当前位置:首页 » 编程语言 » pythonmap遍历

pythonmap遍历

发布时间: 2023-05-12 09:36:07

python如何遍历文件夹然后生成md5

importos,hashlib

defgetlistdir(path):
try:#如果path是一个文件的完整名称,os.listdir会抛出错误
fl=os.listdir(path)
exceptExceptionase:
fl=[]
finally:
returnfl

defgetallfile(path):
allfile=[]
fl=getlistdir(path)
iflen(fl)!=0:
fl=list(map(lambdax:path+'\'+x,fl))
allfile=allfile+fl
forfinfl:
allfile=allfile+getallfile(f)
returnallfile

defmakemd5(stri):
md5=hashlib.md5()
md5.update(stri.encode('utf-8'))
returnmd5.hexdigest()

defmain():
myfilelist=getallfile('.')#获取当前文件'.'中的所有文件和文件夹名list
myfilestr='|'.join(myfilelist)#文件list转换为以'|'分隔的字符串
print(myfilestr)#显示要进行md5摘要加密的字符
print("md5=",makemd5(myfilestr))#计算并显示md5码

main()

Ⅱ python中使用map()和直接使用list()有啥不一样啊

python2 区别不大,python3 map() 返回的是迭代器。

Ⅲ Python元组数据成对,如何读取其中一个数据

python tuple是重要的数据格式

下面用代码的形式给你列出用法

#不可变序列-----元组tuple
#元组和列表十分相似,元组和字符串一样都是不可变的。
#元组由不同的元素组成,每个元素可以存储不同类型的数据,例如
#字符串、数字和元组
#元组通常代表一行数据,而元组中的元素则代表不同的数据项
#创建元组,不定长,但一旦创建后则不能修改长度
#空元组
tuple_name=()
#如果创建的元组只有一个元素,那么该元素后面的逗号是不可忽略的
>>>(4)
4
>>>user=('01','02','03','04')

#添加元组
user=(user,'05')
==>(('01','02','03','04'),'05')

#去重
>>>set((2,2,2,4,4))
set([2,4])

#访问元组
user[0]

#不可修改元素
>>>user=(1,2,3)
>>>user[0]=2
Traceback(mostrecentcalllast):
File"<pyshell#5>",line1,in<mole>
user[0]=2
TypeError:'tuple'

#访问二元元组
user1=(1,2,3)
user2=(4,5,6)
user=(user1,user2)
==>((1,2,3),(4,5,6))
printuser[0][0]

#解包
user=(1,2,3)
a,b,c=user
a=1,b=2,c=3

#元组的遍历
#range([start],stop,[,step])返回一个递增后者递减的数字列表
foriteminrange(len(user)):
printuser[item]

#二元元组的访问
foriinrange(len(user)):
forjinrange(len(user)):
print'user['+str(i)+']['+str(j)+']=',user[i][j]

#使用map()实现遍历
#map(function_name,sequence[,sequence...])

#返回function处理后的列表
#sequence元组或列表
foriteminmap(None,user):
foriinitem:
printi

Ⅳ 如何用python遍历一个 object数组

本教程从一个基本面说明了远程控制技术的编程环节,可能大家比较感兴趣的是查看install.cpp里面的InstallService()方法,首先遍历HKEY_LOCAL_MACHINE\\

Ⅳ python分析奥巴马资金来源

奥巴马的竞选资金是一点点从选民那里募集来的。如获党内提名,可得政府拔款,但也没多饥码少。美国大选不仅禁外国人捐款,而且禁止公司机构捐款,而只允许个人捐款。不仅如此,还为个人捐款限制了上限,防止富人捐过多的款而影响未来的公旦姿平执政。
不仅富人自己不能多捐,如果某个老板呼吁自己的员工给某人捐钱或投票支持他烂迟哪,都是犯法的。因此,想要筹到几千万竞争资金,唯一的办法是争取更多选民支持,一点点募集。所以,中国、公司、大笔捐款,这三条都是犯法的。
我记得以前已经有华人闹过这种丑闻了。美国的选举法就是要严防少数人企图用几个臭钱影响美国的政治。所以我们作为外国人就更别去自讨没趣了。

