当前位置:首页 » 编程语言 » python速查

python速查

发布时间: 2023-01-24 16:25:16

1. 超实用!Github上标星36k+ python数据科学速查表都在这了

文末惊喜,记得看完哦。

完整版

获取方式:


文末惊喜,记得看完哦。

完整版

获取方式:

2. 如何用Python进行数据分析除了动物书,这二十张表也能帮到你


《用Python进行数据分析第一版》

《用Python进行数据分析第二版》

这里分享一份由 DataCamp大佬 整理的Python科学速查表。

英文版

中文翻译版:

一共二十余份的内容,足以让你的学习生涯变得轻松几分。

3. 如何速查python2和3的语法区别

Python2与Python3的区别
1.性能
Py3.0运行 pystone benchmark的速度比Py2.5慢30%。Guido认为Py3.0有极大的优化空间,在字符串和整形操作上可
以取得很好的优化结果。
Py3.1性能比Py2.5慢15%,还有很大的提升空间。
2.编码
Py3.X源码文件默认使用utf-8编码,这就使得以下代码是合法的:
>>> 中国 = 'china'
>>>print(中国)
china
3. 语法
1)去除了<>,全部改用!=
2)去除``,全部改用repr()
3)关键词加入as 和with,还有True,False,None
4)整型除法返回浮点数,要得到整型结果,请使用//
5)加入nonlocal语句。使用noclocal x可以直接指派外围(非全局)变量
6)去除print语句,加入print()函数实现相同的功能。同样的还有 exec语句,已经改为exec()函数
例如:
2.X: print "The answer is", 2*2
3.X: print("The answer is", 2*2)
2.X: print x, # 使用逗号结尾禁止换行
3.X: print(x, end=" ") # 使用空格代替换行
2.X: print # 输出新行
3.X: print() # 输出新行
2.X: print >>sys.stderr, "fatal error"
3.X: print("fatal error", file=sys.stderr)
2.X: print (x, y)
# 输出repr((x, y))
3.X: print((x, y)) # 不同于print(x, y)!

4. 入门Boo语言,已有Python基础,如何入门

假设你希望学习Python这门语言,却苦于找不到一个简短而全面的入门教程。那么本教程将花费十分钟的时间带你走入Python的大门。本文的内容介于教程(Toturial)和速查手册(CheatSheet)之间,因此只会包含一些基本概念。很显然,如果你希望真正学好一门语言,你还是需要亲自动手实践的。在此,我会假定你已经有了一定的编程基础,因此我会跳过大部分非Python语言的相关内容。本文将高亮显示重要的关键字,以便你可以很容易看到它们。另外需要注意的是,由于本教程篇幅有限,有很多内容我会直接使用代码来说明加以少许注释。

5. 初学者学Python编程如何快速入门

电子书集合|数据科学速查表|迁移学习实战 ,免费下载

链接: https://pan..com/s/11qnpoLX1H_XzFB-RdVNG4w 提取码: z9x7


6. Python自学可以看什么书

Python自学书籍推荐:《简明python教程》、《Python核心编程 第二版》、《Python核心编程 第三版》、《Python标准库》。
可以按照这个顺序学习
1、《简明python教程》,书不厚,非常适合0基础的人自学入门用。不厚的优点就是上手快,提高自信,适合快速学习,但缺点就是知识点不全,很多细节都没有介绍。
2、《Python核心编程 第二版》,注意看,是第二版,该书大而全,介绍的很细,书也很厚。650页。 并列的书还有《Python学习手册 第四版》书中不厌其烦的介绍各种知识,是不厌其烦,只有闲作者墨迹,而没有看不懂的。非常适合入门深入学习。
3、《Python核心编程 第三版》,介绍很多高级知识,书也很厚。属于进阶读物。
4、《Python标准库》,介绍很多库的使用,适合作为工具书使用,速查各种库的使用和知识。
还有很多很多扩展的读物,包括网络编程、GUI编程、WEB开发等等。
推荐课程:Python 基础入门教程

7. 如何通过Python进行深度学习

作者 | Vihar Kurama

编译 | 荷叶

来源 | 云栖社区

摘要:深度学习背后的主要原因是人工智能应该从人脑中汲取灵感。本文就用一个小例子无死角的介绍一下深度学习!

