python与hadoop
❶ python和hadoop有什么联系
没联系python是一门动态语言,hadoop是一个分布式计算的框架,是用java写的.他们是两个层次的东西.如果说非要有联系,就是python可以应用hadoop框架,做分布式盯如唯计算的开发.但是语言和框架,是可以自己拼装的.java也可以使用hadoop开发分布式计算橡悉,python也可以用spark开发分布式计算,他们是松耦合的,可以自己根据需求搭凯培配
❷ 如何使用Python为Hadoop编写一个简单的MapRece程序
我们将编写一个简槐迅单的 MapRece 程序,使用的是C-Python,而不是Jython编写后打包成jar包的程序。
我们的这个例子将模仿 WordCount 并使用Python来实现,例子通过读取文本文件来统计出单词的出现次数。结果也以文本形式输出,每一陵此行包含一个单词和单尺明迅词出现的次数,两者中间使用制表符来想间隔。
先决条件
编写这个程序之前,你学要架设好Hadoop 集群,这样才能不会在后期工作抓瞎。如果你没有架设好,那么在后面有个简明教程来教你在Ubuntu linux 上搭建(同样适用于其他发行版linux、unix)
如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立单节点的 Hadoop 集群
如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立多节点的 Hadoop 集群
Python的MapRece代码
使用Python编写MapRece代码的技巧就在于我们使用了 HadoopStreaming 来帮助我们在Map 和 Rece间传递数据通过STDIN (标准输入)和STDOUT (标准输出).我们仅仅使用Python的sys.stdin来输入数据,使用sys.stdout输出数据,这样做是因为HadoopStreaming会帮我们办好其他事。这是真的,别不相信!
❸ 有没有基于Python的某某数据分布式存储的案例
有很多基于Python的数据分布式存储的案例。以下是其中几个:
Apache Hadoop:Hadoop是一个基于Java的开源框架,但是它也提供了Python API。Hadoop是一个分布式存储和计算平台,用于手慎处理大规模数据集。
Apache Spark:Spark是一个快速通用的计算引擎,可用于大规模数据处理郑薯稿。它支持Python语言,并提供了Python API。
Apache Cassandra:Cassandra是一个高度可伸缩的分布式数据库,具有强大的容错能力。Cassandra提供了Python驱动程序,可用于Python应用程序。
Apache HBase:HBase是一个分布式非关系型数据库,可在Hadoop集群上运行。它支持Python API。
PySpark:PySpark是Spark的喊孝Python API,它允许您使用Python编写Spark作业。
❹ 如何使用Python为Hadoop编写一个简单的MapRece程序
在这个实例中,我将会向大家介绍如何使用Python 为 Hadoop编写一个简单的MapRece
程序。
尽管Hadoop 框架是使用Java编写的但是我们仍然需要使用像C++、Python等语言来实现Hadoop程序。尽管Hadoop官方网站给的示例程序是使用Jython编写并打包成Jar文件,这样显然造成了不便,其实,不一定非要这样来实现,我们可以使用Python与Hadoop 关联进行编程,看看位于/src/examples/python/WordCount.py 的例子,你将了解到我在说什么。
我们想要做什么?
我们将编写一个简单的 MapRece 程序,使用的是C-Python,而不是Jython编写后打包成jar包的程序。
我们的这个例子将模仿 WordCount 并使用Python来实现,例子通过读取文本文件来统计出单词的出现次数。结果也以文本形式输出,每一行包含一个单词和单词出现的次数,两者中间使用制表符来想间隔。
先决条件
编写这个程序之前,你学要架设好Hadoop 集群,这样才能不会在后期工作抓瞎。如果你没有架设好,那么在后面有个简明教程来教你在Ubuntu Linux 上搭建(同样适用于其他发行版linux、unix)
如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立单节点的 Hadoop 集群
如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立多节点的 Hadoop 集群
Python的MapRece代码
使用Python编写MapRece代码的技巧就在于我们使用了 HadoopStreaming 来帮助我们在Map 和 Rece间传递数据通过STDIN (标准输入)和STDOUT (标准输出).我们仅仅使用Python的sys.stdin来输入数据,使用sys.stdout输出数据,这样做是因为HadoopStreaming会帮我们办好其他事。这是真的,别不相信!
