python多元线性拟合
❶ python数据统计分析
1. 常用函数库
scipy包中的stats模块和statsmodels包是python常用的数据分析工具,scipy.stats以前有一个models子模块,后来被移除了。这个模块被重写并成为了现在独立的statsmodels包。
scipy的stats包含一些比较基本的工具,比如:t检验,正态性检验,卡方检验之类,statsmodels提供了更为系统的统计模型,包括线性模型,时序分析,还包含数据集,做图工具等等。
2. 小样本数据的正态性检验
(1) 用途
夏皮罗维尔克检验法 (Shapiro-Wilk) 用于检验参数提供的一组小样本数据线是否符合正态分布,统计量越大则表示数据越符合正态分布,但是在非正态分布的小样本数据中也经常会出现较大的W值。需要查表来估计其概率。由于原假设是其符合正态分布,所以当P值小于指定显着水平时表示其不符合正态分布。
正态性检验是数据分析的第一步,数据是否符合正态性决定了后续使用不同的分析和预测方法,当数据不符合正态性分布时,我们可以通过不同的转换方法把非正太态数据转换成正态分布后再使用相应的统计方法进行下一步操作。
(2) 示例
(3) 结果分析
返回结果 p-value=0.029035290703177452,比指定的显着水平(一般为5%)小,则拒绝假设:x不服从正态分布。
3. 检验样本是否服务某一分布
(1) 用途
科尔莫戈罗夫检验(Kolmogorov-Smirnov test),检验样本数据是否服从某一分布,仅适用于连续分布的检验。下例中用它检验正态分布。
(2) 示例
(3) 结果分析
生成300个服从N(0,1)标准正态分布的随机数,在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布。最终返回的结果,p-value=0.9260909172362317,比指定的显着水平(一般为5%)大,则我们不能拒绝假设:x服从正态分布。这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布。因此我们的假设被接受,认为x服从正态分布。如果p-value小于我们指定的显着性水平,则我们可以肯定地拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的。
4.方差齐性检验
(1) 用途
方差反映了一组数据与其平均值的偏离程度,方差齐性检验用以检验两组或多组数据与其平均值偏离程度是否存在差异,也是很多检验和算法的先决条件。
(2) 示例
(3) 结果分析
返回结果 p-value=0.19337536323599344, 比指定的显着水平(假设为5%)大,认为两组数据具有方差齐性。
5. 图形描述相关性
(1) 用途
最常用的两变量相关性分析,是用作图描述相关性,图的横轴是一个变量,纵轴是另一变量,画散点图,从图中可以直观地看到相关性的方向和强弱,线性正相关一般形成由左下到右上的图形;负面相关则是从左上到右下的图形,还有一些非线性相关也能从图中观察到。
(2) 示例
(3) 结果分析
从图中可以看到明显的正相关趋势。
6. 正态资料的相关分析
(1) 用途
皮尔森相关系数(Pearson correlation coefficient)是反应两变量之间线性相关程度的统计量,用它来分析正态分布的两个连续型变量之间的相关性。常用于分析自变量之间,以及自变量和因变量之间的相关性。
(2) 示例
(3) 结果分析
返回结果的第一个值为相关系数表示线性相关程度,其取值范围在[-1,1],绝对值越接近1,说明两个变量的相关性越强,绝对值越接近0说明两个变量的相关性越差。当两个变量完全不相关时相关系数为0。第二个值为p-value,统计学上,一般当p-value<0.05时,可以认为两变量存在相关性。
7. 非正态资料的相关分析
(1) 用途
斯皮尔曼等级相关系数(Spearman’s correlation coefficient for ranked data ),它主要用于评价顺序变量间的线性相关关系,在计算过程中,只考虑变量值的顺序(rank, 值或称等级),而不考虑变量值的大小。常用于计算类型变量的相关性。
(2) 示例
(3) 结果分析
返回结果的第一个值为相关系数表示线性相关程度,本例中correlation趋近于1表示正相关。第二个值为p-value,p-value越小,表示相关程度越显着。
8. 单样本T检验
(1) 用途
单样本T检验,用于检验数据是否来自一致均值的总体,T检验主要是以均值为核心的检验。注意以下几种T检验都是双侧T检验。
(2) 示例
(3) 结果分析
本例中生成了2列100行的数组,ttest_1samp的第二个参数是分别对两列估计的均值,p-value返回结果,第一列1.47820719e-06比指定的显着水平(一般为5%)小,认为差异显着,拒绝假设;第二列2.83088106e-01大于指定显着水平,不能拒绝假设:服从正态分布。
9. 两独立样本T检验
(1) 用途
由于比较两组数据是否来自于同一正态分布的总体。注意:如果要比较的两组数据不满足方差齐性, 需要在ttest_ind()函数中添加参数equal_var = False。
