python爬虫文件下载
⑴ python爬视频如果一个ts无法下载怎么解决
python爬视频如果一个ts无法下载怎么解决先在手机中找到缓存的文件,全部复制到电脑上用转换器转换即可。
1、首先打开手机QQ浏览器,找到已经下载的文件;
2、长按住已下载的文件,直到后面出现可以编辑的小图标,点击编辑;
3、打开查看该缓存文件所在目录位置,记下位置路径4、打开手机的文件夹管理器,根据刚刚的路径找到该缓存文件,点击右上角的编辑按钮,打开【显示隐藏文件打开隐藏文件夹之后就可以看到隐藏在缓存视频的中的单个文件夹,然后就会看到很多TS格式的文件6、将此隐藏文件下的每一个TS格式的文件,全部复制电脑上,新建文件夹,然后下载【狸窝全能视频转换器】,目前发现还是这个转换器比较好用,完全支持TS文件转码,添加所有TS文件到转换器中,然后开始转码,静静的等待即可;
⑵ Python3.xx中写爬虫,下载图片除了urlretrieve方法,还有什么库的什么方法呢
Part 1. urllib2
urllib2是Python标准库提供的与网络相关的库,是写爬虫最常用的一个库之一。
想要使用Python打开一个网址,最简单的操作即是:
your_url = "http://publicdomainarchive.com/"html = urllib2.urlopen(your_url).read()12
这样所获得的就是对应网址(url)的html内容了。
但有的时候这么做还不够,因为目前很多的网站都有反爬虫机制,对于这么初级的代码,是很容易分辨出来的。例如本文所要下载图片的网站http://publicdomainarchive.com/,上述代码会返回HTTPError: HTTP Error 403: Forbidden错误。
那么,在这种情况下,下载网络图片的爬虫(虽然只有几行代码,但一个也可以叫做爬虫了吧,笑),就需要进一步的伪装。
要让爬虫伪装成浏览器访问指定的网站的话,就需要加入消息头信息。所谓的消息头信息就是在浏览器向网络服务器发送请求时一并发送的请求头(Request Headers)信息和服务器返回的响应头(Response Headers)信息。
例如,使用FireFox打开http://publicdomainarchive.com/时所发送的Request Headers的部分内容如下:
Host:"publicdomainarchive.com/"User-Agent:"Mozilla/5.0 (Windows NT 10.0; WOW64; rv:50.0) Gecko/20100101 Firefox/50.0"Accept:"text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"...1234
还有一些其他属性,但其中伪装成浏览器最重要的部分已经列出来了,即User-Agent信息。
要使用Headers信息,就不能再仅仅向urlopen方法中传入一个地址了,而是需要将HTTP Request的Headers封装后传入:
headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64; rv:50.0) Gecko/20100101 Firefox/50.0'}req = urllib2.Request(url = url, headers = headers)content = urllib2.urlopen(req).read()123
这样,就获得了网站的html内容。
接下来,就需要从html去获取图片的链接。
Part 2. HTMLParser
HTMLParser是Python提供的HTML解析库之一。
但Python提供的这个类中很多方法都没有实现,因而基本上这个库只负责进行解析,但解析完了什么都不做。所以如果需要对HTML中的某些元素进行加工的话,就需要用户自己去实现其中的一些方法。本文仅实现其中的handle_starttag方法:
class MyHTMLParser(HTMLParser): #继承HTMLParser类
def __init__(self): #初始化
HTMLParser.__init__(self) def handle_starttag(self, tag, attrs):
#参数tag即由HTMLParser解析出的开始标签,attrs为该标签的属性
if tag == "img": #下载图片所需要的img标签
if len(attrs) == 0: pass
else: for (variable, value) in attrs: #在attrs中找到src属性,并确定其是我们所要下载的图片,最后将图片下载下来(这个方法当然也有其他的写法)
if variable == "src" and value[0:4] == 'http' and value.find('x') >= 0:
pic_name = value.split('/')[-1] print pic_name
down_image(value, pic_name)123456789101112131415
Part 3. 下载图片
从handle_starttag方法中,我们已经获得了图片的url,那么,最后一步,我们要下载图片了。
当然,要获得网络上的图片,自然也需要向服务器发送请求,一样需要用到urllib2这个库,也需要用到上面所用到的请求头。
以下是down_image()方法的主要代码:
binary_data = urllib2.urlopen(req).read()
temp_file = open(file_name, 'wb')
temp_file.write(binary_data)
temp_file.close()1234
因为这次打开的网址是个图片,所以urllib2.urlopen(req).read()所获取的就是图片的数据,将这些数据需要以二进制的方式写入本地的图片文件,即将图片下载下来了。
因为图片的url的最后一部分是图片的名字,所以可以直接用做本地的文件名,不用担心命名冲突,也不用担心后缀不符,很是方便。
Part 4. getFreeImages.py
这个下载图片的脚本的完整代码如下:
import urllib2,osfrom HTMLParser import HTMLParser
class MyHTMLParser(HTMLParser):
def __init__(self):
HTMLParser.__init__(self) #self.links = {}
def handle_starttag(self, tag, attrs):
#print "Encountered the beginning of a %s tag" % tag
if tag == "img": if len(attrs) == 0: pass
else: for (variable, value) in attrs: if variable == "src" and value[0:4] == 'http' and value.find('x') >= 0:
pic_name = value.split('/')[-1] print pic_name
down_image(value, pic_name)def down_image(url,file_name):
global headers
req = urllib2.Request(url = url, headers = headers)
binary_data = urllib2.urlopen(req).read()
temp_file = open(file_name, 'wb')
temp_file.write(binary_data)
temp_file.close()if __name__ == "__main__":
img_dir = "D:\\Downloads\\domain images"
if not os.path.isdir(img_dir):
os.mkdir(img_dir)
os.chdir(img_dir) print os.getcwd()
url = ""
headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64; rv:50.0) Gecko/20100101 Firefox/50.0'}
all_links = []
hp = MyHTMLParser() for i in range(1,30):
url = 'http://publicdomainarchive.com/public-domain-images/page/' + str(i) + '/'
req = urllib2.Request(url = url, headers = headers)
content = urllib2.urlopen(req).read()
hp.feed(content)
hp.close()041424344454647484950
⑶ 使用Python爬虫下载图片,得到的图片不显示
你需要检查一下你的结果,看看是否请求成功了。可能服务器返回的并不是一个图片,但是你强制给他写入到图片格式文件中了,所以没办法显示。
你可以通过输出response或者使用抓包软件来检查。
⑷ 如何用Python做爬虫
1)首先你要明白爬虫怎样工作。
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?
