当前位置:首页 » 编程语言 » python内置类型

python内置类型

发布时间: 2023-04-30 07:08:29

python里面什么复数类型

复数(Complex)是 Python 的内置类型,直接书写即可。换句话说,Python 语言本身就支持复数,而不依赖于标准库或者第三方库

复数由实部(real)和虚部(imag)构成,在 Python 中,复数的虚部以j或者J作为后缀

复数由于其在日常使用中的重要性,在Python3中,终于进入了四大基本数字类型的行列,同整型int,浮点型float,盯敏察布尔型bool并列。复数类型的基本表达方式是a+bj,其中a代表实部,b代表虚部, j可以大小写随意。

复数是由一个实数和一个虚数组合构成,表示为:x+yj

一个复数是一对有序浮点数 (x,y),其中 x 是实数部分,y 是虚数部分。

Python 语言中有关复数的概念:

1、虚数不能单独存在,它们总是和拿没一个值为 0.0 的实数部分一起构成一个复数

2、复数由实数部分和虚数部分构成

3、表示虚数的语法:real+imagej

4、实数部分和虚数部分都是浮点数

5、虚数部分必须有后缀j或J

复数的内建属性:

复数对象拥有数据属性,分别为该复数的实部和虚部。

复数还拥有 conjugate 方法,调用它可以返回该复数的共轭复数对象。

复数属性:real(复数的实部)、imag(复数的虚部)、conjugate()(返回复数的共轭复数)

以上是整理后的复数信息,希望能帮凯茄到你,谢谢!

② python内置数据类型列表list和字典dict的性能

    我们来讨论下python的两种最重要的内置数据类型列表list和字典dict上,各种操作的复杂度。

list列表数据类型常用操作性能:

1、按索引取值和赋值(v=a[i],a[i]=v)

由于列表的随机访问特性,这两个操作执行时间与列表大小无关,均为O(1)

2、列表的曾长,可以选择append()和_add_() "+"

list.append(v)的执行时间O(1)

list = list + [v],执行时间是O(n+k),因为新增了一个新的列表,其中k是被加的列表长度

举例:4种生成前n个整数列表的方法

如图:

我们可以计算一下这四个函数的耗时,如下

执行结果:

我们可以看到,4种方法运行时间差别很大,test1使用列表连接最慢,而test4使用list range最快,速度相差近200倍。

    如下图,我们总结下list基本操作的性能如何:

上图可知pop()从列表末尾移除元素O(1),但是pop(i)从列表中间移除元素要O(n),为什么呢?

因为从中部移除元素,要把移除元素后面的元素全部向前挪一位,才保证了列表按索引取值和赋值很快,达到O(1)。

dict数据类型:

    字典和列表不同,dict根据key找到value,而list根据index。

    字典最常用的取值get和赋值set,其性能为O(1),而contain(in)操作判断字典是否存在某个key,其性能也是O(1)

list和dict的in操作对比:

    设计一个性能试验,验证list中检索一个值,对比dict中检索一个值的耗时对比。如下程序:

如果如下:

可见list的in操作复杂度为O(n)

PS:大家可以去python官方的算法复杂度网站看看:

https://wiki.python.org/moin/TimeComplexity

③ python中的list和array的不同之处

在Python中,list和array都可以根据索引来取其中的元素,但是list可以用append或者+来新增元素或者添加数组,而array不行。具体区别如下:
1、作用不同
list是处理一组有序项目的数据结构;
array数组存储单一数据类型的多维数组;
2、内置数据类型
list是Python的内置数据类型;
array数组需要导入标准库才行,不属于内置类型;
3、数据类型是否相同
list中的数据类不必相同的,即每个元素可以是不同的数据类型;
array则是由Numpy封装,存放的元素都是相同的数据类型;
4、运算
列表list不可以进行数学四则运算;
数组array可以进行数学四则运算;