(2) 示例
(3) 结果分析
返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.19313343989106416,比指定的显着水平(一般为5%)大,不能拒绝假设,两组数据来自于同一总结,两组数据之间无差异。
10. 配对样本T检验
(1) 用途
配对样本T检验可视为单样本T检验的扩展,检验的对象由一群来自正态分布独立样本更改为二群配对样本观测值之差。它常用于比较同一受试对象处理的前后差异,或者按照某一条件进行两两配对分别给与不同处理的受试对象之间是否存在差异。
(2) 示例
(3) 结果分析
返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.80964043445811551,比指定的显着水平(一般为5%)大,不能拒绝假设。
11. 单因素方差分析
(1) 用途
方差分析(Analysis of Variance,简称ANOVA),又称F检验,用于两个及两个以上样本均数差别的显着性检验。方差分析主要是考虑各组之间的平均数差别。
单因素方差分析(One-wayAnova),是检验由单一因素影响的多组样本某因变量的均值是否有显着差异。
当因变量Y是数值型,自变量X是分类值,通常的做法是按X的类别把实例成分几组,分析Y值在X的不同分组中是否存在差异。
(2) 示例
(3) 结果分析
返回结果的第一个值为统计量,它由组间差异除以组间差异得到,上例中组间差异很大,第二个返回值p-value=6.2231520821576832e-19小于边界值(一般为0.05),拒绝原假设, 即认为以上三组数据存在统计学差异,并不能判断是哪两组之间存在差异 。只有两组数据时,效果同 stats.levene 一样。
12. 多因素方差分析
(1) 用途
当有两个或者两个以上自变量对因变量产生影响时,可以用多因素方差分析的方法来进行分析。它不仅要考虑每个因素的主效应,还要考虑因素之间的交互效应。
(2) 示例
(3) 结果分析
上述程序定义了公式,公式中,"~"用于隔离因变量和自变量,”+“用于分隔各个自变量, ":"表示两个自变量交互影响。从返回结果的P值可以看出,X1和X2的值组间差异不大,而组合后的T:G的组间有明显差异。
13. 卡方检验
(1) 用途
上面介绍的T检验是参数检验,卡方检验是一种非参数检验方法。相对来说,非参数检验对数据分布的要求比较宽松,并且也不要求太大数据量。卡方检验是一种对计数资料的假设检验方法,主要是比较理论频数和实际频数的吻合程度。常用于特征选择,比如,检验男人和女人在是否患有高血压上有无区别,如果有区别,则说明性别与是否患有高血压有关,在后续分析时就需要把性别这个分类变量放入模型训练。
基本数据有R行C列, 故通称RC列联表(contingency table), 简称RC表,它是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。
(2) 示例
(3) 结果分析
卡方检验函数的参数是列联表中的频数,返回结果第一个值为统计量值,第二个结果为p-value值,p-value=0.54543425102570975,比指定的显着水平(一般5%)大,不能拒绝原假设,即相关性不显着。第三个结果是自由度,第四个结果的数组是列联表的期望值分布。
14. 单变量统计分析
(1) 用途
单变量统计描述是数据分析中最简单的形式,其中被分析的数据只包含一个变量,不处理原因或关系。单变量分析的主要目的是通过对数据的统计描述了解当前数据的基本情况,并找出数据的分布模型。
单变量数据统计描述从集中趋势上看,指标有:均值,中位数,分位数,众数;从离散程度上看,指标有:极差、四分位数、方差、标准差、协方差、变异系数,从分布上看,有偏度,峰度等。需要考虑的还有极大值,极小值(数值型变量)和频数,构成比(分类或等级变量)。
此外,还可以用统计图直观展示数据分布特征,如:柱状图、正方图、箱式图、频率多边形和饼状图。
15. 多元线性回归
(1) 用途
多元线性回归模型(multivariable linear regression model ),因变量Y(计量资料)往往受到多个变量X的影响,多元线性回归模型用于计算各个自变量对因变量的影响程度,可以认为是对多维空间中的点做线性拟合。
(2) 示例
(3) 结果分析
直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显着性,P<0.05则认为自变量具有统计学意义,从上例中可以看到收入INCOME最有显着性。
16. 逻辑回归
(1) 用途
当因变量Y为2分类变量(或多分类变量时)可以用相应的logistic回归分析各个自变量对因变量的影响程度。
(2) 示例
(3) 结果分析
直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显着性,P<0.05则认为自变量具有统计学意义。
❷ python怎么用线性回归拟合
