当前位置:首页 » 编程语言 » python清洗数据

python清洗数据

发布时间: 2023-01-08 05:03:30

A. python数据清洗和可视化的文献有哪些

《Python 3 爬虫、数据清洗与可视化实战(第2版)》、《python数据可视化:基于bokeh的可视化绘图》和《Python数据科学手册》等。
python数据清洗和可视化的文献有这些,可以帮助学习数据抽取、数据清洗、数据转换、数据探索等。

B. Python第19课:数据清洗之去错、去空、去重

Python 第19课:数据清洗之去错、去空、去重

时间 2019-02-01 下午3:30

主讲 刘培富

地点 四楼电教室

数据清洗是数据治理的关键环节,是指对获取的原始数据(也称“脏数据”)进行审查、校验、加工的过程,目的在于删除重复信息、纠正错误信息,保持数据一致性。

一般来说,数据清洗,主要是对数据进行去错、去空、去重处理。

针对一张包含姓名、身份证号码、车牌号码的数据表,建立纠错规则如下:

1.车牌号既不包含汉字赣,且不包含汉字饶。

2.身份证号码的年份既不等于19也不等于20,身份证号码的月份大于12,身份证号码的日期大于31。

3.身份证号码位数不等于18。

4.姓名的长度小于等于1。

二、去空

对于关键性数据,不允许为空,对于这类数据,要查询是否存在空值。

三、去重

在一张表中,有的数据列允许重复,有的数据列则不允许重复。例如,对于一张车主信息表来说,姓名、身份证号可以重复,因为存在一人登记多辆车的情形,这种重复,不能认为是错误。但是,车牌号则不允许重复,否则就存在业务逻辑的错误。所以,针对车牌号数据列,要进行去重。

通过以下SQL语句,可以列出重复的数据:

综上,数据清洗,既要懂技术,更要懂业务,否则无法正确制定清洗规则,导致数据清洗流于形式,达不到清洗的效果。

C. pythonq清洗数据集经典案例

####################读取数据======================================================
import pandas as pd
import numpy as np
d1 = pd.read_excel('C:\Users\xn084037\Desktop\清洗数据集.xlsx',sheetname='一级流量')
d1.head(2)

d2 = pd.read_excel('C:\Users\xn084037\Desktop\清洗数据集.xlsx',sheetname='二级流量')
d2.head(2)

d3 = pd.read_excel('C:\Users\xn084037\Desktop\清洗数据集.xlsx',sheetname='三级流量')
d3.head(2)
##########################清洗------01增——拓展数据维度

df_concat = pd.concat([d1,d2,d3])
df_concat

h1 = pd.DataFrame({'语文':[93,80,85,76,58],'数学':[87,99,95,85,70],'英语':[80,85,97,65,88]},
index =['韩梅梅','李雪','李华','王明','铁蛋'])
h1

h2 = pd.DataFrame({'篮球':[93,80,85,76],'舞蹈':[87,99,95,85]},
index= ['李华','王明','铁蛋','刘强'])
h2

pd.merge(left=h1,right=h2,left_index=True,right_index=True,how='inner')

df_concat.dropna()

df_concat.dropna(subset = ['客单价'])

repeat = pd.concat([df_concat,df_concat])
print('重复的数据集一共多少行:',len(repeat))

unique = repeat.drop_plicates()
print('去重后的数据集一共多少行:',len(unique))
unique

df_concat.drop_plicates(subset='流量级别')

df_concat.drop_plicates(subset='流量级别',keep='last')

******************03 查——基于条件查询*********************************

df_concat.loc[(df_concat['访客数']>10000)&(df_concat['流量级别']=='一级'),:]

sort_df= df_concat.sort_values('支付金额',ascending=False)
sort_df

*********************04 分——分组和切分************************************

df_concat.groupby('流量级别')

df_concat.groupby('流量级别').sum()
df_concat.groupby('流量级别').sum()

df_concat.groupby('流量级别')['访客数','支付金额'].sum()

df_concat.groupby('流量级别',as_index=False)['访客数','支付金额'].sum()

pd.cut(x,bins,right,labels)

pd.cut(x=df_concat['访客数'],bins=[0,100,1000,10000,100000])

df_concat['分类打标']= pd.cut(x=df_concat['访客数'],bins=[0,100,1000,10000,100000],
right=False,labels=['辣鸡','百级','千级','万级'])
df_concat

