当前位置:首页 » 编程语言 » 提高sql查询速度

提高sql查询速度

发布时间: 2023-05-10 23:12:11

A. 如何提高sql查询速度

1
你老师说的对,建立索引是可以提高查询速度的。你插入了百万条数据,可以测试。如果在C字段上建立索引,那以该字段为查询条件,在建立后查询和删除索引后查询比较一下就知道了。
2
关于视图。是提高不了查询速度的,因为视图对应一个SQL语句,它只是存起来而已,最后需要进行视图消解才能进行查询,它和直接执行相应的语句是一样的,理论上还要慢一点。
3
关于存储过程,弄好了是可以提高查询效率的,因为存储过程会把一段查询,也就是SQL语句进行贤编译,然后将编译后的代码存在于服务器上,在用户查询时节省了SQL的编译时间,所以加快了查询速度。

B. 如何解决SQL查询速度太慢

1. 执行计划中明明有使用到索引,为什么执行还是这么慢?

2. 执行计划中显示扫描行数为 644,为什么 slow log 中显示 100 多万行?
a. 我们先看执行计划,选择的索引 “INDX_BIOM_ELOCK_TASK3(TASK_ID)”。结合 sql 来看,因为有 "ORDER BY TASK_ID DESC" 子句,排序通常很慢,如果使用了文件排序性能会更差,优化器选择这个索引避免了排序。
那为什么不选 possible_keys:INDX_BIOM_ELOCK_TASK 呢?原因也很简单,TASK_DATE 字段区分度太低了,走这个索引需要扫描的行数很大,而且还要进行额外的排序,优化器综合判断代价更大,所以就不选这个索引了。不过如果我们强制选择这个索引(用 force index 语法),会看到 SQL 执行速度更快少于 10s,那是因为优化器基于代价的原则并不等价于执行速度的快慢;
b. 再看执行计划中的 type:index,"index" 代表 “全索引扫描”,其实和全表扫描差不多,只是扫描的时候是按照索引次序进行而不是行,主要优点就是避免了排序,但是开销仍然非常大。
Extra:Using where 也意味着扫描完索引后还需要回表进行筛选。一般来说,得保证 type 至少达到 range 级别,最好能达到 ref。
在第 2 点中提到的“慢日志记录Rows_examined: 1161559,看起来是全表扫描”,这里更正为“全索引扫描”,扫描行数确实等于表的行数;
c. 关于执行计划中:“rows:644”,其实这个只是估算值,并不准确,我们分析慢 SQL 时判断准确的扫描行数应该以 slow log 中的 Rows_examined 为准。
4. 优化建议:添加组合索引 IDX_REL_DEVID_TASK_ID(REL_DEVID,TASK_ID)

优化过程:
TASK_DATE 字段存在索引,但是选择度很低,优化器不会走这个索引,建议后续可以删除这个索引:
select count(*),count(distinct TASK_DATE) from T_BIOMA_ELOCK_TASK;+------------+---------------------------+| count(*) | count(distinct TASK_DATE) |+------------+---------------------------+| 1161559 | 223 |+------------+---------------------------+

在这个 sql 中 REL_DEVID 字段从命名上看选择度较高,通过下面 sql 来检验确实如此:
select count(*),count(distinct REL_DEVID) from T_BIOMA_ELOCK_TASK;+----------+---------------------------+| count(*) | count(distinct REL_DEVID) |+----------+---------------------------+| 1161559 | 62235 |+----------+---------------------------+

由于有排序,所以得把 task_id 也加入到新建的索引中,REL_DEVID,task_id 组合选择度 100%:
select count(*),count(distinct REL_DEVID,task_id) from T_BIOMA_ELOCK_TASK;+----------+-----------------------------------+| count(*) | count(distinct REL_DEVID,task_id) |+----------+-----------------------------------+| 1161559 | 1161559 |+----------+-----------------------------------+

在测试环境添加 REL_DEVID,TASK_ID 组合索引,测试 sql 性能:alter table T_BIOMA_ELOCK_TASK add index idx_REL_DEVID_TASK_ID(REL_DEVID,TASK_ID);
添加索引后执行计划:
这里还要注意一点“隐式转换”:REL_DEVID 字段数据类型为 varchar,需要在 sql 中加引号:AND T.REL_DEVID = 000000025xxx >> AND T.REL_DEVID = '000000025xxx'

执行时间从 10s+ 降到 毫秒级别:
1 row in set (0.00 sec)
结论
一个典型的 order by 查询的优化,添加更合适的索引可以避免性能问题:执行计划使用索引并不意味着就能执行快。