导入包

In [1]:
import numpy as npimport pandas as pdfrom pandas import Series,DataFrame

方便大家操作,将月份和参选人以及所在政党进行定义

In [2]:
months = {'JAN' : 1, 'FEB' : 2, 'MAR' : 3, 'APR' : 4, 'MAY' : 5, 'JUN' : 6, 'JUL' : 7, 'AUG' : 8, 'SEP' : 9, 'OCT': 10, 'NOV': 11, 'DEC' : 12}of_interest = ['Obama, Barack', 'Romney, Mitt', 'Santorum, Rick', 'Paul, Ron', 'Gingrich, Newt']parties = { 'Bachmann, Michelle': 'Republican', 'Romney, Mitt': 'Republican', 'Obama, Barack': 'Democrat', "Roemer, Charles E. 'Buddy' III": 'Reform', 'Pawlenty, Timothy': 'Republican', 'Johnson, Gary Earl': 'Libertarian', 'Paul, Ron': 'Republican', 'Santorum, Rick': 'Republican', 'Cain, Herman': 'Republican', 'Gingrich, Newt': 'Republican', 'McCotter, Thaddeus G': 'Republican', 'Huntsman, Jon': 'Republican', 'Perry, Rick': 'Republican' }

读取文件

In [3]:
table = pd.read_csv('data/usa_election.txt')table.head()

