当前位置:首页 » 编程语言 » python停用词

python停用词

发布时间: 2023-01-08 08:10:57

Ⅰ 如何删除“使用NLTK或者python停用词"

Nltk是python下处理语言的主要工具包,可以实现去除停用词、词性标注以及分词和分句等。

安装nltk,写python一般使用的是集成环境EPD,其中有包管理,可以在线进行安装。如果不是集成环境,可以通过pip install nltk安装。

》pip install nltk #安装nltk

》nltk.download() #弹出一个选择框,可以按照自己需要的语义或者是功能进行安装

一般要实现分词,分句,以及词性标注和去除停用词的功能时,需要安装stopwords,punkt以及

当出现LookupError时一般就是由于缺少相关模块所导致的

则是需要安装punkt,这个模块主要负责的是分词功能。同stopwords一样有两种方式安装。

Ⅱ python英文去停用词,报错 'str' object has no attribute 'word'

你把w.word改成w就可以了

Ⅲ 以下函数可以实现分词,但是为什么去停用词没有效果呢问题在哪里

我觉得可能还是编码不对吧。我也遇到这种情况,所以搜到了这个问题,查了很多东西也没有个结果。
我最开始数据都是用GB2312处理的,后来用结巴分词看文档上说用好用utf-8编码,就写了段代码把文本改成utf-8了,然后停用词文件也是用的utf-8保存的,但是不是用代码保存的,使用Notpad,之后就一直不能停用文件里的词。
后来,在代码中加了几个比较明显的停用词组成的list,当分出来的词不在list里的时候,才输出该词,结果就成功的停用了list里的所有词。
建议楼主再调整一下编码试试吧。
另外,我最开始用的是Python2.7.10,因为停用词没反应,我查到一个网页说他用Python3.4就好了,我又换了Python3.4.3,可是一样不能用,然后向我上面那么做的就好了,Python2.7还没有试,估计问题都差不多了吧...
楼主加油!Python程序猿加油!

Ⅳ python jieba停用词该如何设置

你把你的停用词排一下序,然后再给结巴看看。
或者加两个停用词,一个河北、一个西南部。
停用词通常是很短的高频出现的词语,真实情况你这样的不多。
如果你这种情况,不妨先分词,也不去停用词。
然后自己再来后续处理。

Ⅳ 请问大佬们,为什么我python运行程序特别慢啊,我这个程序怎么改一下可以运行的更快呢

您好,茫茫人海之中,能为君排忧解难实属朕的荣幸,在下拙见,若有错误,还望见谅!。展开全部
yxhtest7772017-07-18

关注

分享

697 2

python运行速度慢怎么办?6个Python性能优化技巧



Python是一门非常酷的语言,因为很少的Python代码可以在短时间内做很多事情,并且,Python很容易就能支持多任务和多重处理。

Python的批评者声称Python性能低效、执行缓慢,但实际上并非如此:尝试以下6个小技巧,可以加快Python应用程序。

关键代码可以依赖于扩展包

Python使许多编程任务变得简单,但是对于很关键的任务并不总是提供最好的性能。使用C、C++或者机器语言扩展包来执行关键任务能极大改善性能。这些包是依赖于平台的,也就是说,你必须使用特定的、与你使用的平台相关的包。简而言之,该解决方案提供了一些应用程序的可移植性,以换取性能,您可以获得只有通过直接向底层主机编程。

下面这些扩展包你可以考虑添加到你的个人扩展库中:

Cython

PyInlne

PyPy

Pyrex

这些包有不同的作用和执行方式。例如,Pyrex 让Python处理一些内存任务变得简单高效;PyInline可以直接让你在Python应用程序中使用C代码,虽然内联代码被单独编译,但是如果你能高效的利用C代码,它可以在同一个地方处理每一件事情。

使用关键字排序

有很多古老的Python代码在执行时将花费额外的时间去创建一个自定义的排序函数。最好的排序方式是使用关键字和默认的sort()方法。

优化循环

每一种编程语言都强调循环语句的优化,Python也是一样的。尽管你可以依赖于丰富的技术让循环运行的更快,然而,开发者经常忽略的一个方法是避免在循环内部使用点拼接字符串。

使用新版本

任何一个在线上搜索Python资料的人都会发现无数关于Python版本迁移的信息。通常,Python每一个版本都针对之前的一个版本做了优化和改进,以让Python运行的更快。限制因素是你喜欢的函数库是否也针对Python的新版本做了改进。

当你使用了新的函数库,获得了Python的新版本,你需要保证代码依然能够运行,检查应用,修正差异。然后,如果你仅仅是非常感谢您的耐心观看,如有帮助请采纳,祝生活愉快!谢谢!