C. 如何提高sql数据库的查询速度

这是一个典型问题,在网上搜一下就行了。给你搜了一个粘过来看看
1.索引优化
建索引的选择必须结合SQL查询、修改、删除语句的需要,一般的说法是在WHERE里经常出现的字段建索引。如果在WHERE经常是几个字段一起出现而且是用AND连接的,那就应该建这几个字段一起的联合索引,而且次序也需要考虑,一般是最常出现的放前面,重复率低的放前面。
SQL Server提供了一种简化并自动维护数据库的工具。这个称之为数据库维护计划向导(Database Maintenance Plan Wizard ,DMPW)的工具也包括了对索引的优化。如果你运行这个向导,你会看到关于数据库中关于索引的统计量,这些统计量作为日志工作并定时更新,这样就减轻了手工重建索引或者DBCC INDEXDEFRAG所带来的工作量。如果你不想自动定期刷新索引统计量,你还可以在DMPW中选择重新组织数据和数据页,这将停止旧有索引并按特定的填充因子重建索引。
2.
改善硬件(双CPU,Raid 5,增加内存)
tempdb这个临时数据库,它对性能的影响较大。tempdb和其他数据库一样可以增大,可以缩小。当数据文件需要增长的时候,通常不能保持剩余部分的连续性。这时文件就会产生碎片,这种碎片会造成性能下降。这种碎片属于外来性碎片。要阻止在tempdb中产生外来性碎片,必须保证有足够的硬盘空间。一般将tempdb的容量放到平均使用容量。而你也应该允许tempdb自动增长,比如你有个一个超大的join操作,它建立了一个超过tempdb容量的时候,该查询将失败。你还要设置一个合理的单位增长量。因为如果你设得太小,将会产生许多外来性碎片,反而会占用更多资源。sqlserver调优最有效的做法之一,就是把争夺资源的操作独立出去。tempdb就是一个需要独立出去的部分而tempdb和其他系统库一样是公用的,是存取最可能频繁的库,所有处理临时表、子查询、GROUP BY、排序、DISTINCT、连接等等。它最适合放到一个具有快速读写能力的设备上。比如RAID0卷或RAID0+1卷上。
查询语句一定要使用存储过程;
3、查询尽量使用TOP子句
4.将表按一定的约束分成子表,(如按分类)创建约束,在用Like 时,先用分类 and like , 应该可能解决问题. 而且效果立秆见影!(你要确定SQL会认识你建的分区视图).我一个表有上百万的记录(700兆),用分区视图后,查询速度基本跟10万行一样.
如果还是太慢,还可以考滤分布式分区视图!这总可以解决问题了吧!
关键在于你能否把大表按某种约束分解成子表.

D. 怎样提升SQL语句的查询速度

1.选择最有效率的表名顺序。ORACLE的解析器按照从右到左的顺序处理FROM子句中的表名,因此FROM子句中写在最后的表(基础表 driving table)将被最先处理. 在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表。
2.WHERE子句中的连接顺序。ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。
3.SELECT子句中尽量避免使用 ‘* ’。
4.使用DECODE函数来减少处理时间。
5.查询结果能不排序就不排序。尽量不用Order by,distinct,union,MINUS,INTERSECT。
6.用表连接代替子查询in。
7.用索引提高查询效率。但是索引不能随便用,还要搞清楚每种索引适用的情况,比如B*索引、复合索引、函数索引、bitmap索引等。虽然使用索引能得到查询效率的提高,但是也必须注意到它的代价. 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出几 次的磁盘I/O,因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢。
8.不能再索引列上适用not、<>、is null、not is null、做四则运算,否则索引会被抑制,不起作用,变成全表扫描。
9.用>=替代>。比如SELECT * FROM S WHERE ID>=4效率SELECT * FROM S WHERE ID>3高。两者的区别在于, 前者DBMS将直接跳到第一个ID等于4的记录,而后者将首先定位到ID=3的记录并且向前扫描到第一个DEPT大于3的记录。
10.如果表的数据量很大,可以为该表建分区。经常使用的子查询可以建成视图。
.
.
.
.
.
.
.
.

E. 如何提高SQL语句的查询效率

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like '%abc%'
若要提高效率,可以考虑全文检索。
7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc' // oracle总有的是substr函数。
select id from t where datediff(day,createdate,'2005-11-30')=0 //查过了确实没有datediff函数。
应改为:
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1' //
oracle 中时间应该把char 转换成 date 如: createdate >= to_date('2005-11-30','yyyy-mm-dd')
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...)
13.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29.尽量避免大事务操作,提高系统并发能力。
30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