from sklearn import linear_model#线性回归clf = linear_model.LinearRegression()#训握漏练clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])#表达式参竖皮睁数clf.coef_#测试余岁improt numpy as npx = np.array([1,1])y = x.dot(clf.coef_)
❸ r,r方,调整r方都为1的数据怎么处理python
r,r方,调整r方都为1的数据处理python方法如下1、先用q检验法或t检验法进行检验。2、去掉部分误差点。3、再进樱橡银行多元线性回归拟合试试T检验法。4、找出最大值与最小值,并计算可疑出其与相邻值的差值,并将其与最大值与最小值之差做商。5、得出Q与题目如纳给出脊宴的要求的Q对比,要是大于,则是舍去,是正确。
❹ 使用Python的线性回归问题,怎么解决
本文中,我们将进行大量的编程——但在这之前,我们先介绍一下我们今天要解决的实例问题。
1) 预测房子价格
闪电侠是一部由剧作家/制片人Greg Berlanti、Andrew Kreisberg和Geoff Johns创作,由CW电视台播放的美国电视连续剧。它基于DC漫画角色闪电侠(Barry Allen),一个具有超人速度移动能力的装扮奇特的打击犯罪的超级英雄,这个角色是由Robert Kanigher、John Broome和Carmine Infantino创作。它是绿箭侠的衍生作品,存在于同一世界。该剧集的试播篇由Berlanti、Kreisberg和Johns写作,David Nutter执导。该剧集于2014年10月7日在北美首映,成为CW电视台收视率最高的电视节目。
绿箭侠是一部由剧作家/制片人 Greg Berlanti、Marc Guggenheim和Andrew Kreisberg创作的电视连续剧。它基于DC漫画角色绿箭侠,一个由Mort Weisinger和George Papp创作的装扮奇特的犯罪打击战士。它于2012年10月10日在北美首映,与2012年末开始全球播出。主要拍摄于Vancouver、British Columbia、Canada,该系列讲述了亿万花花公子Oliver Queen,由Stephen Amell扮演,被困在敌人的岛屿上五年之后,回到家乡打击犯罪和腐败,成为一名武器是弓箭的神秘义务警员。不像漫画书中,Queen最初没有使用化名”绿箭侠“。
由于这两个节目并列为我最喜爱的电视节目头衔,我一直想知道哪个节目更受其他人欢迎——谁会最终赢得这场收视率之战。 所以让我们写一个程序来预测哪个电视节目会有更多观众。 我们需要一个数据集,给出每一集的观众。幸运地,我从维基网络上得到了这个数据,并整理成一个.csv文件。它如下所示。
闪电侠
闪电侠美国观众数
绿箭侠
绿箭侠美国观众数
1 4.83 1 2.84
2 4.27 2 2.32
3 3.59 3 2.55
4 3.53 4 2.49
5 3.46 5 2.73
6 3.73 6 2.6
7 3.47 7 2.64
8 4.34 8 3.92
9 4.66 9 3.06
观众数以百万为单位。
解决问题的步骤:
首先我们需要把数据转换为X_parameters和Y_parameters,不过这里我们有两个X_parameters和Y_parameters。因此,把他们命名为flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter吧。然后我们需要把数据拟合为两个不同的线性回归模型——先是闪电侠,然后是绿箭侠。 接着我们需要预测两个电视节目下一集的观众数量。 然后我们可以比较结果,推测哪个节目会有更多观众。
步骤1
导入我们的程序包:
Python
1
2
3
4
5
6
7
# Required Packages
import csv
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
步骤2
写一个函数,把我们的数据集作为输入,返回flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter values。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
# Function to get data
def get_data(file_name):
data = pd.read_csv(file_name)
flash_x_parameter = []
flash_y_parameter = []
arrow_x_parameter = []
arrow_y_parameter = []
for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):
flash_x_parameter.append([float(x1)])
flash_y_parameter.append(float(y1))
arrow_x_parameter.append([float(x2)])
arrow_y_parameter.append(float(y2))
