python3多线程
‘壹’ python 多线程和多进程的区别 mutiprocessing theading
在socketserver服务端代码中有这么一句:
server = socketserver.ThreadingTCPServer((ip,port), MyServer)
ThreadingTCPServer这个类是一个支持多线程和TCP协议的socketserver,它的继承关系是这样的:
class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass
右边的TCPServer实际上是主要的功能父类,而左边的ThreadingMixIn则是实现了多线程的类,ThreadingTCPServer自己本身则没有任何代码。
MixIn在Python的类命名中很常见,称作“混入”,戏称“乱入”,通常为了某种重要功能被子类继承。
我们看看一下ThreadingMixIn的源代码:
class ThreadingMixIn:
daemon_threads = False
def process_request_thread(self, request, client_address):
try:
self.finish_request(request, client_address)
self.shutdown_request(request)
except:
self.handle_error(request, client_address)
self.shutdown_request(request)
def process_request(self, request, client_address):
t = threading.Thread(target = self.process_request_thread,
args = (request, client_address))
t.daemon = self.daemon_threads
t.start()
在ThreadingMixIn类中,其实就定义了一个属性,两个方法。其中的process_request()方法实际调用的正是Python内置的多线程模块threading。这个模块是Python中所有多线程的基础,socketserver本质上也是利用了这个模块。
socketserver通过threading模块,实现了多线程任务处理能力,可以同时为多个客户提供服务。
那么,什么是线程,什么是进程?
进程是程序(软件,应用)的一个执行实例,每个运行中的程序,可以同时创建多个进程,但至少要有一个。每个进程都提供执行程序所需的所有资源,都有一个虚拟的地址空间、可执行的代码、操作系统的接口、安全的上下文(记录启动该进程的用户和权限等等)、唯一的进程ID、环境变量、优先级类、最小和最大的工作空间(内存空间)。进程可以包含线程,并且每个进程必须有至少一个线程。每个进程启动时都会最先产生一个线程,即主线程,然后主线程会再创建其他的子线程。
线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成。另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不独立拥有系统资源,但它可与同属一个进程的其它线程共享该进程所拥有的全部资源。每一个应用程序都至少有一个进程和一个线程。在单个程序中同时运行多个线程完成不同的被划分成一块一块的工作,称为多线程。
举个例子,某公司要生产一种产品,于是在生产基地建设了很多厂房,每个厂房内又有多条流水生产线。所有厂房配合将整个产品生产出来,单个厂房内的流水线负责生产所属厂房的产品部件,每个厂房都拥有自己的材料库,厂房内的生产线共享这些材料。公司要实现生产必须拥有至少一个厂房一条生产线。换成计算机的概念,那么这家公司就是应用程序,厂房就是应用程序的进程,生产线就是某个进程的一个线程。
线程的特点:
线程是一个execution context(执行上下文),即一个cpu执行时所需要的一串指令。假设你正在读一本书,没有读完,你想休息一下,但是你想在回来时继续先前的进度。有一个方法就是记下页数、行数与字数这三个数值,这些数值就是execution context。如果你的室友在你休息的时候,使用相同的方法读这本书。你和她只需要这三个数字记下来就可以在交替的时间共同阅读这本书了。
线程的工作方式与此类似。CPU会给你一个在同一时间能够做多个运算的幻觉,实际上它在每个运算上只花了极少的时间,本质上CPU同一时刻只能干一件事,所谓的多线程和并发处理只是假象。CPU能这样做是因为它有每个任务的execution context,就像你能够和你朋友共享同一本书一样。
进程与线程区别:
同一个进程中的线程共享同一内存空间,但进程之间的内存空间是独立的。
同一个进程中的所有线程的数据是共享的,但进程之间的数据是独立的。
对主线程的修改可能会影响其他线程的行为,但是父进程的修改(除了删除以外)不会影响其他子进程。
线程是一个上下文的执行指令,而进程则是与运算相关的一簇资源。
同一个进程的线程之间可以直接通信,但是进程之间的交流需要借助中间代理来实现。
创建新的线程很容易,但是创建新的进程需要对父进程做一次复制。
一个线程可以操作同一进程的其他线程,但是进程只能操作其子进程。
线程启动速度快,进程启动速度慢(但是两者运行速度没有可比性)。
由于现代cpu已经进入多核时代,并且主频也相对以往大幅提升,多线程和多进程编程已经成为主流。Python全面支持多线程和多进程编程,同时还支持协程。
‘贰’ Python多线程是什么意思
几乎所有的操作系统都支持同时运行多个任务,一个任务通常就是一个程序,所有运行中的任务都对应一个进程。即当一个程序进入内存运行时,即变成一个进程。进程就是处于运行过程中的程序,并且具有一定的独立功能。进程是系统进行资源分配调度的一个独立单位,当一个程序运行时,内部可能包含多个顺序执流,每个顺序执行流就是一个线程。
1、线程在程序中是独立的,并发的执行流,划分尺度小于进程,所有多线程程序的并发性高;
2、进程在执行过程中拥有独立的内存单元,而多个线程共享内存,可以极大地提高进程程序的运行效率;
3、线程比进程具有更高的性能,由于同一个进程中的线程都有共性,多个线程共享同一个进程的虚拟空间,可以很容易实现通信。操作系统在创建进程中,必须为该进程分配独立内存空间,分配大量相关资源,但创建线程则简单得多。
‘叁’ python 怎么实现多线程的
线程也就是轻量级的进程,多线程允许一次执行多个线程,Python是多线程语言,它有一个多线程包,GIL也就是全局解释器锁,以确保一次执行单个线程,一个线程保存GIL并在将其传递给下一个线程之前执行一些操作,也就产生了并行执行的错觉。
‘肆’ Python多线程是什么意思
简单地说就是作为可能是仅有的支持多线程的解释型语言(perl的多线程是残疾,PHP没有多线程),Python的多线程是有compromise的,在任意时间只有一个Python解释器在解释Python bytecode。
UPDATE:如评论指出,Ruby也是有thread支持的,而且至少Ruby MRI是有GIL的。
如果你的代码是CPU密集型,多个线程的代码很有可能是线性执行的。所以这种情况下多线程是鸡肋,效率可能还不如单线程因为有context switch
但是:如果你的代码是IO密集型,多线程可以明显提高效率。例如制作爬虫(我就不明白为什么Python总和爬虫联系在一起…不过也只想起来这个例子…),绝大多数时间爬虫是在等待socket返回数据。这个时候C代码里是有release GIL的,最终结果是某个线程等待IO的时候其他线程可以继续执行。
反过来讲:你就不应该用Python写CPU密集型的代码…效率摆在那里…
如果确实需要在CPU密集型的代码里用concurrent,就去用multiprocessing库。这个库是基于multi process实现了类multi thread的API接口,并且用pickle部分地实现了变量共享。
再加一条,如果你不知道你的代码到底算CPU密集型还是IO密集型,教你个方法:
multiprocessing这个mole有一个mmy的sub mole,它是基于multithread实现了multiprocessing的API。
假设你使用的是multiprocessing的Pool,是使用多进程实现了concurrency
from multiprocessing import Pool
如果把这个代码改成下面这样,就变成多线程实现concurrency
from multiprocessing.mmy import Pool
两种方式都跑一下,哪个速度快用哪个就行了。
UPDATE:
刚刚才发现concurrent.futures这个东西,包含ThreadPoolExecutor和ProcessPoolExecutor,可能比multiprocessing更简单