人脑模拟

深度学习背后的主要原因是人工智能应该从人脑中汲取灵感。此观点引出了“神经网络”这一术语。人脑中包含数十亿个神经元,它们之间有数万个连接。很多情况下,深度学习算法和人脑相似,因为人脑和深度学习模型都拥有大量的编译单元(神经元),这些编译单元(神经元)在独立的情况下都不太智能,但是当他们相互作用时就会变得智能。

我认为人们需要了解到深度学习正在使得很多幕后的事物变得更好。深度学习已经应用于谷歌搜索和图像搜索,你可以通过它搜索像“拥抱”这样的词语以获得相应的图像。-杰弗里·辛顿

神经元

神经网络的基本构建模块是人工神经元,它模仿了人类大脑的神经元。这些神经元是简单、强大的计算单元,拥有加权输入信号并且使用激活函数产生输出信号。这些神经元分布在神经网络的几个层中。

inputs 输入 outputs 输出 weights 权值 activation 激活

人工神经网络的工作原理是什么?

深度学习由人工神经网络构成,该网络模拟了人脑中类似的网络。当数据穿过这个人工网络时,每一层都会处理这个数据的一方面,过滤掉异常值,辨认出熟悉的实体,并产生最终输出。

输入层:该层由神经元组成,这些神经元只接收输入信息并将它传递到其他层。输入层的图层数应等于数据集里的属性或要素的数量。输出层:输出层具有预测性,其主要取决于你所构建的模型类型。隐含层:隐含层处于输入层和输出层之间,以模型类型为基础。隐含层包含大量的神经元。处于隐含层的神经元会先转化输入信息,再将它们传递出去。随着网络受训练,权重得到更新,从而使其更具前瞻性。

神经元的权重

权重是指两个神经元之间的连接的强度或幅度。你如果熟悉线性回归的话,可以将输入的权重类比为我们在回归方程中用的系数。权重通常被初始化为小的随机数值,比如数值0-1。

前馈深度网络

前馈监督神经网络曾是第一个也是最成功的学习算法。该网络也可被称为深度网络、多层感知机(MLP)或简单神经网络,并且阐明了具有单一隐含层的原始架构。每个神经元通过某个权重和另一个神经元相关联。

该网络处理向前处理输入信息,激活神经元,最终产生输出值。在此网络中,这称为前向传递。

inputlayer 输入层 hidden layer 输出层 output layer 输出层

激活函数

激活函数就是求和加权的输入到神经元的输出的映射。之所以称之为激活函数或传递函数是因为它控制着激活神经元的初始值和输出信号的强度。

用数学表示为:

我们有许多激活函数,其中使用最多的是整流线性单元函数、双曲正切函数和solfPlus函数。

激活函数的速查表如下:

反向传播

在网络中,我们将预测值与预期输出值相比较,并使用函数计算其误差。然后,这个误差会传回这个网络,每次传回一个层,权重也会根绝其导致的误差值进行更新。这个聪明的数学法是反向传播算法。这个步骤会在训练数据的所有样本中反复进行,整个训练数据集的网络更新一轮称为一个时期。一个网络可受训练数十、数百或数千个时期。

prediction error 预测误差

代价函数和梯度下降

代价函数度量了神经网络对给定的训练输入和预期输出“有多好”。该函数可能取决于权重、偏差等属性。

代价函数是单值的,并不是一个向量,因为它从整体上评估神经网络的性能。在运用梯度下降最优算法时,权重在每个时期后都会得到增量式地更新。

兼容代价函数

用数学表述为差值平方和:

target 目标值 output 输出值

权重更新的大小和方向是由在代价梯度的反向上采取步骤计算出的。

其中η 是学习率

其中Δw是包含每个权重系数w的权重更新的向量,其计算方式如下:

target 目标值 output 输出值

图表中会考虑到单系数的代价函数

initial weight 初始权重 gradient 梯度 global cost minimum 代价极小值

在导数达到最小误差值之前,我们会一直计算梯度下降,并且每个步骤都会取决于斜率(梯度)的陡度。

多层感知器(前向传播)

这类网络由多层神经元组成,通常这些神经元以前馈方式(向前传播)相互连接。一层中的每个神经元可以直接连接后续层的神经元。在许多应用中,这些网络的单元会采用S型函数或整流线性单元(整流线性激活)函数作为激活函数。

现在想想看要找出处理次数这个问题,给定的账户和家庭成员作为输入

要解决这个问题,首先,我们需要先创建一个前向传播神经网络。我们的输入层将是家庭成员和账户的数量,隐含层数为1, 输出层将是处理次数。

将图中输入层到输出层的给定权重作为输入:家庭成员数为2、账户数为3。

现在将通过以下步骤使用前向传播来计算隐含层(i,j)和输出层(k)的值。

步骤:

1, 乘法-添加方法。

2, 点积(输入*权重)。

3,一次一个数据点的前向传播。

4, 输出是该数据点的预测。

i的值将从相连接的神经元所对应的输入值和权重中计算出来。

i = (2 * 1) + (3* 1) → i = 5

同样地,j = (2 * -1) + (3 * 1) → j =1

K = (5 * 2) + (1* -1) → k = 9

Python中的多层感知器问题的解决

激活函数的使用

为了使神经网络达到其最大预测能力,我们需要在隐含层应用一个激活函数,以捕捉非线性。我们通过将值代入方程式的方式来在输入层和输出层应用激活函数。

这里我们使用整流线性激活(ReLU):

用Keras开发第一个神经网络

关于Keras:

Keras是一个高级神经网络的应用程序编程接口,由Python编写,能够搭建在TensorFlow,CNTK,或Theano上。

使用PIP在设备上安装Keras,并且运行下列指令。

在keras执行深度学习程序的步骤

1,加载数据;

2,创建模型;

3,编译模型;

4,拟合模型;

5,评估模型。

开发Keras模型

全连接层用Dense表示。我们可以指定层中神经元的数量作为第一参数,指定初始化方法为第二参数,即初始化参数,并且用激活参数确定激活函数。既然模型已经创建,我们就可以编译它。我们在底层库(也称为后端)用高效数字库编译模型,底层库可以用Theano或TensorFlow。目前为止,我们已经完成了创建模型和编译模型,为进行有效计算做好了准备。现在可以在PIMA数据上运行模型了。我们可以在模型上调用拟合函数f(),以在数据上训练或拟合模型。

我们先从KERAS中的程序开始,

神经网络一直训练到150个时期,并返回精确值。

8. 20张英文原版Python科学速查表,帮你快速掌握Python数据分析

Python基础

Pandas基础

Numpy基础

PySpark基础

数组排序算法

scikit-learn算法小抄

想要速查表的小白可以开始学习起来了。

9. Python 中正则表达式全部语法速查

它们不匹配自己,在正则中具有其它的意义,匹配自己需要转义.

元字符的完整列表:

它们不用来代表字符,用来实现一些特殊的匹配功能

可以给 group() , start() , end() , span() 传入参数 分组的序号 ,以获取模式中特定分组匹配到的内容.默认参数为0.

组从0开始从左到右编号,它始终存在.要确定编号,只需计算从左到右的左括号字符.

(?参数)

(?a:表达式)

(?aiLmsux-imsx:表达式)

(?#注释内容)

(?P<组名>表达式) + result.group('组名') :

(?P<组名>表达式) + (?P=<组名>) :

(?:表达式)

(?=表达式)

(?!表达式)

(?<=表达式)

(?<!表达式)

(?(id/name)yes-pattern|no-pattern)

如果你匹配固定字符串或单个字符类,如果你匹配固定字符串或单个字符类,并且你没有使用任何 re 功能,例如 IGNORECASE 标志,那么正则表达式的全部功能可能不是必需的。 字符串有几种方法可以使用固定字符串执行操作,它们通常要快得多,因为实现是一个针对此目的而优化的单个小 C 循环,而不是大型、更通用的正则表达式引擎。

在转向 re 模块之前,请考虑是否可以使用更快更简单的字符串方法解决问题

正则默认是贪婪模式(匹配为尽可能 的文字):

非贪婪:匹配为尽可能少的文字

*? 、 +? 、 ?? 、 {m,n}?

使用正则表达式解析 HTML 或 XML 很痛苦。HTML 和 XML 有特殊情况会破坏明显的正则表达式;当你编写正则表达式处理所有可能的情况时,模式将非常复杂。 使用 HTML 或 XML 解析器模块来执行此类任务

热点内容
sql数据库项目 发布:2025-07-20 14:06:11 浏览:162
linux查看selinux状态 发布:2025-07-20 13:36:35 浏览:914
福利资源解压密码 发布:2025-07-20 13:34:10 浏览:269
我的世界怎么在手机搞服务器 发布:2025-07-20 13:26:07 浏览:905
android系统键盘 发布:2025-07-20 13:19:38 浏览:500
程序化交易算法 发布:2025-07-20 13:09:58 浏览:973
已关闭服务器是什么意思 发布:2025-07-20 13:06:49 浏览:709
三星s5密码多少钱 发布:2025-07-20 12:55:14 浏览:961
密码忘记了怎么找回 发布:2025-07-20 12:46:18 浏览:534
华为的密码锁为什么开不了 发布:2025-07-20 12:45:35 浏览:133