,让BOSS再也不用担心你没有数据。做爬虫工程师的的薪资为20K起,当然,因为大数据,薪资也将一路上扬。
四、Python web全栈工程师
全栈工程师是指掌握多种技能,并能利用多种技能独立完成产品的人。也叫全端工程师(同时具备前端和后台能力),英文Full Stack developer。全栈工程师不管在哪个语言中都是人才中的人才,而Python web全栈工程师工资基本上都高出20K,所以如果你能力足够,首选就是Python web全栈工程师。
五、Python自动化运维
运维工作者对Python的需求很大,小伙伴们快快行动起来吧,学习Python自动化运维也能有个10k-15k的工资,很不错哦
六、Python自动化测试
Python这门语言十分高效,只要是和自动化有关系的,它可以发挥出巨大的优势,目前做自动化测试的大部分的工作者都需要学习Python帮助提高测试效率。用Python测试也可以说是测试人员必备的工具了,Python自动化测试的起薪一般也都是15K左右,所以测试的小伙伴也需要学习Python哦!
③ Python都是拿来做运维吗
当然不是!
运维只是Python的应用方向之一,实际上Python主要有下面这些方向:
1. 常规软件开发
Python支持函数式编程和OOP面向对象编程,能够承担任何种类软件的开发工作,因此常规的软件开发、脚本编写、网络编程等都属于标配能力。
2. 科学计算
随着NumPy, SciPy, Matplotlib, Enthought librarys等众多程序库的开发,Python越来越适合于做科学计算、绘制高质量的2D和3D图像。和科学计算领域最流行的商业软件Matlab相比,Python是一门通用的程序设计语言,比Matlab所采用的脚本语言的应用范围更广泛,有更多的程序库的支持。虽然Matlab中的许多高级功能和toolbox目前还是无法替代的,不过在日常的科研开发之中仍然有很多的工作是可以用Python代劳的。
3. 自动化运维
这几乎是Python应用的自留地,作为运维工程师首选的编程语言,Python在自动化运维方面已经深入人心,比如Saltstack和Ansible都是大名鼎鼎的自动化平台。
4. 云计算
开源云计算解决方案OpenStack就是基于Python开发的,搞云计算的同学都懂的。
5. WEB开发
基于Python的Web开发框架不要太多,比如耳熟能详的Django,还有Tornado,Flask。其中的Python+Django架构,应用范围非常广,开发速度非常快,学习门槛也很低,能够帮助你快速的搭建起可用的WEB服务。
6. 网络爬虫
也称网络蜘蛛,是大数据行业获取数据的核心工具。没有网络爬虫自动地、不分昼夜地、高智能地在互联网上爬取免费的数据,那些大数据相关的公司恐怕要少四分之三。能够编写网络爬虫的编程语言有不少,但Python绝对是其中的主流之一,其Scripy爬虫框架应用非常广泛。
7. 数据分析
在大量数据的基础上,结合科学计算、机器学习等技术,对数据进行清洗、去重、规格化和针对性的分析是大数据行业的基石。Python是数据分析的主流语言之一。
8. 人工智能
Python在人工智能大范畴领域内的机器学习、神经网络、深度学习等方面都是主流的编程语言,得到广泛的支持和应用。
当然,除了以上的主流和前沿领域,Python还在其他传统或特殊行业起着重要的作用。
摘自:刘江的Python教程
④ 求《Pythonlinux系统管理与自动化运维》全文免费下载百度网盘资源,谢谢~
《Python Linux系统管理与自动化运维》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1gTDC-6VOoziNDZmFBs_bSQ
简介:Python Linux系统管理与自动化运维以Linux系统管理为线索,以Python语言为载体,从工具、脚本、方法等多个方面讲解了如何在Linux系统管理和自动化运维中使用Python来解决各种问题,包含大量案例和最佳实践。
⑤ 程序员应知应会之自动化运维那些事儿
对于一个开发人员来讲,可能运维并不是自己的职责所在。但是作为一名开发人员,却不能不了解自动化运维的整个流程。因为对于一个信息系统而言,开发和运维本质是一体的,尤其对于一些小公司来讲,可能运维人员本身就是开发人员抽空兼任的。
而自动化运维,本质上是介于开发和运维之间的,是运维和开发的交集,甚至很多时候都要写不少代码。因此,任何一个开发人员,都需要有自动化运维的相关知识。
一个了解好的开发人员,即使自己不做运维相关的工作,也能够知道自己在将项目交付给运维人员的时候,哪些东西是重要的,那些是必须配置的等等。然而在实际工作中,往往开发人员会给运维人员留下一些坑,一些只有他自己知道,而运维人员不知道的东西。导致运维人员自己试了很多次发现不行的时候,找到开发人员,开发人员研究了一下才会告诉他,在某某环境中必须用哪个端口之类的。这样不仅白白浪费了运维人员的时间,也增加了很多沟通的工作量。