④ Python中内置数据类型list,tuple,dict,set的区别和用法

这篇文章主要给大家介绍了Python中内置数据类型list,tuple,dict,set的区别和用法,都是非常基础的知识,十分的细致全面,有需要的小伙伴可以参考下。

Python语言简洁明了,可以用较少的代码实现同样的功能。这其中Python的四个内置数据类型功不可没,他们即是list, tuple, dict, set。这里对他们进行一个简明的总结。
List
字面意思就是一个集合,在Python中List中罩桥哗的元素用中括号[]来表示,可以这样定义一个List:
L = [12, 'China', 19.998]

可以看到并不要求元素的类型都是一样的。当然也可以定义一个空的List:
L = []

Python中的List是有序的,所以要访问List的话显然要通过序号来访问,就像是数组的下标一样,一样是下标从0开始:
>>> print L[0]
12

千万不要越界,否则会报错
>>> print L[3]
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
IndexError: list index out of range

List也可以倒序访问,通过“倒数第x个”这样的下标来表物行示序号,比如-1这个下标就表示倒数第一个元素:
>>> L = [12, 'China', 19.998]
>>> print L[-1]
19.998

-4的话显然就越界了
>>> print L[-4]

Traceback (most recent call last):
File "<pyshell#2>", line 1, in <mole>
print L[-4]
IndexError: list index out of range
>>>

List通过内置的append()方法来添加到尾部,通过insert()方法添加到指定位置(下标从0开始):
>>> L = [12, 'China', 19.998]
>>> L.append('Jack')
>>> print L
[12, 'China', 19.998, 'Jack']
>>> L.insert(1, 3.14)
>>> print L
[12, 3.14, 'China', 19.998, 'Jack']
>>>

通过pop()删除最后尾部元素,也可以指定一参数删除指定位置:
>>> L.pop()
'Jack'
>>> print L
[12, 3.14, 'China', 19.998]
>>> L.pop(0)
12
>>> print L
[3.14, 'China', 19.998]

也可以通过下标进行复制替换
>>> L[1] = 'America'
>>> print L
[3.14, 'America', 19.998]

Tuple
Tuple可以看做是一种“不变”的List,访问也是通过下标,用小括号()表示:
>>> t = (3.14, 'China', 'Jason')
>>> print t
(3.14, 'China', 'Jason')

但是不能重新赋值替换:
>>> t[1] = 'America'

Traceback (most recent call last):
File "<pyshell#21>", line 1, in <mole>
t[1] = 'America'
TypeError: 'tuple' object does not support item assignment

也没有pop和insert、append方法。
可以创建空元素的tuple:
t = ()
或者单元素tuple (比如加一个逗号防止和声明一个整形歧义):
t = (3.14,)
那么tuple这个类型到底有什么用处呢?要知道如果你希望一个函数返回多个返回值,其实只要返回一个tuple就可以了,因为tuple里面的含有多个值,而消盯且是不可变的(就像是java里面的final)。当然,tuple也是可变的,比如:
>>> t = (3.14, 'China', 'Jason', ['A', 'B'])
>>> print t
(3.14, 'China', 'Jason', ['A', 'B'])
>>> L = t[3]
>>> L[0] = 122
>>> L[1] = 233
>>> print t
(3.14, 'China', 'Jason', [122, 233])

这是因为Tuple所谓的不可变指的是指向的位置不可变,因为本例子中第四个元素并不是基本类型,而是一个List类型,所以t指向的该List的位置是不变的,但是List本身的内容是可以变化的,因为List本身在内存中的分配并不是连续的。
Dict
Dict是Python中非常重要的数据类型,就像它的字面意思一样,它是个活字典,其实就是Key-Value键值对,类似于HashMap,可以用花括号{}通过类似于定义一个C语言的结构体那样去定义它:
>>> d = {
'Adam': 95,
'Lisa': 85,
'Bart': 59,
'Paul': 75
}
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}