Map: mapper.py
将下列的代码保存在/home/hadoop/mapper.py中,他将从STDIN读取数据并将单词成行分隔开,生成一个列表映射单词与发生次数的关系:
注意:要确保这个脚本有足够权限(chmod +x /home/hadoop/mapper.py)。
#!/usr/bin/env python
import sys
# input comes from STDIN (standard input)
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# split the line into words
words = line.split()
# increase counters
for word in words:
# write the results to STDOUT (standard output);
# what we output here will be the input for the
# Rece step, i.e. the input for recer.py
#
# tab-delimited; the trivial word count is 1
print '%s\\t%s' % (word, 1)在这个脚本中,并不计算出单词出现的总数,它将输出 "<word> 1" 迅速地,尽管<word>可能会在输入中出现多次,计算是留给后来的Rece步骤(或叫做程序)来实现。当然你可以改变下编码风格,完全尊重你的习惯。
Rece: recer.py
将代码存储在/home/hadoop/recer.py 中,这个脚本的作用是从mapper.py 的STDIN中读取结果,然后计算每个单词出现次数的总和,并输出结果到STDOUT。
同样,要注意脚本权限:chmod +x /home/hadoop/recer.py
#!/usr/bin/env python
from operator import itemgetter
import sys
# maps words to their counts
word2count = {}
# input comes from STDIN
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# parse the input we got from mapper.py
word, count = line.split('\\t', 1)
# convert count (currently a string) to int
try:
count = int(count)
word2count[word] = word2count.get(word, 0) + count
except ValueError:
# count was not a number, so silently
# ignore/discard this line
pass
# sort the words lexigraphically;
#
# this step is NOT required, we just do it so that our
# final output will look more like the official Hadoop
# word count examples
sorted_word2count = sorted(word2count.items(), key=itemgetter(0))
# write the results to STDOUT (standard output)
for word, count in sorted_word2count:
print '%s\\t%s'% (word, count)
测试你的代码(cat data | map | sort | rece)
我建议你在运行MapRece job测试前尝试手工测试你的mapper.py 和 recer.py脚本,以免得不到任何返回结果
这里有一些建议,关于如何测试你的Map和Rece的功能:
——————————————————————————————————————————————
\r\n
# very basic test
hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py
foo 1
foo 1
quux 1
labs 1
foo 1
bar 1
——————————————————————————————————————————————
hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py | sort | /home/hadoop/recer.py
bar 1
foo 3
labs 1
——————————————————————————————————————————————
# using one of the ebooks as example input
# (see below on where to get the ebooks)
hadoop@ubuntu:~$ cat /tmp/gutenberg/20417-8.txt | /home/hadoop/mapper.py
The 1
Project 1
Gutenberg 1
EBook 1
of 1
[...]
(you get the idea)
quux 2
quux 1
——————————————————————————————————————————————
在Hadoop平台上运行Python脚本
为了这个例子,我们将需要三种电子书:
The Outline of Science, Vol. 1 (of 4) by J. Arthur Thomson\r\n
The Notebooks of Leonardo Da Vinci\r\n
Ulysses by James Joyce
下载他们,并使用us-ascii编码存储 解压后的文件,保存在临时目录,比如/tmp/gutenberg.
hadoop@ubuntu:~$ ls -l /tmp/gutenberg/
total 3592
-rw-r--r-- 1 hadoop hadoop 674425 2007-01-22 12:56 20417-8.txt
-rw-r--r-- 1 hadoop hadoop 1423808 2006-08-03 16:36 7ldvc10.txt
-rw-r--r-- 1 hadoop hadoop 1561677 2004-11-26 09:48 ulyss12.txt
hadoop@ubuntu:~$
复制本地数据到HDFS
在我们运行MapRece job 前,我们需要将本地的文件复制到HDFS中:
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -FromLocal /tmp/gutenberg gutenberg
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls
Found 1 items
/user/hadoop/gutenberg <dir>
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg
Found 3 items
/user/hadoop/gutenberg/20417-8.txt <r 1> 674425
/user/hadoop/gutenberg/7ldvc10.txt <r 1> 1423808
/user/hadoop/gutenberg/ulyss12.txt <r 1> 1561677
执行 MapRece job
现在,一切准备就绪,我们将在运行Python MapRece job 在Hadoop集群上。像我上面所说的,我们使用的是
HadoopStreaming 帮助我们传递数据在Map和Rece间并通过STDIN和STDOUT,进行标准化输入输出。
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-mapper /home/hadoop/mapper.py -recer /home/hadoop/recer.py -input gutenberg/*
-output gutenberg-output
在运行中,如果你想更改Hadoop的一些设置,如增加Rece任务的数量,你可以使用“-jobconf”选项:
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-jobconf mapred.rece.tasks=16 -mapper ...