反过来也是如此,一些现场的问题如果运维人员不能现场给出问题的定位。对于开发人员来讲是非常难以复现的。比如之前有某家企业,运维人员在客户现场发现问题。费了很大力气从客气的内网里面把日志导出来,发给开发人员,结果开发人员仔细研究了日志之后,发现是网不通的问题。开发人员显然是不可能知道为啥网不通的,搞不好是压根没连网线。
所以今天我们来聊一聊,对于一个程序员来讲,需要了解的自动化运维的那些事。
一、自动化运维的概念
随着信息时代的持续发展,初期的几台服务器已经发展成为了庞大的数据中心,单靠人工已经无法满足在技术、业务、管理等方面的要求。一个运维人员手工配置几台服务器还可能。配置几百上千台服务器那就累死了,还容易出错。那么就需要对运维工作进行标准化、自动化、架构优化、过程优化等。从面降低运维服务成本。其中,自动化最开始作为代替人工操作为出发点的诉求被广泛研究和应用。
所谓自 动化运维,即在最少的人工干预下,结合运用脚本与第三方工具,保证业务系统7*24小时高效稳定运行 。这是所有业务系统运维的终极目标。
按照运维的发展成熟度来看, 运维大致可分为三个阶段 :
(1)依靠纯手工,重复地进行软件的部署与运维;
(2)通过编写脚本,方便地进行软件的部署与运维;
(3)借助第三方工具,高效地进行软件的部署与运维;
二、自动化运维需要解决的问题
自动化运维通常来讲,需要解决以下几个问题: 自动部署配置、风险事前预警、故障事中解决、和故障事后管理 。
三、自动化运维的常用工具
自动化运维常用的工具包括以下几种:
1、Ansible
ansible是基于Python开发的自动化运维工具,集合了众多运维工具(puppet、cfengine、chef、func、fabric)的优点,实现了批量系统配置、批量程序部署、批量运行命令等功能。
ansible具有如下一些特性:
(1)模块化:调用特定的模块,完成特殊的任务。
(2)Paramiko(python对ssh的实现),PyYaml,jinja2(模块语言)三个关键模块。
(3)支持自定义模块,可使用任何编程语言写模块。
(4)基于python语言实现。
(5)部署简单,基于python和SSH(默认已安装),agentless,无需代理不依赖KPI(无需SSL)。
(6)安全,基于OpenSSH
(7)幂等性:一个任务执行一次和执行n遍效果一样,不因重复执行带来意外情况。
(8)支持playbook编排任务,YAML格式,编排任务,支持丰富的数据结构。
(9)较强大的多层解决方案role。
2、Chef
Chef是一个功能强大的自动化工具,可以部署,修复和更新以及管理服务器和应用程序到任何环境。
Chef 主要分为三个部分 Chef Server、Workstation 以及 Chef Client。用户在 Workstation 上编写 Cookbook。然后,通过 knife 命令上传到 Chef Server。最后,在 Chef Client 上面实施安装和部署工作。所以,对于 Cookbook 地编写在整个自动化部署中起到了重要的作用。
Chef Server 包含所有配置数据,并存储描述Chef-Client中每个Nodes的Recipe,Cookbook和元数据。配置详细信息通过Chef-Client提供给Nodes。所做的任何更改都必须通过Chef Server进行部署。在推送更改之前,它通过使用授权密钥来验证Nodes和Workstations是否与服务器配对,然后允许Workstations和Nodes之间进行通信。
Workstations 用于与Chef-server进行交互,还用于与Chef-nodes进行交互。它还用于创建Cookbook。Workstations是所有交互发生的地方,在这里创建,测试和部署Cookbook,并在Workstations中测试代码。
Chef命令行工具 是创建,测试和部署Cookbook的地方,并通过此策略将其上载到Chef Server。
Knife 用于与ChefNodes进行交互。
Test Kitchen 用于验证Chef代码
Chef-Repo 是一个通过Chef命令行工具在其中创建,测试和维护Cookbook的存储库。
Nodes 由Chef管理,每个Nodes通过在其上安装Chef-Client进行配置。 ChefNodes 是一台机器,例如物理云,云主机等。
Chef-Client 负责注册和认证Nodes,构建Nodes对象以及配置Nodes。Chef-Client在每个Nodes上本地运行以配置该Nodes。
Cookbook 是Chef 框架的重要基础功能之一。在 Chef Server 对目标机器做安装部署的时候,是通过 Runlist。而 Runlist 里面又包含了一个一个具体的 Cookbook,所以,最终对一个目标机器的部署任务就落到了 Cookbook 上。而对于 Cookbook 来说,其中包含了多个组件,我们可以将 Cookbook 简单地理解成一个容器或者可以理解为一个包,里面包含了 recipes、files、templates、libraries、metadata 等信息。这些信息用于配置我们的目标机器。