return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter
现在我们有了我们的参数,来写一个函数,用上面这些参数作为输入,给出一个输出,预测哪个节目会有更多观众。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Function to know which Tv show will have more viewers
def more_viewers(x1,y1,x2,y2):
regr1 = linear_model.LinearRegression()
regr1.fit(x1, y1)
predicted_value1 = regr1.predict(9)
print predicted_value1
regr2 = linear_model.LinearRegression()
regr2.fit(x2, y2)
predicted_value2 = regr2.predict(9)
#print predicted_value1
#print predicted_value2
if predicted_value1 > predicted_value2:
print "The Flash Tv Show will have more viewers for next week"
else:
print "Arrow Tv Show will have more viewers for next week"
把所有东西写在一个文件中。打开你的编辑器,把它命名为prediction.py,复制下面的代码到prediction.py中。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Required Packages
import csv
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
# Function to get data
def get_data(file_name):
data = pd.read_csv(file_name)
flash_x_parameter = []
flash_y_parameter = []
arrow_x_parameter = []
arrow_y_parameter = []
for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):
flash_x_parameter.append([float(x1)])
flash_y_parameter.append(float(y1))
arrow_x_parameter.append([float(x2)])
arrow_y_parameter.append(float(y2))
return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter
# Function to know which Tv show will have more viewers
def more_viewers(x1,y1,x2,y2):
regr1 = linear_model.LinearRegression()
regr1.fit(x1, y1)
predicted_value1 = regr1.predict(9)
print predicted_value1
regr2 = linear_model.LinearRegression()
regr2.fit(x2, y2)
predicted_value2 = regr2.predict(9)
#print predicted_value1
#print predicted_value2
if predicted_value1 > predicted_value2:
print "The Flash Tv Show will have more viewers for next week"
else:
print "Arrow Tv Show will have more viewers for next week"
x1,y1,x2,y2 = get_data('input_data.csv')
#print x1,y1,x2,y2
more_viewers(x1,y1,x2,y2)
可能你能猜出哪个节目会有更多观众——但运行一下这个程序看看你猜的对不对。
3) 替换数据集中的缺失值
有时候,我们会遇到需要分析包含有缺失值的数据的情况。有些人会把这些缺失值舍去,接着分析;有些人会用最大值、最小值或平均值替换他们。平均值是三者中最好的,但可以用线性回归来有效地替换那些缺失值。
这种方法差不多像这样进行。
首先我们找到我们要替换那一列里的缺失值,并找出缺失值依赖于其他列的哪些数据。把缺失值那一列作为Y_parameters,把缺失值更依赖的那些列作为X_parameters,并把这些数据拟合为线性回归模型。现在就可以用缺失值更依赖的那些列预测缺失的那一列。
一旦这个过程完成了,我们就得到了没有任何缺失值的数据,供我们自由地分析数据。