可以看到打印出来的结果都是Key:Value的格式,可以通过len函数计算它的长度(List,tuple也可以):
>>> len(d)
4
可以直接通过键值对方式添加dict中的元素:
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Bart': 59}
>>> d['Jone'] = 99
>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}

List和Tuple用下标来访问内容,而Dict用Key来访问: (字符串、整型、浮点型和元组tuple都可以作为dict的key)
>>> print d['Adam']
95

如果Key不存在,会报错:
>>> print d['Jack']

Traceback (most recent call last):
File "<pyshell#40>", line 1, in <mole>
print d['Jack']
KeyError: 'Jack'

所以访问之前最好先查询下key是否存在:
>>> if 'Adam' in d : print 'exist key'

exist key

或者直接用保险的get方法:
>>> print d.get('Adam')
95
>>> print d.get('Jason')
None

至于遍历一个dict,实际上是在遍历它的所有的Key的集合,然后用这个Key来获得对应的Value:
>>> for key in d : print key, ':', d.get(key)

Lisa : 85
Paul : 75
Adam : 95
Bart : 59

Dict具有一些特点:
查找速度快。无论是10个还是10万个,速度都是一样的,但是代价是耗费的内存大。List相反,占用内存小,但是查找速度慢。这就好比是数组和链表的区别,数组并不知道要开辟多少空间,所以往往开始就会开辟一个大空间,但是直接通过下标查找速度快;而链表占用的空间小,但是查找的时候必须顺序的遍历导致速度很慢
没有顺序。Dict是无顺序的,而List是有序的集合,所以不能用Dict来存储有序集合
Key不可变,Value可变。一旦一个键值对加入dict后,它对应的key就不能再变了,但是Value是可以变化的。所以List不可以当做Dict的Key,但是可以作为Value:

>>> print d
{'Lisa': 85, 'Paul': 75, 'Adam': 95, 'Jone': 99, 'Bart': 59}
>>> d['NewList'] = [12, 23, 'Jack']
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}

Key不可重复。(下面例子中添加了一个'Jone':0,但是实际上原来已经有'Jone'这个Key了,所以仅仅是改了原来的value)

>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 99, 'Lisa': 85, 'Paul': 75}
>>> d['Jone'] = 0
>>> print d
{'Bart': 59, 'NewList': [12, 23, 'Jack'], 'Adam': 95, 'Jone': 0, 'Lisa': 85, 'Paul': 75}

Dict的合并,如何将两个Dict合并为一个,可以用dict函数:
>>> d1 = {'mike':12, 'jack':19}
>>> d2 = {'jone':22, 'ivy':17}
>>> dMerge = dict(d1.items() + d2.items())
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}

或者
>>> dMerge2 = dict(d1, **d2)
>>> print dMerge2
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}

方法2比方法1速度快很多,方法2等同于:
>>> dMerge3 = dict(d1)
>>> dMerge3.update(d2)
>>> print dMerge
{'mike': 12, 'jack': 19, 'jone': 22, 'ivy': 17}

set
set就像是把Dict中的key抽出来了一样,类似于一个List,但是内容又不能重复,通过调用set()方法创建:
>>> s = set(['A', 'B', 'C'])
就像dict是无序的一样,set也是无序的,也不能包含重复的元素。
对于访问一个set的意义就仅仅在于查看某个元素是否在这个集合里面:
>>> print 'A' in s
True
>>> print 'D' in s
False

大小写是敏感的。
也通过for来遍历:
s = set([('Adam', 95), ('Lisa', 85), ('Bart', 59)])
#tuple
for x in s:
print x[0],':',x[1]

>>>
Lisa : 85
Adam : 95
Bart : 59

通过add和remove来添加、删除元素(保持不重复),添加元素时,用set的add()方法:
>>> s = set([1, 2, 3])
>>> s.add(4)
>>> print s
set([1, 2, 3, 4])