F. 如何提高SQL查询速度

索引对数据库检索优化时很重要的一个概念聚集索引在SQL中是唯一的也就是说聚集索引时一个很宝贵的资源但是SQL SERVER在自动分配索引的时候默认总是将ID主键分配为聚集索引其实是很浪费的通常情况下你可以通过语句创建聚集索引到你使用率最高的条件字段上面去,当然你必须先分配聚集索引然后再去分配主键,否则主键创建时就会自动占用聚集索引然后非聚集索引不能设置过滥,设置过滥会导致目录增多最后反而导致查询缓慢优化不是纯粹理论上的东西,理论教会你怎么去使用尝试才能获取经验

G. 怎样提高SQL查询效率

1. SQL优化的原则是:将一次操作需要读取的BLOCK数减到最低,即在最短的时间达到最大的数据吞吐量。
调整不良SQL通常可以从以下几点切入:
? 检查不良的SQL,考虑其写法是否还有可优化内容
? 检查子查询 考虑SQL子查询是否可以用简单连接的方式进行重新书写
? 检查优化索引的使用
? 考虑数据库的优化器

2. 避免出现SELECT * FROM table 语句,要明确查出的字段。

3. 在一个SQL语句中,如果一个where条件过滤的数据库记录越多,定位越准确,则该where条件越应该前移。

4. 查询时尽可能使用索引覆盖。即对SELECT的字段建立复合索引,这样查询时只进行索引扫描,不读取数据块。

5. 在判断有无符合条件的记录时建议不要用SELECT COUNT (*)和select top 1 语句。

6. 使用内层限定原则,在拼写SQL语句时,将查询条件分解、分类,并尽量在SQL语句的最里层进行限定,以减少数据的处理量。

7. 应绝对避免在order by子句中使用表达式。

8. 如果需要从关联表读数据,关联的表一般不要超过7个。

9. 小心使用 IN 和 OR,需要注意In集合中的数据量。建议集合中的数据不超过200个。

10. <> 用 < 、 > 代替,>用>=代替,<用<=代替,这样可以有效的利用索引。

11. 在查询时尽量减少对多余数据的读取包括多余的列与多余的行。

12. 对于复合索引要注意,例如在建立复合索引时列的顺序是F1,F2,F3,则在where或order by子句中这些字段出现的顺序要与建立索引时的字段顺序一致,且必须包含第一列。只能是F1或F1,F2或F1,F2,F3。否则不会用到该索引。

13. 多表关联查询时,写法必须遵循以下原则,这样做有利于建立索引,提高查询效率。格式如下select sum(table1.je) from table1 table1, table2 table2, table3 table3 where (table1的等值条件(=)) and (table1的非等值条件) and (table2与table1的关联条件) and (table2的等值条件) and (table2的非等值条件) and (table3与table2的关联条件) and (table3的等值条件) and (table3的非等值条件)。
注:关于多表查询时from 后面表的出现顺序对效率的影响还有待研究。

14. 子查询问题。对于能用连接方式或者视图方式实现的功能,不要用子查询。例如:select name from customer where customer_id in ( select customer_id from order where money>1000)。应该用如下语句代替:select name from customer inner join order on customer.customer_id=order.customer_id where order.money>100。

15. 在WHERE 子句中,避免对列的四则运算,特别是where 条件的左边,严禁使用运算与函数对列进行处理。比如有些地方 substring 可以用like代替。

16. 如果在语句中有not in(in)操作,应考虑用not exists(exists)来重写,最好的办法是使用外连接实现。

17. 对一个业务过程的处理,应该使事物的开始与结束之间的时间间隔越短越好,原则上做到数据库的读操作在前面完成,数据库写操作在后面完成,避免交叉。

18. 请小心不要对过多的列使用列函数和order by,group by等,谨慎使用disti软件开发t。

19. 用union all 代替 union,数据库执行union操作,首先先分别执行union两端的查询,将其放在临时表中,然后在对其进行排序,过滤重复的记录。
当已知的业务逻辑决定query A和query B中不会有重复记录时,应该用union all代替union,以提高查询效率。

热点内容
数据库的根本目标 发布:2025-07-18 21:37:50 浏览:937
压缩机的流速 发布:2025-07-18 21:37:40 浏览:406
三星怎么取消手机密码 发布:2025-07-18 21:33:50 浏览:629
安卓手机耳机如何弹窗显示电量 发布:2025-07-18 21:20:53 浏览:59
云服务器搭建需要什么工具 发布:2025-07-18 20:51:08 浏览:322
如何提高手机缓存速度 发布:2025-07-18 20:24:48 浏览:237
vba读取数据库数据 发布:2025-07-18 20:24:48 浏览:608
shell解压zip 发布:2025-07-18 20:20:36 浏览:861
安卓泰拉瑞亚去哪里买 发布:2025-07-18 20:01:05 浏览:694
flash编译器 发布:2025-07-18 19:49:38 浏览:487