为了练习,我会把这个问题留给你,所以请从网上获取一些缺失值数据,解决这个问题。一旦你完成了请留下你的评论。我很想看看你的结果。
个人小笔记:
我想分享我个人的数据挖掘经历。记得在我的数据挖掘引论课程上,教师开始很慢,解释了一些数据挖掘可以应用的领域以及一些基本概念。然后突然地,难度迅速上升。这令我的一些同学感到非常沮丧,被这个课程吓到,终于扼杀了他们对数据挖掘的兴趣。所以我想避免在我的博客文章中这样做。我想让事情更轻松随意。因此我尝试用有趣的例子,来使读者更舒服地学习,而不是感到无聊或被吓到。
谢谢读到这里——请在评论框里留下你的问题或建议,我很乐意回复你。
❺ 求python多元支持向量机多元回归模型最后预测结果导出代码、测试集与真实值R2以及对比图代码
这是一个多元支持向量机回归的模型,以下是一个参考的实现代码:
import numpy as npimport matplotlib.pyplot as pltfrom sklearn import svmfrom sklearn.metrics import r2_score
# 模拟数据
np.random.seed(0)
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - np.random.rand(16))
# 分割数据
train_X = X[:60]
train_y = y[:60]
test_X = X[60:]
test_y = y[60:]
# 模型训练
model = svm.SVR(kernel='rbf', C=1e3, gamma=0.1)
model.fit(train_X, train_y)
# 预测结果
pred_y = model.predict(test_X)# 计算R2r2 = r2_score(test_y, pred_y)
# 对比图
plt.scatter(test_X, test_y, color='darkorange', label='data'指敏)
plt.plot(test_X, pred_y, color='navy', lw=2, label='SVR model')
plt.title('R2={:.2f}'.format(r2))
plt.legend()
plt.show()
上面的代码将数据分为训练数据和测试数据,使用SVR模型对训练唯配枝数据进行训练,然后对测试数据进行预测。计算预测结果与真实值的R2,最后卖逗将结果画出对比图,以评估模型的效果。
❻ 求python支持向量机多元回归预测代码
这是一段用 Python 来实现 SVM 多元回归预测的代码示例:
# 导入相关核胡库
from sklearn import datasets
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 加载数据集
X, y = datasets.load_boston(return_X_y=True)
# 将数据集拆分为训练集和测试改塌拦集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 创建SVM多元回归模型
reg = SVR(C=1.0, epsilon=0.2)
# 训练模型
reg.fit(X_train, y_train)
# 预测结果
y_pred = reg.predict(X_test)
# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
在这段代码中,首先导入了相关的库,包括 SVR 函数衫仔、train_test_split 函数和 mean_squared_error 函数。然后,使用 load_boston 函数加载数据集,并将数据集分为训练集和测试集。接着,使用 SVR 函数创建了一个 SVM 多元回归模型,并使用 fit 函数对模型进行训练。最后,使用 predict 函数进行预测,并使用 mean_squared_error 函数计算均方误差。
需要注意的是,这仅仅是一个示例代码,在实际应用中,可能需要根据项目的需求进行更改,例如使用不同的超参数
❼ Python 中的函数拟合
很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)
本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。
通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。
运行结果:
对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。
运行结果:
❽ python多元线性回归怎么计算
1、什么是多元线性回归模型?
当y值的影响因素不唯一时,采用多元线性回归模型。
y =y=β0+β1x1+β2x2+...+βnxn
例如商品的销售额可能不电视广告投入,收音机广告投入,报纸广告投入有关系,可以有 sales =β0+β1*TV+β2* radio+β3*newspaper.