如果添加的元素已经存在于set中,add()不会报错,但是不会加进去了:
>>> s = set([1, 2, 3])
>>> s.add(3)
>>> print s
set([1, 2, 3])

删除set中的元素时,用set的remove()方法:
>>> s = set([1, 2, 3, 4])
>>> s.remove(4)
>>> print s
set([1, 2, 3])

如果删除的元素不存在set中,remove()会报错:
>>> s = set([1, 2, 3])
>>> s.remove(4)
Traceback (most recent call last):
File "<stdin>", line 1, in <mole>
KeyError: 4

所以如果我们要判断一个元素是否在一些不同的条件内符合,用set是最好的选择,下面例子:
months = set(['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec',])
x1 = 'Feb'
x2 = 'Sun'

if x1 in months:
print 'x1: ok'
else:
print 'x1: error'

if x2 in months:
print 'x2: ok'
else:
print 'x2: error'

>>>
x1: ok
x2: error

⑤ python的数据类型有哪些

python的数据类型有很多。

python是一种跨平台的计算机程序设计语言,基本数据类型有整型(数字)、字符串、元组、列表、字典和布尔类型等。
整型(int)也称数字型,python有5种数字类型,最常见的就是整型int,int python方法很实用。
布尔型(bool)一般用符号==表示,布尔型是一种比较特殊的python数字类型,它只有True和False两种值,它主要用来比较和判断,所得结果叫做布尔值。

想了解更多有关python的详情,推荐咨询达内教育。达内教育是引领行业的职业教育公司,致力于面向IT互联网行业,培养软件开发工程师、系统管理员、UI设计师、网络营销工程师、会计等职场人才,拥有强大的师资力量,实战讲师对实战经验倾囊相授,同时还与各大高校进行合作,助力学生职业方向的发展。感兴趣的话点击此处,免费学习一下

⑥ 数组不是python支持的内置数据类型

对。
数组并不是Python中内置的标配数据结构,不过拥有array模块我们也可以在Python中使用数组结构。
python有提供李宏一个array模块,用于提供基本数字,字符塌此类型的数组。用于容纳字符号,整型,浮点等基本类哪衫册型。

⑦ Python3 & 基本数据类型(一)

Python提供的基本数据类型:数值(整型、浮点型、复数、布尔型等)、字符串、列表、元组、字典、集合等,将它们简单分类如下:

通常被称为整型,数值为正或者负,不带小数点。
Python 3的整型可以当做Long类型使用,所以Python 3没有
Python 2的Long类型。
Python 初始化的时候会自动建立一个小整数对象池,方便我们调用,避免后期重复生成!这是一个包含 262个指向整数对象的指针数组,范围是 -5 到 256 。

Python的浮点数就是数学中的小数,类似C语言中的double。
浮点数 也就是小数,如 1.23 , 3.14 , -9.01 等等。但是对于很大或很小的浮点数,一般用科学计数法表示,把10用e替代, 1.23x10^9 就是 1.23e9 ,或者 12.3e8 , 0.000012 可以写成1.2e-5 等等。

复数 由实数部分和虚数部分构成,可以用a + bj,或者complex(a,b)表示,复数的实部a和虚部b都是浮点。

对 与 错 、 0 和 1 、 正 与 反 ,都是传统意义上的布尔类型。
但在Python语言中,布尔类型只有两个值, True 与 False 。请注意,是英文单词的对与错,并且首字母要大写。
在Python中,0、0.0、-0.0、None、空字符串“”、空元组()、空列表[]、空字典{}都被当作False,还有自定义类型,如果实现了 nonzero ()或 len ()方法且方法返回0或False,则其实例也被当作False,其他对象均为True

布尔值还可以用and、or和not运算。
1)、and 运算是 与 运算,只有所有都为 True , and 运算的结果才是 True ;
2)、or 运算是 或 运算,只要其中有一个为 True , or 运算结果就是 True ;
3)、not 运算是 非 运算,它是单目运算符,把 True 变成 False,False 变成 True。
例如:

由以上案例可以看出,在做四则运算的时候,明显把 True 看做 1 , False 看做 0 。

4)空值
空值不是布尔类型,只不过和布尔关系比较紧密。
空值是Python里一个特殊的值,用 None 表示(首字母大写)。None不能理解为0,因为0是整数类型,而None是一个特殊的值。None也不是布尔类型,而是NoneType。

在某些特定的情况下,需要对数字的类型进行转换。
Python提供了内置的数据类型转换函数:
int(x) 将x转换为一个整数。如果x是一个浮点数,则截取小数部分。
float(x) 将x转换成一个浮点数。
complex(x) 将x转换到一个复数,实数部分为 x,虚数部分为 0。
complex(x, y): 将 x 和 y 转换到一个复数,实数部分为 x,虚数部分为 y。

Python字符串即可以用单引号也可以用双引号括起来,甚至还可以用三引号括起来,字符串是以''或""括起来的任意文本。
例如:'abc',"xyz"等等。请注意,''或""本身只是一种表示方式,不是字符串的一部分,因此,字符串'abc'只有a,b,c这3个字符。如果'本身也是一个字符,那就可以用""括起来,比如"I'm OK"包含的字符是I,',m,空格,O,K这6个字符。
字符串中包括特殊字符,可以用转义字符来标识
但是字符串里面如果有很多字符都需要转义,就需要加很多,为了简化,Python还允许用r''表示''内部的字符串默认不转义
例如:
print r'\ \' #输出:\ \

字符串的一些常见操作

切⽚是指对操作的对象截取其中⼀部分的操作
语法:序列[开始位置下标:结束位置下标:步⻓]
a. 不包含结束位置下标对应的数据, 正负整数均可;
b. 步⻓是选取间隔,正负整数均可,默认步⻓为1。

find():检测某个⼦串是否包含在这个字符串中,如果在返回这个⼦串开始的位置下标,否则则返回-1。
index():检测某个⼦串是否包含在这个字符串中,如果在返回这个⼦串开始的位置下标,否则则报异常。
rfind(): 和find()功能相同,但查找⽅向为右侧开始。
rindex():和index()功能相同,但查找⽅向为右侧开始。
count():返回某个⼦串在字符串中出现的次数。

replace():替换
split():按照指定字符分割字符串。
join():⽤⼀个字符或⼦串合并字符串,即是将多个字符串合并为⼀个新的字符串。
capitalize():将字符串第⼀个字符转换成⼤写。
title():将字符串每个单词⾸字⺟转换成⼤写。
lower():将字符串中⼤写转⼩写。
upper():将字符串中⼩写转⼤写。
lstrip():删除字符串左侧空⽩字符。
rstrip():删除字符串右侧空⽩字符。
strip():删除字符串两侧空⽩字符。
ljust():返回⼀个原字符串左对⻬,并使⽤指定字符(默认空格)填充⾄对应⻓度 的新字符串。
rjust():返回⼀个原字符串右对⻬,并使⽤指定字符(默认空格)填充⾄对应⻓度 的新字符串,语法和
ljust()相同。
center():返回⼀个原字符串居中对⻬,并使⽤指定字符(默认空格)填充⾄对应⻓度 的新字符串,语
法和ljust()相同。

所谓判断即是判断真假,返回的结果是布尔型数据类型:True 或 False。

startswith():检查字符串是否是以指定⼦串开头,是则返回 True,否则返回 False。如果设置开
始和结束位置下标,则在指定范围内检查。
endswith()::检查字符串是否是以指定⼦串结尾,是则返回 True,否则返回 False。如果设置开
始和结束位置下标,则在指定范围内检查。
isalpha():如果字符串⾄少有⼀个字符并且所有字符都是字⺟则返回 True, 否则返回 False。
isdigit():如果字符串只包含数字则返回 True 否则返回 False。
isalnum():如果字符串⾄少有⼀个字符并且所有字符都是字⺟或数字则返 回 True,否则返回
False。