3、Puppet
puppet是一种Linux、Unix平台的集中配置管理系统,所谓配置管理系统,就是管理其里面诸如文件、用户、进程、软件包等资源。它可以运行在一台服务器端,每个客户端通过SSL证书连接到服务端,得到本机器的配置列表,然后根据列表来完成配置工作,所以如果硬件性能比较高,维护管理上千上万台机器是非常轻松的,前提是客户端的配置、服务器路径、软件需要保持一致。
客户端Puppet会调用本地facter,facter探测出该主机的常用变量,例如主机名、内存大小、IP地址等。然后Puppetd把这些信息发送到Puppet服务端;
Puppet服务端检测到客户端的主机名,然后会检测manifest中对应的node配置,并对这段内容进行解析,facter发送过来的信息可以作为变量进行处理;
Puppet服务器匹配Puppet客户端相关联的代码才能进行解析,其他的代码不解析,解析分为几个过程,首先是语法检查,然后会生成一个中间的伪代码,之后再把伪代码发给Puppet客户端;
Puppet客户端接收到伪代码之后就会执行,执行完后会将执行的结果发送给Puppet服务器;
Puppet服务端再把客户端的执行结果写入日志。
4、Saltstack
SaltStack是基于python开发的一套C/S自动化运维工具。部署轻松,扩展性好,很容易管理上万台服务器,速度够快。与服务器之间的交流,以毫秒为单位。SaltStack提供了一个动态基础设施通信总线用于编排,远程执行、配置管理等等。它的底层使用ZeroMQ消息队列pub/sub方式通信,使用SSL证书签发的方式进行认证管理,传输采用AES加密。
在saltstack架构中服务器端叫Master,客户端叫Minion。
在Master和Minion端都是以守护进程的模式运行,一直监听配置文件里面定义的ret_port(接受minion请求)和publish_port(发布消息)的端口。当Minion运行时会自动连接到配置文件里面定义的Master地址ret_port端口进行连接认证。
saltstack除了传统的C/S架构外,其实还有一种叫做masterless的架构,其不需要单独安装一台 master 服务器,只需要在每台机器上安装 Minion端,然后采用本机只负责对本机的配置管理机制服务的模式。
saltstack提供如下一些功能:
(1)远程执行:(批量执行命令)在master上执行命令时,会在所有的minion上执行。
(2)配置管理/状态管理 :(描述想到达到的状态,saltstack就会去执行)
(3)云管理(cloud):用于管理云主机
(4)事件驱动:被动执行,当达到某个值会自动触发
这四种自动化运维工具的比较如下,现在主流的基本上ansible和saltstack用的多一些:
⑥ 《Linux集群和自动化运维》pdf下载在线阅读,求百度网盘云资源
《Linux集群和自动化运维》(余洪春)电子书网盘下载免费在线阅读
资源链接:
链接: https://pan..com/s/1AIhS7QAAYDc3tV9O8bAM0g
书名:Linux集群和自动化运维
作者:余洪春
出版社:机械工业出版社
出版年份:2016-8
页数:357
内容简介:
本书是Linux运维领域公认的经典畅销书《构建高可用Linux服务器》的姊妹篇,是积笔者多年的经验结晶和*佳实践,也是笔者多年以来的一线运维工作的总结和心血。
本书最大的特点就是与实践紧密结合,所有理论知识、方法、技巧和案例都来自实际环境,涵盖了生产环境下的Shell和Python脚本、Pupet自动化配置管理及Python自动化运维(Fabric及Ansible)、高可用Linux集群构建及亿级PV网站架构设计等主题。笔者在传统运维的基础上,结合了现阶段最流行的AWS云计算运维技术,跟大家分享了流行的Linux集群和自动化运维知识体系,方便大家结合自己的实际工作场景来设计自己网站的系统架构。
作者简介:
余洪春(抚琴煮酒),高级运维架构师、资深运维工程师,在电子商务领域及云计算领域工作10多年,在Linux集群、自动化运维、DevOps及高并发高流量网站架构设计等方面进行了深入的研究;在大量一线实践中积累了丰富的经验。精通负载均衡高可用和Python自动化运维技术,擅长高流量高性能网站架构设计。51CTO和ChinaUnix等知名社区特邀专家,ChinaUnix论坛“集群和高可用”及“监控及自动化运维技术”版版主,在社区内发表了大量技术文章,深受社区网友好评。
⑦ 学习完Python可不可以做人工智能的工作呢
可以,学完Python是可以从事人工智能的工作的,具体岗位如下:
① Web开发
国内很多大型网站使用的都是Python编程语言,比如豆瓣、拉勾、知乎等,Web开发这个岗位在国内的发展前景也十分不错,因为Python的Web开发框架是最大的一个优势,使用Python搭建一个网站只需要几行的代码就可以搞定,简直太方便了。
② 数据挖分析