Ⅵ python数据挖掘——文本分析

作者 | zhouyue65

来源 | 君泉计量

文本挖掘:从大量文本数据中抽取出有价值的知识,并且利用这些知识重新组织信息的过程。

一、语料库(Corpus)

语料库是我们要分析的所有文档的集合。

二、中文分词

2.1 概念:

中文分词(Chinese Word Segmentation):将一个汉字序列切分成一个一个单独的词。

eg:我的家乡是广东省湛江市-->我/的/家乡/是/广东省/湛江市

停用词(Stop Words):

数据处理时,需要过滤掉某些字或词

√泛滥的词,如web、网站等。

√语气助词、副词、介词、连接词等,如 的,地,得;

2.2 安装Jieba分词包:

最简单的方法是用CMD直接安装:输入pip install jieba,但是我的电脑上好像不行。

后来在这里:https://pypi.org/project/jieba/#files下载了jieba0.39解压缩后 放在Python36Libsite-packages里面,然后在用cmd,pip install jieba 就下载成功了,不知道是是什么原因。

然后我再anaconda 环境下也安装了jieba,先在Anaconda3Lib这个目录下将jieba0.39的解压缩文件放在里面,然后在Anaconda propt下输入 pip install jieba,如下图:

2.3 代码实战:

jieba最主要的方法是cut方法:

jieba.cut方法接受两个输入参数:

1) 第一个参数为需要分词的字符串

2)cut_all参数用来控制是否采用全模式

jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细

注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode

jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list代码示例( 分词 )

输出结果为: 我 爱

Python

工信处

女干事

每月 经过 下属 科室 都 要 亲口

交代

24 口 交换机 等 技术性 器件 的 安装

工作

分词功能用于专业的场景:

会出现真武七截阵和天罡北斗阵被分成几个词。为了改善这个现象,我们用导入词库的方法。

但是,如果需要导入的单词很多,jieba.add_word()这样的添加词库的方法就不高效了。

我们可以用jieba.load_userdict(‘D:PDM2.2金庸武功招式.txt’)方法一次性导入整个词库,txt文件中为每行一个特定的词。

2.3.1 对大量文章进行分词

先搭建语料库:

分词后我们需要对信息处理,就是这个分词来源于哪个文章。

四、词频统计

3.1词频(Term Frequency):

某个词在该文档中出现的次数。

3.2利用Python进行词频统计

3.2.1 移除停用词的另一种方法,加if判断

代码中用到的一些常用方法:

分组统计:

判断一个数据框中的某一列的值是否包含一个数组中的任意一个值:

取反:(对布尔值)

四、词云绘制

词云(Word Cloud):是对文本中词频较高的分词,给与视觉上的突出,形成“关键词渲染”,从而国旅掉大量的文本信息,使浏览者一眼扫过就可以领略文本的主旨。

4.1 安装词云工具包

这个地址:https://www.lfd.uci.e/~gohlke/pythonlibs/ ,可以搜到基本上所有的Python库,进去根据自己的系统和Python的版本进行下载即可。

在python下安装很方便,在anaconda下安装费了点劲,最终将词云的文件放在C:UsersAdministrator 这个目录下才安装成功。

五、美化词云(词云放入某图片形象中)

六、关键词提取

结果如下:

七、关键词提取实现

词频(Term Frequency):指的是某一个给定的词在该文档中出现的次数。

计算公式: TF = 该次在文档中出现的次数

逆文档频率(Inverse Document Frequency):IDF就是每个词的权重,它的大小与一个词的常见程度成反比

计算公式:IDF = log(文档总数/(包含该词的文档数 - 1))

TF-IDF(Term Frequency-Inverse Document Frequency):权衡某个分词是否关键词的指标,该值越大,是关键词的可能性就越大。

计算公式:TF - IDF = TF * IDF

7.1文档向量化

7.2代码实战

Ⅶ python怎么去除停用词的

结合jieba分词,里面有去停止词相关模板,自己研究下吧,网上也有相关资料。

Ⅷ python jieba分词如何去除停用词

-*- coding: utf-8 -*-
import jieba
import jieba.analyse
import sys
import codecs
reload(sys)
sys.setdefaultencoding('utf-8')

#使用其他编码读取停用词表
#stoplist = codecs.open('../../file/stopword.txt','r',encoding='utf8').readlines()
#stoplist = set(w.strip() for w in stoplist)
#停用词文件是utf8编码
stoplist = {}.fromkeys([ line.strip() for line in open("../../file/stopword.txt") ])

#经过分词得到的应该是unicode编码,先将其转成utf8编码

Ⅸ python 中文切词使用停用词表问题


python中最好不要在list遍历中使用list.remove方法:

  • remove 仅仅 删除一个值的首次出现。

  • 如果在 list 中没有找到值,程序会抛出一个异常

  • 最后,你遍历自己时候对自己的内容进行删除操作,效率显然不高,还容易出现各种难debug的问题

建议使用新的list存储要保留的内容,然后返回这个新list。比如

a_list=[1,2,3,4,5]
needs_to_be_removed=[3,4,5]
result=[]
forvina_list:
ifvnotinneeds_to_be_removed:
result.append(v)
printresult



热点内容
战地一有什么不用加速器的服务器 发布:2025-07-10 08:51:33 浏览:404
linux怎么看自己服务器的ip 发布:2025-07-10 08:51:29 浏览:135
怎么写脚本刷视频 发布:2025-07-10 08:49:51 浏览:381
安卓微信在哪里设置铃声 发布:2025-07-10 08:48:05 浏览:233
dropbear编译 发布:2025-07-10 08:27:35 浏览:684
我的世界电脑建造服务器推荐 发布:2025-07-10 08:13:08 浏览:401
如何提高存储数据的速度 发布:2025-07-10 07:55:57 浏览:259
规范c语言代码 发布:2025-07-10 07:55:57 浏览:517
在线砍价源码 发布:2025-07-10 07:55:56 浏览:796
编程工作年限 发布:2025-07-10 07:44:42 浏览:143