当前位置:首页 » 编程语言 » python网络爬虫例子

python网络爬虫例子

发布时间: 2023-01-18 02:50:26

python异步爬虫例子

gevent是一个python的并发库,它为各种并发和网络相关的任务提供了整洁的API。
gevent中用到的主要模式是greenlet,它是以C扩展模块形式接入Python的轻量级协程。 greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
实战
通过用gevent把异步访问得到的数据提取出来。
在有道词典搜索框输入“hello”按回车。观察数据请求情况观察有道的url构建。

⑵ Python中的网络爬虫有哪些类型呢

通用网络爬虫

通用网络爬虫对于硬件配置的要求比较高,爬行数量和范围较大,对所爬行页面的顺序并没有太高的要求,但是由于采用并行工作方式的原因,需要很长时间才可以刷新爬行页面。

增量式网络爬虫

增量式网络爬虫是指只爬行发生变化网页或者是对已经下载的网页采取增量更新的爬虫,这种类型的爬虫能够一定的保证爬取页面的更新。

深层网络爬虫

深层网页当中存储的信息量非常之多,几乎是表层网页信息量的数百倍,而深层网络爬虫则是专门针对深层网页所开发出的爬虫程序。

聚焦网络爬虫

聚焦网络爬虫是指有针对性的爬取预先设定好的主题相关页面的网络爬虫,和通用网络爬虫相比对于硬件的要求有所降低,而且所抓取的数据垂直性更高,可以满足一些特定人群的需求。

IPIDEA已向众多互联网知名企业提供服务,对提高爬虫的抓取效率提供帮助,支持API批量使用,支持多线程高并发使用。

⑶ Python编程基础之(五)Scrapy爬虫框架

经过前面四章的学习,我们已经可以使用Requests库、Beautiful Soup库和Re库,编写基本的Python爬虫程序了。那么这一章就来学习一个专业的网络爬虫框架--Scrapy。没错,是框架,而不是像前面介绍的函数功能库。

Scrapy是一个快速、功能强大的网络爬虫框架。

可能大家还不太了解什么是框架,爬虫框架其实是实现爬虫功能的一个软件结构和功能组件的集合。

简而言之, Scrapy就是一个爬虫程序的半成品,可以帮助用户实现专业的网络爬虫。

使用Scrapy框架,不需要你编写大量的代码,Scrapy已经把大部分工作都做好了,允许你调用几句代码便自动生成爬虫程序,可以节省大量的时间。

当然,框架所生成的代码基本是一致的,如果遇到一些特定的爬虫任务时,就不如自己使用Requests库搭建来的方便了。

PyCharm安装

测试安装:

出现框架版本说明安装成功。

掌握Scrapy爬虫框架的结构是使用好Scrapy的重中之重!

先上图:

整个结构可以简单地概括为: “5+2”结构和3条数据流

5个主要模块(及功能):

(1)控制所有模块之间的数据流。

(2)可以根据条件触发事件。

(1)根据请求下载网页。

(1)对所有爬取请求进行调度管理。

(1)解析DOWNLOADER返回的响应--response。

(2)产生爬取项--scraped item。

(3)产生额外的爬取请求--request。

(1)以流水线方式处理SPIDER产生的爬取项。

(2)由一组操作顺序组成,类似流水线,每个操作是一个ITEM PIPELINES类型。

(3)清理、检查和查重爬取项中的HTML数据并将数据存储到数据库中。

2个中间键:

(1)对Engine、Scheler、Downloader之间进行用户可配置的控制。

(2)修改、丢弃、新增请求或响应。

(1)对请求和爬取项进行再处理。

(2)修改、丢弃、新增请求或爬取项。

3条数据流:

(1):图中数字 1-2

1:Engine从Spider处获得爬取请求--request。

2:Engine将爬取请求转发给Scheler,用于调度。

(2):图中数字 3-4-5-6

3:Engine从Scheler处获得下一个要爬取的请求。

4:Engine将爬取请求通过中间件发送给Downloader。

5:爬取网页后,Downloader形成响应--response,通过中间件发送给Engine。

6:Engine将收到的响应通过中间件发送给Spider处理。

(3):图中数字 7-8-9

7:Spider处理响应后产生爬取项--scraped item。

8:Engine将爬取项发送给Item Pipelines。

9:Engine将爬取请求发送给Scheler。

任务处理流程:从Spider的初始爬取请求开始爬取,Engine控制各模块数据流,不间断从Scheler处获得爬取请求,直至请求为空,最后到Item Pipelines存储数据结束。

作为用户,只需配置好Scrapy框架的Spider和Item Pipelines,也就是数据流的入口与出口,便可完成一个爬虫程序的搭建。Scrapy提供了简单的爬虫命令语句,帮助用户一键配置剩余文件,那我们便来看看有哪些好用的命令吧。

Scrapy采用命令行创建和运行爬虫

PyCharm打开Terminal,启动Scrapy:

Scrapy基本命令行格式:

具体常用命令如下:

下面用一个例子来学习一下命令的使用:

1.建立一个Scrapy爬虫工程,在已启动的Scrapy中继续输入:

执行该命令,系统会在PyCharm的工程文件中自动创建一个工程,命名为pythonDemo。

2.产生一个Scrapy爬虫,以教育部网站为例http://www.moe.gov.cn:

命令生成了一个名为demo的spider,并在Spiders目录下生成文件demo.py。

命令仅用于生成demo.py文件,该文件也可以手动生成。

观察一下demo.py文件:

3.配置产生的spider爬虫,也就是demo.py文件:

4.运行爬虫,爬取网页:

如果爬取成功,会发现在pythonDemo下多了一个t20210816_551472.html的文件,我们所爬取的网页内容都已经写入该文件了。

以上就是Scrapy框架的简单使用了。

Request对象表示一个HTTP请求,由Spider生成,由Downloader执行。

Response对象表示一个HTTP响应,由Downloader生成,有Spider处理。

Item对象表示一个从HTML页面中提取的信息内容,由Spider生成,由Item Pipelines处理。Item类似于字典类型,可以按照字典类型来操作。

热点内容
actionscript源码 发布:2025-07-17 06:04:51 浏览:72
c编译时多态 发布:2025-07-17 05:56:00 浏览:845
软件服务器超时是什么意思 发布:2025-07-17 05:55:59 浏览:349
c语言期末试卷 发布:2025-07-17 05:49:58 浏览:404
64位access数据库 发布:2025-07-17 05:35:58 浏览:374
php文件的相对路径 发布:2025-07-17 05:34:22 浏览:711
矢量的叉乘运算法则 发布:2025-07-17 05:29:41 浏览:661
dell云存储服务器 发布:2025-07-17 05:21:06 浏览:255
铣床怎么编程 发布:2025-07-17 05:20:29 浏览:776
sql11oracle 发布:2025-07-17 05:15:39 浏览:744