C:\jupyter\lib\site-packages\IPython\core\interactiveshell.py:2785: DtypeWarning: Columns (6) have mixed types. Specify dtype option on import or set low_memory=False. interactivity=interactivity, compiler=compiler, result=result)
Out[3]:
cmte_id cand_id cand_nm contbr_nm contbr_city contbr_st contbr_zip contbr_employer contbr_occupation contb_receipt_amt contb_receipt_dt receipt_desc memo_cd memo_text form_tp file_num
0 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 250.0 20-JUN-11 NaN NaN NaN SA17A 736166
1 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 50.0 23-JUN-11 NaN NaN NaN SA17A 736166
2 C00410118 P20002978 Bachmann, Michelle SMITH, LANIER LANETT AL 3.68633e 08 INFORMATION REQUESTED INFORMATION REQUESTED 250.0 05-JUL-11 NaN NaN NaN SA17A 749073
3 C00410118 P20002978 Bachmann, Michelle BLEVINS, DARONDA PIGGOTT AR 7.24548e 08 NONE RETIRED 250.0 01-AUG-11 NaN NaN NaN SA17A 749073
4 C00410118 P20002978 Bachmann, Michelle WARDENBURG, HAROLD HOT SPRINGS NATION AR 7.19016e 08 NONE RETIRED 300.0 20-JUN-11 NaN NaN NaN SA17A 736166
In [8]:
#使用map函数 字典,新建一列各个候选人所在党派partytable['party'] = table['cand_nm'].map(parties)table.head()
Out[8]:
cmte_id cand_id cand_nm contbr_nm contbr_city contbr_st contbr_zip contbr_employer contbr_occupation contb_receipt_amt contb_receipt_dt receipt_desc memo_cd memo_text form_tp file_num party
0 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 250.0 20-JUN-11 NaN NaN NaN SA17A 736166 Republican
1 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 50.0 23-JUN-11 NaN NaN NaN SA17A 736166 Republican
2 C00410118 P20002978 Bachmann, Michelle SMITH, LANIER LANETT AL 3.68633e 08 INFORMATION REQUESTED INFORMATION REQUESTED 250.0 05-JUL-11 NaN NaN NaN SA17A 749073 Republican
3 C00410118 P20002978 Bachmann, Michelle BLEVINS, DARONDA PIGGOTT AR 7.24548e 08 NONE RETIRED 250.0 01-AUG-11 NaN NaN NaN SA17A 749073 Republican
4 C00410118 P20002978 Bachmann, Michelle WARDENBURG, HAROLD HOT SPRINGS NATION AR 7.19016e 08 NONE RETIRED 300.0 20-JUN-11 NaN NaN NaN SA17A 736166 Republican
In [10]:
#party这一列中有哪些元素table['party'].unique()
Out[10]:
array(['Republican', 'Democrat', 'Reform', 'Libertarian'], dtype=object)
In [ ]:
#使用value_counts()函数,统计party列中各个元素出现次数,value_counts()是Series中的,无参,返回一个带有每个元素出现次数的Series
In [11]:
table['party'].value_counts()
Out[11]:
Democrat 292400Republican 237575Reform 5364Libertarian 702Name: party, dtype: int64
In [12]:
#使用groupby()函数,查看各个党派收到的政治献金总数contb_receipt_amttable.groupby(by='party')['contb_receipt_amt'].sum()
Out[12]:
partyDemocrat 8.105758e 07Libertarian 4.132769e 05Reform 3.390338e 05Republican 1.192255e 08Name: contb_receipt_amt, dtype: float64
In [13]:
#查看具体每天各个党派收到的政治献金总数contb_receipt_amt 。使用groupby([多个分组参数])table.groupby(by=['party','contb_receipt_dt'])['contb_receipt_amt'].sum()
Out[13]:
party contb_receipt_dtDemocrat 01-AUG-11 175281.00 01-DEC-11 651532.82 01-JAN-12 58098.80 01-JUL-11 165961.00 01-JUN-11 145459.00 01-MAY-11 82644.00 01-NOV-11 122529.87 01-OCT-11 148977.00 01-SEP-11 403297.62 02-AUG-11 164510.11 02-DEC-11 216056.96 02-JAN-12 89743.60 02-JUL-11 17105.00 02-JUN-11 422453.00 02-MAY-11 396675.00 02-NOV-11 147183.81 02-OCT-11 62605.62 02-SEP-11 137948.41 03-AUG-11 147053.02 03-DEC-11 81304.02 03-JAN-12 87406.97 03-JUL-11 5982.00 03-JUN-11 320176.20 03-MAY-11 261819.11 03-NOV-11 119304.56 03-OCT-11 363061.02 03-SEP-11 45598.00 04-APR-11 640235.12 04-AUG-11 598784.23 04-DEC-11 72795.10 ... Republican 29-AUG-11 