2、使用pandas来读取数据
pandas 是一个用于数据探索、数据分析和数据处理的python库
[python]view plain
importpandasaspd
<prename="code"class="python">#
data=pd.read_csv('/home/lulei/Advertising.csv')
#displaythefirst5rows
data.head()
- 这里的Advertising.csv是来自Advertising.csv。大家可以自己下载。
- TV Radio Newspaper Sales
- 0 230.1 37.8 69.2 22.1
- 1 44.5 39.3 45.1 10.4
- 2 17.2 45.9 69.3 9.3
- 3 151.5 41.3 58.5 18.5
- 4 180.8 10.8 58.4 12.9
Series类似于一维数组,它有一组数据以及一组与之相关的数据标签(即索引)组成。
DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典。
#displaythelast5rows
data.tail()
- 只显示结果的末尾5行
- TV Radio Newspaper Sales
- 195 38.2 3.7 13.8 7.6
- 196 94.2 4.9 8.1 9.7
- 197 177.0 9.3 6.4 12.8
- 198 283.6 42.0 66.2 25.5
- 199 232.1 8.6 8.7 13.4
#checktheshapeoftheDataFrame(rows,colums)
data.shape
- 查看DataFrame的形状,注意第一列的叫索引,和数据库某个表中的第一列类似。
TV:对于一个给定市场中单一产品,用于电视上的广告费用(以千为单位)
Radio:在广播媒体上投资的广告费用
Newspaper:用于报纸媒体的广告费用
Sales:对应产品的销量
importseabornassns
importmatplotlib.pyplotasplt
#ots
sns.pairplot(data,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',size=7,aspect=0.8)
plt.show()#注意必须加上这一句,否则无法显示。
这里选择TV、Radio、Newspaper作为特征,Sales作为观测值
返回的结果:
- seaborn的pairplot函数绘制X的每一维度和对应Y的散点图。通过设置size和aspect参数来调节显示的大小和比例。可以从图中看出,TV特征和销量是有比较强的线性关系的,而Radio和Sales线性关系弱一些,Newspaper和Sales线性关系更弱。通过加入一个参数kind='reg',seaborn可以添加一条最佳拟合直线和95%的置信带。
sns.pairplot(data,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',size=7,aspect=0.8,kind='reg')
plt.show()
- 结果显示如下:
#
feature_cols=['TV','Radio','Newspaper']
#
X=data[feature_cols]
#
#X=data[['TV','Radio','Newspaper']]#只需修改这里即可<prename="code"class="python"style="font-size:15px;line-height:35px;">X=data[['TV','Radio']]#去掉newspaper其他的代码不变
- # print the first 5 rowsprint X.head()# check the type and shape of Xprint type(X)print X.shape
- 2.81843904823
- [ 0.04588771 0.18721008]
- RMSE by hand: 1.28208957507
- 然后再次使用ROC曲线来观测曲线的整体情况。我们在将Newspaper这个特征移除之后,得到RMSE变小了,说明Newspaper特征可能不适合作为预测销量的特征,于是,我们得到了新的模型。我们还可以通过不同的特征组合得到新的模型,看看最终的误差是如何的。
- 之前我提到了这种错误:
- ImportError Traceback (most recent call last)<ipython-input-182-3eee51fcba5a> in <mole>() 1 ###构造训练集和测试集----> 2 from sklearn.cross_validation import train_test_split 3 #import sklearn.cross_validation 4 X_train,X_test, y_train, y_test = train_test_split(X, y, random_state=1) 5 # default split is 75% for training and 25% for testingImportError: cannot import name train_test_split
- 这里我给出我自己写的函数:
importrandom
<spanstyle="font-family:microsoftyahei;">######自己写一个随机分配数的函数,分成两份,并将数值一次存储在对应的list中##########
deftrain_test_split(ylabel,random_state=1):
importrandom
index=random.sample(range(len(ylabel)),50*random_state)
list_train=[]
list_test=[]
i=0
forsinrange(len(ylabel)):
ifiinindex:
list_test.append(i)
else:
list_train.append(i)
i+=1
returnlist_train,list_test
###############对特征进行分割#############################
feature_cols=['TV','Radio','Newspaper']
X1=data[feature_cols]
[html]view plain
上面代码的运行结果:
上面显示的结果类似一个电子表格,这个结构称为Pandas的数据帧(data frame),类型全称:pandas.core.frame.DataFrame.
pandas的两个主要数据结构:Series和DataFrame:
[python]view plain
[html]view plain
(200,4)
3、分析数据
特征:
响应:
在这个案例中,我们通过不同的广告投入,预测产品销量。因为响应变量是一个连续的值,所以这个问题是一个回归问题。数据集一共有200个观测值,每一组观测对应一个市场的情况。
注意:这里推荐使用的是seaborn包。网上说这个包的数据可视化效果比较好看。其实seaborn也应该属于matplotlib的内部包。只是需要再次的单独安装。
[python]view plain
[html]view plain
[html]view plain
[python]view plain
直到这里整个的一次多元线性回归的预测就结束了。
6、改进特征的选择
在之前展示的数据中,我们看到Newspaper和销量之间的线性关系竟是负关系(不用惊讶,这是随机特征抽样的结果。换一批抽样的数据就可能为正了),现在我们移除这个特征,看看线性回归预测的结果的RMSE如何?