###################Pandas将多个Sheet写入到本地同一Excel文件中
import pandas as pd #读取两个表格data1=pd.read_excel('文件路径')
data2=pd.read_excel('C:\Users\xn084037\Desktop\副本三代核心系统入账金额异常结果数据.xlsx')#将两个表格输出到一个excel文件里面
data1=pd.read_excel('C:\Users\xn084037\Desktop\副本三代核心系统入账金额.xlsx')#将两个表格输出到一个excel文件里面
writer=pd.ExcelWriter('D:新表.xlsx')
data1.to_excel(writer,sheet_name='sheet1')
data2.to_excel(writer,sheet_name='sheet2') #必须运行
writer.save()#不然不能输出到本地writer.save()

D. 怎么用python做excel里的数据清洗

解答如下:
首先打开txt文件,使用open(txtname),进行一行一行的读;
如果需要的话,对每行的数据进行解析;
导入xlrd,xlwt进行excel读写;
大致代码如下:
import
xlrd,xlwttxtname=r"c:\value.txt"workbook
=
xlwt.workbook(encoding
=
'ascii')worksheet
=
workbook.add_sheet('sheet1')fp=open(txtname)for
linea
in
fp.readlines():
worksheet.write(0,
0,
label
=
linea)workbook.save('excel_workbook.xls')fp.close()

E. Excel用Python读取清洗后怎么写入数据

导入xlrd库。
要导入xlrd库,它是读取excel中数据的库,解压所下载的压缩包,用cmd命令行CD到解压目录,执行pythonsetup.pyinstall命令,要导入xlwt库,它是开发人员用于生成与MicrosoftExcel版本95到2003兼容的电子表格文件的库。接着用cmd命令行切换到下载文件所解压的目录,输入pythonsetup.pyinstall命令,如无意外则安装成功。
openpyxl是用于读取和写入Excel2010xlsx/xlsm/xltx/xltm文件的Python库。

F. python数据分析需要数据清理吗

1、对数据进行排序df.sort_values()
#读取数据
titanic_survival=pd.read_csv(r"C:Userspythonwandata_minepython_pandas itanic_train.csv")
#用sort_values()函数对指定列排序,默认升序排序,inplace=True表示在原来的df上排序titanic_survival.sort_values(("Age"),inplace=Tru
2、缺失值判断及统计pandas.isnull()、pandas.isnull
空值统计方法一:df.isnull().sum():
#当不指定具体列时,统计整个df的缺失值个数
titanic_survival['Age'].isnull().sum()
通过len()函数统计缺失值
3、缺失值处理
处理缺失值可以分为两类:删除缺失值和缺失值插补。而缺失值插补又分为以下几种:
均值/中位数/众数插补
使用固定值(将缺失值的属性用一个常量代替)
最近邻插补(在记录中找到与缺失值样本最接近的样本的该属性插补)
回归方法(对带有缺失值的变量,根据已有数据和与其有关的其他变量建立拟合模型来预测缺失值)
插值法(利用已知点建立合适的插值函数f(x),未知值由对应点xi求出来近似代替)
下面,我们主要讨论删除缺失值,学习一些pandas缺失值删除的操作。
1)df.dropna(),舍弃含有任意缺失值的行
#等价于titanic_survival.dropna(axis=0) axis=0表示删除行,axis=1表示删除列
dropall=titanic_survival.dropna()
删除含任意空值的行
2)df.dropna()函数删除某个列中含有空值的行
现在这个数据中age、cabin、embarked都有缺失值,如果我们直接使用df.dropna()会删除掉这三列中都有空值的所有行,但是我们希望只删除age列中有空值的数据,那该如何处理呢?
直接使用df.dropna(subset=['column_list'])
drop_age_null=titanic_survival.dropna(subset=["Age"])
删除指定列中含有缺失值的行
pandas自定义函数