941769.23 29-DEC-11 428501.42 29-JAN-11 750.00 29-JAN-12 75220.02 29-JUL-11 233423.35 29-JUN-11 1340704.29 29-MAR-11 38875.00 29-MAY-11 8363.20 29-NOV-11 407322.64 29-OCT-11 81924.01 29-SEP-11 1612794.52 30-APR-11 43004.80 30-AUG-11 915548.58 30-DEC-11 492470.45 30-JAN-12 255204.80 30-JUL-11 12249.04 30-JUN-11 2744932.63 30-MAR-11 50240.00 30-MAY-11 17803.60 30-NOV-11 809014.83 30-OCT-11 43913.16 30-SEP-11 4886331.76 31-AUG-11 1017735.02 31-DEC-11 1094376.72 31-JAN-11 6000.00 31-JAN-12 869890.41 31-JUL-11 12781.02 31-MAR-11 62475.00 31-MAY-11 301339.80 31-OCT-11 734601.83Name: contb_receipt_amt, Length: 1183, dtype: float64
In [14]:
def trasform_date(d): day,month,year = d.split('-') month = months[month] return "20" year '-' str(month) '-' day
In [17]:
#将表中日期格式转换为'yyyy-mm-dd'。日期格式,通过函数加map方式进行转换table['contb_receipt_dt'] = table['contb_receipt_dt'].apply(trasform_date)
In [18]:
table.head()
Out[18]:
cmte_id cand_id cand_nm contbr_nm contbr_city contbr_st contbr_zip contbr_employer contbr_occupation contb_receipt_amt contb_receipt_dt receipt_desc memo_cd memo_text form_tp file_num party
0 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 250.0 2011-6-20 NaN NaN NaN SA17A 736166 Republican
1 C00410118 P20002978 Bachmann, Michelle HARVEY, WILLIAM MOBILE AL 3.6601e 08 RETIRED RETIRED 50.0 2011-6-23 NaN NaN NaN SA17A 736166 Republican
2 C00410118 P20002978 Bachmann, Michelle SMITH, LANIER LANETT AL 3.68633e 08 INFORMATION REQUESTED INFORMATION REQUESTED 250.0 2011-7-05 NaN NaN NaN SA17A 749073 Republican
3 C00410118 P20002978 Bachmann, Michelle BLEVINS, DARONDA PIGGOTT AR 7.24548e 08 NONE RETIRED 250.0 2011-8-01 NaN NaN NaN SA17A 749073 Republican
4 C00410118 P20002978 Bachmann, Michelle WARDENBURG, HAROLD HOT SPRINGS NATION AR 7.19016e 08 NONE RETIRED 300.0 2011-6-20 NaN NaN NaN SA17A 736166 Republican
In [19]:
#查看老兵(捐献者职业)DISABLED VETERAN主要支持谁 :查看老兵们捐赠给谁的钱最多table['contbr_occupation'] == 'DISABLED VETERAN'
Out[19]:
0 False1 False2 False3 False4 False5 False6 False7 False8 False9 False10 False11 False12 False13 False14 False15 False16 False17 False18 False19 False20 False21 False22 False23 False24 False25 False26 False27 False28 False29 False ... 536011 False536012 False536013 False536014 False536015 False536016 False536017 False536018 False536019 False536020 False536021 False536022 False536023 False536024 False536025 False536026 False536027 False536028 False536029 False536030 False536031 False536032 False536033 False536034 False536035 False536036 False536037 False536038 False536039 False536040 FalseName: contbr_occupation, Length: 536041, dtype: bool
In [21]:
old_bing_df = table.loc[table['contbr_occupation'] == 'DISABLED VETERAN']
In [22]:
old_bing_df.groupby(by='cand_nm')['contb_receipt_amt'].sum()
Out[22]:
cand_nmCain, Herman 300.00Obama, Barack 4205.00Paul, Ron 2425.49Santorum, Rick 250.00Name: contb_receipt_amt, dtype: float64
In [23]:
table['contb_receipt_amt'].max()
Out[23]:
1944042.43
In [24]:
#找出候选人的捐赠者中,捐赠金额最大的人的职业以及捐献额 .通过query("查询条件来查找捐献人职业")table.query('contb_receipt_amt == 1944042.43')
Out[24]:
cmte_id cand_id cand_nm contbr_nm contbr_city contbr_st contbr_zip contbr_employer contbr_occupation contb_receipt_amt contb_receipt_dt receipt_desc memo_cd memo_text form_tp file_num party
176127 C00431445 P80003338 Obama, Barack OBAMA VICTORY FUND 2012 - UNITEMIZED CHICAGO IL 60680 NaN NaN 1944042.43 2011-12-31 NaN X * SA18 763233 Democrat
来源:https://www.icode9.com/content-1-497751.html