很简单
import Queue
initial_page = "初始化页"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example
注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...
那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)
考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)
有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...
及时更新(预测这个网页多久会更新一次)
如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。
所以,不要问怎么入门,直接上路就好了:)
⑸ python爬虫能做什么
Python是一门非常适合开发网络爬虫的编程语言,相比于其他静态编程语言,Python抓取网页文档的接口更简洁;相比于其他动态脚本语言,Python的urllib2包提供了较为完整的访问网页文档的API。此外,python中有优秀的第三方包可以高效实现网页抓取,并可用极短的代码完成网页的标签过滤功能。
Python爬虫架构组成:
1. URL管理器:管理待爬取的url集合和已爬取的url集合,传送待爬取的url给网页下载器;
2. 网页下载器:爬取url对应的网页,存储成字符串,传送给网页解析器;
3. 网页解析器:解析出有价值的数据,存储下来,同时补充url到URL管理器。
Python爬虫工作原理:
Python爬虫通过URL管理器,判断是否有待爬URL,如果有待爬URL,通过调度器进行传递给下载器,下载URL内容,并通过调度器传送给解析器,解析URL内容,并将价值数据和新URL列表通过调度器传递给应用程序,并输出价值信息的过程。
爬虫可以做什么?
你可以用爬虫爬图片,爬取视频等等你想要爬取的数据,只要你能通过浏览器访问的数据都可以通过爬虫获取。
Python爬虫常用框架有:
grab:网络爬虫框架;
scrapy:网络爬虫框架,不支持Python3;
pyspider:一个强大的爬虫系统;
cola:一个分布式爬虫框架;
portia:基于Scrapy的可视化爬虫;
restkit:Python的HTTP资源工具包。它可以让你轻松地访问HTTP资源,并围绕它建立的对象。
demiurge:基于PyQuery的爬虫微框架。
⑹ 如何用python爬取网页中隐藏的div内容
你说的隐藏的div内容,应该是动态加载的数据吧,不在网页源码中显示,只在加载网页时才请求数据进行显示,一般情况下,这种数据都保存在一个json文件中,只要抓包分析出这个json文件的url地址,然后再根据json文件结构进行解析,很快就能获取到动态加载的div数据,下面我以爬取人人贷上面的散标数据为例,简单介绍一下python如何爬芦枝取div动态加载的数据,实验环境win10+python3.6+pycharm5.0,主要步骤如下:
1.首先,打开散标数族咐据,如下,爬取的信息主要包括年利率、借款标题、期限、金额和进度这5个字段信息:
右键对应元素进行检查,可以看出所有的数据嵌套在div标签中,如下:
打开网页源码,我们按Ctrl+F查找对应的数据,会发现所查找的数据都未在网页源码中,如下,即数据都是动态加载,所以直接解析原网页是找不到div嵌套的数据的:
2.接着,我们按F12调出开发者工具,依次点击“Network”->“XHR”,F5刷新页面,就会看到动态加载的json文件,查看这个文件,内容如下,左边为json文件的url地址,右边就是我们需要爬取的div数据:
3.最后对应上面的json文件,我们就可以直接获取并解析json了,这里主要用到requests和json这2个模块,其中requests用于根据url地址获取json文件,json用于解析json文件,提取出我们所需要的信息,即div动态加载的数据,测试代码如下,非常简单:
运行程序,截图如下,已经成功爬取到div加载的数据:
至此,我们就完成了利用python爬取div动态加载的数据。总的来说,整个过程非常简单,最主要的陪穗敏还是抓包分析,只要你有一定的爬虫基础,熟悉一下上面的代码,多调试几遍程序,很快就能掌握的,当然,你也可以使用selenium进行爬取,直接解析就行,网上也有相关教程和资料可供参考,非常丰富,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言。
⑺ 请问怎么通过python爬虫获取网页中的pdf文件
首先把链接URL爬取出来,然后get流下载pdf文件,再用pdf模块来读取它。
⑻ 新手用python3写网络爬虫可是下载总不成功
这是编码格式错误,你在代码前面添加 #-*-coding:utf-8-*-
⑼ python爬虫 将在线html网页中的图片链接替换成本地链接并将html文件下载到本地
正则匹配原链接替换为本地路径即可