G. python数据清洗excel

python清洗excel的数据还是很简单的
这里就列举例子说一下
这是原始数据,这里要处理的是地区和薪水两个字段。

主要把薪资处理成以千/月为单位。保留城市。
处理后的数据:

H. python数据清洗的优点

优点: 灵活性高,可以随意定制分析需求 脉络清晰抑郁理解数据 操作性强。

I. python数据分析干什么

第一、检查数据表
Python中使用shape函数来查看数据表的维度,也就是行数以及列数。你可以使用info函数来查看数据表的整体信息,使用dtype函数来返回数据格式;lsnull是Python中检验空值的函数,可以对整个数据表进行检查,也可以单独对某一行进行空值检查,返回的结构是逻辑值,包含空值返回true,不包含则返回false。
第二、数据清洗
Python可以进行数据清洗,Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充;Python中dtype是查看数据格式的函数,与之对应的是astype函数,用来更改数据格式,Rename是更改列名称的函数,drop_plicates函数删除重复值,replace函数实现数据替换。
第三、数据提取
进行数据提取时,主要使用三个函数:loc、iloc以及ix。Loc函数按标签进行提取,iloc按位置进行提取,ix可以同时按照标签和位置进行提取。除了按标签和位置提取数据之外,还可以按照具体的条件进行提取,比如使用loc和isin两个函数配合使用。
第四、数据筛选
Python数据分析还可以进行数据筛选,Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和count函数还能实现Excel中sumif和countif函数的功能。使用的主要函数是groupby和pivot_table;groupby是进行分类汇总的函数,使用方法比较简单,groupby按列名称出现的顺序进行分组。

J. Python数据分析师主要做什么Python基础

伴随着大数据时代的到来,Python的热度居高不下,已成为职场人士必备的技能,它不仅可以从事网络爬虫、人工智能、Web开发、游戏开发等工作,还是数据分析的首选语言。那么问题来了,利用Python数据分析可以做什么呢?简单来讲,可以做的事情有很多,具体如下。

第一、检查数据表

Python中使用shape函数来查看数据表的维度,也就是行数和列数。你可以使用info函数查看数据表的整体信息,使用dtypes函数来返回数据格式。Lsnull是Python中检查空置的函数,你可以对整个数据进行检查,也可以单独对某一列进行空置检查,返回的结果是逻辑值,包括空置返回True,不包含则返回False。使用unique函数查看唯一值,使用Values函数用来查看数据表中的数值。

第二,数据表清洗

Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包括空值的数据,也可以使用fillna函数对空值进行填充。Python中dtype是查看数据格式的函数,与之对应的是asstype函数,用来更改数据格式,Rename是更改名称的函数,drop_plicate函数函数重复值,replace函数实现数据转换。

第三,数据预处理

数据预处理是对清洗完的数据进行整理以便后期统计和分析工作,主要包括数据表的合并、排序、数值分列、数据分组以及标记等工作。在Python中可以使用merge函数对两个数据表进行合并,合并的方式为inner,此外还有left、right和outer方式。使用ort_values函数和sort_index函数完成排序,使用where函数完成数据分组,使用split函数实现分列。

第四,数据提取

主要是使用三个函数:loc、iloc和ix,其中loc函数按标准值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。除了按标签和位置提取数据意外,还可以按照具体的条件进行提取。

第五,数据筛选汇总

Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和count函数还能实现Excel中sumif和countif函数的功能。Python中使用的主要函数是groupby和pivot_table。

热点内容
java返回this 发布:2025-10-20 08:28:16 浏览:585
制作脚本网站 发布:2025-10-20 08:17:34 浏览:881
python中的init方法 发布:2025-10-20 08:17:33 浏览:574
图案密码什么意思 发布:2025-10-20 08:16:56 浏览:761
怎么清理微信视频缓存 发布:2025-10-20 08:12:37 浏览:677
c语言编译器怎么看执行过程 发布:2025-10-20 08:00:32 浏览:1005
邮箱如何填写发信服务器 发布:2025-10-20 07:45:27 浏览:251
shell脚本入门案例 发布:2025-10-20 07:44:45 浏览:108
怎么上传照片浏览上传 发布:2025-10-20 07:44:03 浏览:799
python股票数据获取 发布:2025-10-20 07:39:44 浏览:705