Ⅵ Python多线程总结

在实际处理数据时,因系统内存有限,我们不可能一次把所有数据都导出进行操作,所以需要批量导出依次操作。为了加快运行,我们会采用多线程的方法进行数据处理, 以下为我总结的多线程批量处理数据的模板:

主要分为三大部分:


共分4部分对多线程的内容进行总结。

先为大家介绍线程的相关概念:

在飞车程序中,如果没有多线程,我们就不能一边听歌一边玩飞车,听歌与玩 游戏 不能并行;在使用多线程后,我们就可以在玩 游戏 的同时听背景音乐。在这个例子中启动飞车程序就是一个进程,玩 游戏 和听音乐是两个线程。

Python 提供了 threading 模块来实现多线程:

因为新建线程系统需要分配资源、终止线程系统需要回收资源,所以如果可以重用线程,则可以减去新建/终止的开销以提升性能。同时,使用线程池的语法比自己新建线程执行线程更加简洁。

Python 为我们提供了 ThreadPoolExecutor 来实现线程池,此线程池默认子线程守护。它的适应场景为突发性大量请求或需要大量线程完成任务,但实际任务处理时间较短。

其中 max_workers 为线程池中的线程个数,常用的遍历方法有 map 和 submit+as_completed 。根据业务场景的不同,若我们需要输出结果按遍历顺序返回,我们就用 map 方法,若想谁先完成就返回谁,我们就用 submit+as_complete 方法。

我们把一个时间段内只允许一个线程使用的资源称为临界资源,对临界资源的访问,必须互斥的进行。互斥,也称间接制约关系。线程互斥指当一个线程访问某临界资源时,另一个想要访问该临界资源的线程必须等待。当前访问临界资源的线程访问结束,释放该资源之后,另一个线程才能去访问临界资源。锁的功能就是实现线程互斥。

我把线程互斥比作厕所包间上大号的过程,因为包间里只有一个坑,所以只允许一个人进行大号。当第一个人要上厕所时,会将门上上锁,这时如果第二个人也想大号,那就必须等第一个人上完,将锁解开后才能进行,在这期间第二个人就只能在门外等着。这个过程与代码中使用锁的原理如出一辙,这里的坑就是临界资源。 Python 的 threading 模块引入了锁。 threading 模块提供了 Lock 类,它有如下方法加锁和释放锁:

我们会发现这个程序只会打印“第一道锁”,而且程序既没有终止,也没有继续运行。这是因为 Lock 锁在同一线程内第一次加锁之后还没有释放时,就进行了第二次 acquire 请求,导致无法执行 release ,所以锁永远无法释放,这就是死锁。如果我们使用 RLock 就能正常运行,不会发生死锁的状态。

在主线程中定义 Lock 锁,然后上锁,再创建一个子 线程t 运行 main 函数释放锁,结果正常输出,说明主线程上的锁,可由子线程解锁。

如果把上面的锁改为 RLock 则报错。在实际中设计程序时,我们会将每个功能分别封装成一个函数,每个函数中都可能会有临界区域,所以就需要用到 RLock 。

一句话总结就是 Lock 不能套娃, RLock 可以套娃; Lock 可以由其他线程中的锁进行操作, RLock 只能由本线程进行操作。

Ⅶ python中map(lambda x: x % mydict, mylist)是什么意思

我估计你的 mylist 是一个list,里面存的是格式化字符串,而 mydict 则是一个记录格式化字符串中所需要用到的参数信息,比如类似于下面的代码


mylist=["mynameis%(name)s","andmyageis%(age)d"]
mydict={'name':'Tom','age':13}

result=map(lambdax:x%mydict,mylist)
forsinresult:
prints


就可以得到下面的打印


my name is Tom

and my age is 13


另外一种可能,就是 mylist 里存的是整数,而 mydict 是一个整数,这样了话,map语句是将 mylist 里每一个整数对 mydict 进行取余操作,这个有点不太合理,没必要对一个整数命名成 mydict。

Ⅷ python编程编写循环的技巧

编写循环的技巧,for循环包含了常见的计数器式循环。由于通常for循环比while循环更容易写盯凯,也执行得更快,所以for循环一般是你遍历序列或其他可迭代对象时的首选。事实上,作为一条通用法则,你应该克制在Python中使用计数方式的诱惑——Python提供的迭代工具,能帮你把像C这样低级语言中循环集合体的工作自动化。不过,有些情况下你还是需要以更为特定的方式进行迭代。例如,如果你需要在列表中每隔一个元素或每隔两个元素进行访问,或是要同时修改列表呢?如果在同一个for循环内,并行遍历一个以上的序列呢?如果你也需要进行索引呢?
你总是可以用while循环和手动索引运算来编写这些独特的循环,但是python提供了一套内置函数,可以帮你在for循环内定制迭代:·内置函数range (Python 0.X及之后版本可用)返回一系列连续增加的整数,可作为for中的索引。内置函数zip (Python 2.0及之后版本可用)返回一系列并行元素的元组,可用于在for中内遍历多个序列。内置函数enumerate (Python 2.3及之后版本可用)同时生成可迭代对象中元素的值和索引,因而我们不必再手动计数。内置函数map (Python 1.0及之后版本可用)在Python 2.X中与zip有着哗则枝相似的效果,但是在3.X中 map 的这一角色被移除了。因为for循环可能会比基于while的计数器循环运行得更快,所以借助这些工具并尽可能地使用for循环,会让你受益匪浅。让我们在常见的使用场景乱敏下,依次看一看这些内置函数吧。我们将会看到,它们的用法在Python 2.X和3.X中稍有不同,同时它们中的一些要比其他的更加有效。