依然使用我上面的代码,但只需修改下面代码中的一句即可:
[python]view plain
最后的到的系数与测度如下:
LinearRegression(_X=True, fit_intercept=True, normalize=False)
备注:
注:上面的结果是由train_test_spilit()得到的,但是我不知道为什么我的版本的sklearn包中居然报错:
处理方法:1、我后来重新安装sklearn包。再一次调用时就没有错误了。
2、自己写函数来认为的随机构造训练集和测试集。(这个代码我会在最后附上。)
[python]view plain
[python]view plain
❾ 如何用Python进行线性回归以及误差分析
数据挖掘中的预测问题通常分为2类:回归与分类。
简单的说回归就是预测数值,而分类是给数据打上标签归类。
本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析。
本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1、2、100次方的多项式对该数据进行拟合。
拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测。
代码如下:
importmatplotlib.pyplot as plt
importnumpy as np
importscipy as sp
fromscipy.statsimportnorm
fromsklearn.pipelineimportPipeline
fromsklearn.linear_modelimportLinearRegression
fromsklearn.
fromsklearnimportlinear_model
''''' 数据生成 '''
x = np.arange(0,1,0.002)
y = norm.rvs(0, size=500, scale=0.1)
y = y + x**2
''''' 均方误差根 '''
defrmse(y_test, y):
returnsp.sqrt(sp.mean((y_test - y) **2))
''''' 与均值相比的优秀程度,介于[0~1]。0表示不如均值。1表示完美预测.这个版本的实现是参考scikit-learn官网文档 '''
defR2(y_test, y_true):
return1- ((y_test - y_true)**2).sum() / ((y_true - y_true.mean())**2).sum()
''''' 这是Conway&White《机器学习使用案例解析》里的版本 '''
defR22(y_test, y_true):
y_mean = np.array(y_true)
y_mean[:] = y_mean.mean()
return1- rmse(y_test, y_true) / rmse(y_mean, y_true)
plt.scatter(x, y, s=5)
degree = [1,2,100]
y_test = []
y_test = np.array(y_test)
fordindegree:
clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
('linear', LinearRegression(fit_intercept=False))])
clf.fit(x[:, np.newaxis], y)
y_test = clf.predict(x[:, np.newaxis])
print(clf.named_steps['linear'].coef_)
print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f'%
(rmse(y_test, y),
R2(y_test, y),
R22(y_test, y),
clf.score(x[:, np.newaxis], y)))
plt.plot(x, y_test, linewidth=2)
plt.grid()
plt.legend(['1','2','100'], loc='upper left')
plt.show()
该程序运行的显示结果如下:
[ 0. 0.75873781]
rmse=0.15, R2=0.78, R22=0.53, clf.score=0.78
[ 0. 0.35936882 0.52392172]
rmse=0.11, R2=0.87, R22=0.64, clf.score=0.87
[ 0.00000000e+00 2.63903249e-01 3.14973328e-01 2.43389461e-01
1.67075328e-01 1.10674280e-01 7.30672237e-02 4.88605804e-02
......
3.70018540e-11 2.93631291e-11 2.32992690e-11 1.84860002e-11
1.46657377e-11]
rmse=0.10, R2=0.90, R22=0.68, clf.score=0.90
❿ 如何用python实现含有虚拟自变量的回归
参考资料:
DataRobot | Ordinary Least Squares in Python
DataRoboe | Multiple Regression using Statsmodels
AnalyticsVidhya | 7 Types of Regression Techniques you should know!