c语言神经网络
Ⅰ 用c语言编写RBF神经网络程序
RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。
简单说明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。BP网络就是一个典型的例子。
如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。
附件是RBF神经网络的C++源码。
Ⅱ 计算机研究生方向,具体解释一下计算机应用技术中的方向是什么
计算机应用方向是一个很宽泛的概念,里面有非常非常多的小方向,不同学校、导师的方向也不一样。一般计算机应用方向有下面几个小方向:机器学习、最优化、模式识别、计算机图形学、机器视觉与图像处理、自然语言处理、人机交互、虚拟现实……这些方向大多都需要不错的编程能力和很好的数学功底(高数、线数、概率论、离散数学)
下面是我个人了解的方向的大概介绍:
1. 机器学习这个方向现在很火,如果学的很精通,毕业后能找到很不错的工作。这个方向需要很多数学知识(微积分、线性代数、概率论),也需要一定编程能力,至少能把自己的想法实现。这个方向下面有很多子方向,比如自然语言处理、模式识别、数据挖掘等
2. 最优化这个方向是用优化算法处理现有的问题,需要数值分析和一些逻辑的知识,也需要一定编程能力。
3. 计算机图形学包括一些小方向。有些研究CAD,这个不需要编程;有些研究自然景物的模拟(比如水流、头发、火焰),需要微积分、线性代数的知识,有时会用到流体力学的公式,这个方向需要熟悉一些图形接口(openGL、D3D)。
4. 图像处理这个方向需要一些信号处理方面的知识。
5. 剩下的还有比如人机交互、虚拟现实、机器视觉等,都是一些交叉的方向,设计一些方法解决现有的问题
如果具体还有什么问题,可以追问。
Ⅲ 人工智能需要什么基础
人工智能(AI)基础:
1、核心三要素——算力、算法、数据(三大基石):
算法、算力、数据作为人工智能(AI)核心三要素,相互影响,相互支撑,在不同行业中形成了不一样的产业形态。随着算法的创新、算力的增强、数据资源的累积,传统基础设施将借此东风实现智能化升级,并有望推动经济发展全要素的智能化革新。让人类社会从信息化进入智能化。
1)算力:
在AI技术当中,算力是算法和数据的基础设施,支撑着算法和数据,进而影响着AI的发展,算力的大小代表着对数据处理能力的强弱。
(2)算法:
算法是AI的背后“推手”。
AI算法是数据驱动型算法,是AI的推动力量。
(3)数据:
在AI技术当中,数据相当于AI算法的“饲料”。
机器学习中的监督学习和半监督学习都要用标注好的数据进行训练,由此催生了大量数据标注公司,它们将处于未经处理的初级数据,转换为机器可识别信息。只有经过大量的训练,覆盖尽可能多的各种场景才能得到一个良好的模型。
2、技术基础:
(1)文艺复兴后的人工神经网络。
人工神经网络是一种仿造神经元运作的函数演算,能接受外界资讯输入的刺激,且根据不同刺激影响的权重转换成输出的反应,或用以改变内部函数的权重结构,以适应不同环境的数学模型。
(2)靠巨量数据运作的机器学习。
科学家发现,要让机器有智慧,并不一定要真正赋予它思辩能力,可以大量阅读、储存资料并具有分辨的能力,就足以帮助人类工作。
(3)人工智能的重要应用:自然语言处理。
自然语言处理的研究,是要让机器“理解”人类的语言,是人工智能领域里的其中一项重要分支。
自然语言处理可先简单理解分为进、出计算机等两种:
其一是从人类到电脑──让电脑把人类的语言转换成程式可以处理的型式;
其二是从电脑回馈到人──把电脑所演算的成果转换成人类可以理解的语言表达出来。
Ⅳ 数学建模需要掌握哪些编程语言和技术
数学建模应当掌握的十类算法及所需编程语言:
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)。
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)。
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现)。
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)。
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)。
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)。
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。