Ⅸ Python使用遍历循环for输出2~500之间的所有素数,每个素数之间用跳格键分开 急!

##python算法题:输出2~100之间的素数

i=2

j=2

##除了1和其本身,其他都不能整除

for j in range(2,101):

for i in range(2,j):

if j%i==0:

break;

elif (j-1)==i:

print ('{}是素数'.format(j))

例如:

k = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]

for i in range(100, 998):

if (i % 10 + i % 100 // 10) % 10 == (i // 100):

for m in k:

if i % m == 0:

break

if m ==31:

print(i)

(9)pythonmap遍历扩展阅读:

Python在执行时,首先会将.py文件中的源代码编译成Python的byte code(字节码),然后再由Python Virtual Machine(Python虚拟机)来执行这些编译好的byte code。这种机制的基本思想跟Java,NET是一致的。

Python Virtual Machine与Java或.NET的Virtual Machine不同的是,Python的Virtual Machine是一种更高级的Virtual Machine。这里的高级并不是通常意义上的高级,不是说Python的Virtual Machine比Java或.NET的功能更强大,而是说和Java 或.NET相比,Python的Virtual Machine距离真实机器的距离更远。

Ⅹ 使用python遍历文件夹将文件夹中所有的txt文本转为html连接形式。

importos
defgetalltxtfilename(path):
txtfilenames=[]
fordirpath,dirnames,filenamesinos.walk(path):
filenames=filter(lambdafilename:filename[-4:]=='.txt',filenames)
filenames=map(lambdafilename:os.path.join(dirpath,filename),filenames)
txtfilenames.extend(filenames)
returntxtfilenames
deftxttohtmllink(path):
filenames=getalltxtfilename(path)
htmllink=[]
forfilenameinfilenames:
ifos.path.isfile(filename):
htmllinktext=''
myfile=open(filename)
firstline=myfile.readline()
whilefirstlineandlen(firstline)<2:
firstline=myfile.readline()
ifnotfirstline:
firstline=''*2
else:
firstline=firstline.strip(' ')
htmllinktext+=firstline[0]+'<ahref="'+
filename+'">'+
firstline[1:]+'</a><br>'
htmllink.append(htmllinktext)
myfile.close()
returnhtmllink
path=r"文件夹路径"#将此处替换为实际文件夹的路径
htmllinks=txttohtmllink(path)
forhtmllinkinhtmllinks:
printhtmllink

在html标记前加上一个字符,这就不是合法的html文本形式,还是按照要求做了,如果输入到html文件肯定会出错

热点内容
需要更改哪些防火墙配置 发布:2025-07-18 14:53:23 浏览:928
服务器如何不设置密码直接进入 发布:2025-07-18 14:48:23 浏览:380
eclipse设置增量编译 发布:2025-07-18 14:43:24 浏览:66
访问virtualbox 发布:2025-07-18 14:43:19 浏览:67
怎么找回建行登录密码 发布:2025-07-18 14:39:38 浏览:348
如何让安卓变得像苹果一样快 发布:2025-07-18 14:38:05 浏览:217
台安源码 发布:2025-07-18 14:35:32 浏览:601
下载种子怎么是php 发布:2025-07-18 14:35:00 浏览:5
linuxtimet 发布:2025-07-18 14:34:46 浏览:299
轻客有哪些安全配置 发布:2025-07-18 14:09:22 浏览:409