⑧ python语言的内置对象类型有哪些

python的内置对象
对象类型 常量示例/用法
Number(数字) 3.14159, 1234, 999L 3+4j
String(字符串) 'spam', "guido's"
List(列表) [1,[2, 'Three'],4]
Dictionary(字典) {'food':'spam', 'taste':'yum'}
Tuple(元组) (1,'spam',4,'U')
File(文件) text=open('egges','r').read()

⑨ python数据类型有哪些

Python基本数据类型一般分为:数字、字符串、列表、元组、字典、集合这六种基本数据类型。

其中数字又包含整型(整型又包括标准整型、长整型(Python2.7及之前版本有))、浮点型、复数类型、布尔型(布尔型就是只有两个值的整型)、这几种数字类型。列表、元组、字符串都是序列。

1、数字

数字类型是不可更改的对象。对变量改变数字值就是生成/创建新的对象。Python支持多种数字类型:

整型(标准整型和长整型(Python2.7及之前的有这种类型))、布尔型、双精度浮点型、十进制浮点型、复数。

2、标准整型

int,标准整型,在大多数32位机器上标准整型取值范围是-2^31到2^31-1,也就是-2147483648~2147483647,如果在64位机器使用64位编译器,那么这个系统的标准整型将是64位。

3、布尔型

bool,从Python2.3开始Python中添加了布尔类型。布尔类型有两种True和False。对于没有__nozero__方法的对象默认是True。

对于值为0的数字、空集(空列表、空元组、空字典等)在Python中的布尔类型中都是False。

>>>bool(1)
True
>>>bool('a')
True
>>>bool(0)
False
>>>bool('')
False

4、浮点型

float,每个浮点型占8个字节(64位),完全遵守IEEE754号规范(52M/11E/1S),其中52个位用于表示底,11个位用于表示指数(可表示的范围大约是±10**308.25),剩下的一个位表示符号。这看上去相当完美,然而,实际精度依赖于机器架构和创建Python解释器的编译器。

浮点型值通常都有一个小数点和一个可选的后缀e(大写或小写,表示科学计数法)。在e和指数之间可以用正(+)或负(-)表示指数的正负(正数的话可以省略符号)。

以上是Python核心编程的对浮点型(双精度浮点型)的说明。经过Python实测浮点型默认长度是24字节如果超出这个范围会自动

5、复数类型

complex,在复数中虚数不能单独存在,它们总是和一个值为0.0的实数部分一起来构成一个复数。复数由实数部分和虚数部分构成。表示虚数的语法:real+imagj。

实数部分和虚数部分都是浮点型。虚数部分必须有后缀j或J。

⑩ python数据类型有哪些

详情如下:
1.数字类型: python3的数字类型包括: int(长整型) float(浮点型) complex(复数) bool(布尔型) 注意:在Python 3里,只有一种整数类型 int,表示为长整型,没有 python2 中

热点内容
学校安防存储系统 发布:2025-07-19 21:20:49 浏览:281
linux红帽下载 发布:2025-07-19 21:16:00 浏览:538
人员怎么配置 发布:2025-07-19 21:10:10 浏览:206
明日之后如何扫码登服务器 发布:2025-07-19 20:36:26 浏览:242
ftp搜索引擎工作原理 发布:2025-07-19 20:31:25 浏览:371
景物视频脚本 发布:2025-07-19 20:30:33 浏览:181
hadoop查看文件夹 发布:2025-07-19 20:19:12 浏览:22
安卓手机的旁白在哪里 发布:2025-07-19 20:09:40 浏览:741
身份证注册借书卡的密码是什么 发布:2025-07-19 19:44:39 浏览:76
玩梦幻西游哪个配置好 发布:2025-07-19 19:44:37 浏览:753