一个重要的备忘是关于Hadoop does not honor mapred.map.tasks
这个任务将会读取HDFS目录下的gutenberg并处理他们,将结果存储在独立的结果文件中,并存储在HDFS目录下的
gutenberg-output目录。
之前执行的结果如下:
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-mapper /home/hadoop/mapper.py -recer /home/hadoop/recer.py -input gutenberg/*
-output gutenberg-output
additionalConfSpec_:null
null=@@@userJobConfProps_.get(stream.shipped.hadoopstreaming
packageJobJar: [/usr/local/hadoop-datastore/hadoop-hadoop/hadoop-unjar54543/]
[] /tmp/streamjob54544.jar tmpDir=null
[...] INFO mapred.FileInputFormat: Total input paths to process : 7
[...] INFO streaming.StreamJob: getLocalDirs(): [/usr/local/hadoop-datastore/hadoop-hadoop/mapred/local]
[...] INFO streaming.StreamJob: Running job: job_200803031615_0021
[...]
[...] INFO streaming.StreamJob: map 0% rece 0%
[...] INFO streaming.StreamJob: map 43% rece 0%
[...] INFO streaming.StreamJob: map 86% rece 0%
[...] INFO streaming.StreamJob: map 100% rece 0%
[...] INFO streaming.StreamJob: map 100% rece 33%
[...] INFO streaming.StreamJob: map 100% rece 70%
[...] INFO streaming.StreamJob: map 100% rece 77%
[...] INFO streaming.StreamJob: map 100% rece 100%
[...] INFO streaming.StreamJob: Job complete: job_200803031615_0021
[...] INFO streaming.StreamJob: Output: gutenberg-output hadoop@ubuntu:/usr/local/hadoop$
正如你所见到的上面的输出结果,Hadoop 同时还提供了一个基本的WEB接口显示统计结果和信息。
当Hadoop集群在执行时,你可以使用浏览器访问 http://localhost:50030/ ,如图:
检查结果是否输出并存储在HDFS目录下的gutenberg-output中:
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg-output
Found 1 items
/user/hadoop/gutenberg-output/part-00000 <r 1> 903193 2007-09-21 13:00
hadoop@ubuntu:/usr/local/hadoop$
可以使用dfs -cat 命令检查文件目录
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -cat gutenberg-output/part-00000
"(Lo)cra" 1
"1490 1
"1498," 1
"35" 1
"40," 1
"A 2
"AS-IS". 2
"A_ 1
"Absoluti 1
[...]
hadoop@ubuntu:/usr/local/hadoop$
注意比输出,上面结果的(")符号不是Hadoop插入的。
转载仅供参考,版权属于原作者。祝你愉快,满意请采纳哦
❺ python和hadoop有什么联系
没联系
python 是一门动态语言,
hadoop是一个分布式计算的框架, 是用java写的.
他们是两个层次的东西.
如果说非要有联系, 就是python可以应用hadoop框架, 做分布式计算的开发.
但是语言和框架, 是可以自己拼装的. java也可以使用hadoop开发分布式计算,
python也可以用spark开发分布式计算, 他们是松耦合的, 可以自己根据需求搭配
❻ pycharm连接hadoop方便吗
方便。根据查询相关公开信息显肆返示,pycharm关联hadoop开发,连接hadoop方便。pyCharm是一种裂搏PythonIDE,带有一整套可裂源饥以帮助用户在使用Python语言开发时提高其效率的工具。
❼ 如何在Hadoop环境下搭建Python
搭建 Python 环境在 Hadoop 上的步骤如下:
安装 Hadoop:在你的计算机上安装 Hadoop。
安装 Python:请确保你的计孙拿算机上已经安装了 Python。
配置 Hadoop 环境:编辑 Hadoop 的配置文件,以确保 Hadoop 可以与 Python 配合使用。
安装相关模块:请安装所需的 Python 模块,以便在 Hadoop 环境下使用 Python。
测试灶行 Python 安装:请运行一些测试脚本,以确保 Python 可以在 Hadoop 环境下正常工作。
这些步骤可以帮助你在 Hadoop 环境下搭建 Python。请注意,具体的步骤可能因 Hadoop 的版本和环境而异,请仔细查则辩搭看相关文档。
❽ python模块中使用了hadoop框架
1、什么是python?
2、python的10大Web框架有哪些,以及它们各自的特点?