Python十分有利于数据分析处理技术,因为其拥有着完整的生态环境,比如“大数据”分析所需要的分布式计算、数据库操作、数据可视化等,都可以通过Python中的模块完成。
③ 自动化测试
Python可以说在自动化测试领域撑起了大半个天,Python拥有着丰富的第三方库,满足单元测试、接口测试、Web自动化和APP自动化、性能测试......几乎涵盖了所有的测试方面。
④ 网络爬虫
最早使用Python做爬虫的就是谷歌公司,众所周知,使用Python语言做爬虫非常容易,市场占有率也较大,目前公司基本都是采用Python语言来做爬虫的。
⑤ 人工智能
人工智能大家应该都有所了解吧,发展前景及钱途也就不用多说了,但目前来讲,人工智能领域门槛较高,对学历、工作经验要求较高,但不可否认的一点是,人工智能绝对是最具有发展潜力的方向了。
⑥ 自动化运维
早期学Python的人,基本都是运维和测试领域的人,因为他们知道,Python对于他们的工作,可以起到很大一部分作用,因为使用Python脚本进行批量化的文件部署和运行调整都成了Linux服务器上很不错的选择。
⑧ 自动化运维需要学什么
自动化运维需要学的内容如下:
1、python是自动化运维工程师必备的技能。所以基础的运维工程师想提升自己的工作能力甚至岗位,需要在熟练掌握运维知识的基础上学习编程知识。学习编程不只是学习期简单的语法,同时也要掌握其中的算法,例如计算思维、解决问题的方法和编程思路等等。
2、python编程有多重编程方式,面向过程、面向对象以及函数式编程等等。新手建议从面向过程学起。面向对象的类相对更加抽象,类就是属性加方法构成的对象的蓝图。学习面向对象的过程中药了解面向对象的思想建模。
3、学习ansible,这是新出现的自动化运维工具,基于Python开发,集合了众多运维工具(puppet、chef、func、fabric)的优点,实现了批量系统配置、批量程序部署、批量运行命令等功能。
⑨ Python语言做什么的
Python语言是一种面向对象的动态类型语言。
Python语言最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越来越多被用于独立的、大型项目的开发。作为一种解释型脚本语言,可以在以下方面加以应用:
1、图形处理:
有PIL、Tkinter等图形库支持,能方便进行图形处理。
2、数学处理:
NumPy扩展提供大量与许多标准数学库的接口。
3、文本处理:
Python提供的re模块能支持正则表达式,还提供SGML,XML分析模块,许多程序员利用python进行XML程序的开发。
4、数据库编程:
程序员可通过遵循Python DB-API(数据库应用程序编程接口)规范的模块与Microsoft SQL Server,Oracle,Sybase,DB2,MySQL、SQLite等数据库通信。python自带有一个Gadfly模块,提供了一个完整的SQL环境。
5、网络编程:
提供丰富的模块支持sockets编程,能方便快速地开发分布式应用程序。很多大规模软件开发计划例如Zope,Mnet 及BitTorrent. Google都在广泛地使用它。
6、Web编程:
应用的开发语言,支持最新的XML技术。
7、多媒体应用:
Python的PyOpenGL模块封装了“OpenGL应用程序编程接口”,能进行二维和三维图像处理。PyGame模块可用于编写游戏软件。
(9)python自动化运维pdf扩展阅读:
作为一种广泛使用的计算机语言,Python具有以下优点:
1、简单易学:
Python极其容易上手,因为Python有极其简单的说明文档。
2、速度快:
Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。
3、免费、开源:
Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。
4、高层语言:
用Python语言编写程序的时候,无需考虑“如何管理程序使用的内存”一类的底层细节。
5、可移植性:
由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工作在不同平台上)。这些平台包括Linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS以及Google基于linux开发的android平台。
6、解释性:
一个用编译性语言比如C或C++写的程序可以从源文件(即C或C++语言)转换到一个程序员的计算机使用的语言(二进制代码,即0和1)。这个过程通过编译器和不同的标记、选项完成。
运行程序的时候,连接/转载器软件把程序员的程序从硬盘复制到内存中并且运行。而Python语言写的程序不需要编译成二进制代码,程序眼可以直接从源代码运行程序。
7、可扩展性:
如果程序员需要一段关键代码运行得更快或者希望某些算法不公开,可以部分程序用C或C++编写,然后在Python程序中使用它们。
8、可嵌入性:
可以把Python嵌入C/C++程序,从而向程序用户提供脚本功能。