3、本文只是这10大框架做了简单介绍,让你对它们有个初步的了解。
Python 是一门动态、面向对象语言。其最初就是作为一门面向对象语言设计的,并且在后期又加入了一些更高级的特性。除了语言本身的设计目的之外,Python标准 库也是值得大家称赞的,Python甚至还自带服务器。其它方面,Python拥有足够多的免费数据函数库、免费的Web网页模板竖扰系统、还有与Web服务 器进行交互的库、这些都可以设计到你的Web应用程序里面。在这篇文章里,我们将为Python Web开发者介绍基于Python的10大Web应用框架。
1、CubicWeb
1.jpg (101.51 KB, 下载次数: 2)
2015-7-16 11:04 上传
CubicWeb的最重要的支柱就是代码的可重用性。CubicWeb宣扬自己不仅是一个Web开发框架,而且还是一款语义Web开发框架。CubicWeb使用关系查询语言(RQL Relation Query Language)与数据库之间进行通信。
2、Zope2
2.jpg (53.86 KB, 下载次数: 1)
2015-7-16 11:04 上传
Zope 2是一款基于Python的Web应用框架,是所有Python Web应用程序、工具的鼻祖,是Python家族一个强有力的分支。Zope 2的“对象发布”系统非常适合面向对象开发方法,并且可以减轻开发者的学习曲线,还可以帮助你发现应用程序里一些不岁宽好的功能。
3、Web2py
3.jpg (99.94 KB, 下载次数: 1)
2015-7-16 11:04 上传
Web2py是一个用Python语言编写的免费的开源Web框架,旨在敏捷快速的开发Web应用,具有快速、可扩展、安全以及可移植的数据库驱动的应用,遵循LGPLv3开源协议。
Web2py提供一站式的解决方案,整个开发过程都可以在浏览器上进行,提供了Web版的在线开发,HTML模版编写,静态文件的上传乎纤亮,数据库的编写的功能。其它的还有日志功能,以及一个自动化的admin接口。
4、TurboGears
4.jpg (95.37 KB, 下载次数: 1)
2015-7-16 11:04 上传
它是另外一个基于 Python 的 MVC 风格的 Web 应用程序框架。
TurboGears 开发人员称这个项目是一个 “大框架(megaframework)”,这是因为它是由现有的子项目构成的。TurboGears 可以帮助将很多主要组件集成在一起:MochiKit:JavaScript 库
Kid:模板语言
CherryPy:基本 Web 框架
SQLObject:对象关系映射器(ORM)
5、Pylons
5.jpg (131.51 KB, 下载次数: 1)
2015-7-16 11:04 上传
Pylons是一个开放源代码的Web应用框架,使用python语言编写。它对WSGI标准进行了扩展应用,提升了重用性且将功能分割到独立的模块中。
Pylons是最新的Web应用框架中的典型,类似于Django和TurboGears。Pylons受Ruby on Rails影响很深:它的两个组件,Routes和WebHelpers是Rails特性的Python实现。
6、Grok
6.jpg (79.28 KB, 下载次数: 0)
2015-7-16 11:04 上传
Grok 是一个为 Python 开发者提供的Web应用开发框架,Grok 的重点是敏捷开发,是一个易用而且功能强大的开发框架,基于 Zope 3 技术。
7、Web.py
7.jpg (69.53 KB, 下载次数: 2)
2015-7-16 11:10 上传
Web.py是一个轻量级的开源Python Web框架,小巧灵活、简单并且非常强大,在使用时没有任何限制。目前Web.py被广泛运用在许多大型网站,如西班牙的社交网站Frinki、主页日平均访问量达7000万次的Yandex等。
8、Pyramid
8.jpg (98 KB, 下载次数: 2)
2015-7-16 11:10 上传
Pyramid也是一款轻量级的开源Python Web框架,是Pylons项目的一部分。Pyramid只能运行在Python 2.x或2.4以后的版本上。在使用后端数据库时无需声明,在开发时也不会强制使用一些特定的模板系统。
9、CherryPy
9.jpg (83.16 KB, 下载次数: 2)
2015-7-16 11:11 上传
CherryPy是一个基于Python的Web使用程序开发框架,它极大地简化了运用 Python 的web开发人员的工作。它为Python开发人员提供了友好的HTTP协议接口。大家知道,HTTP可是万维网的支柱协议,而CherryPy将HTTP协议简化成Python API来供Python 开发人员使用,这极大地简化了Web开发人员对HTTP协议的操作。CherryPy自身内置了一个HTTP服务器,或者称为Web服务器。这样,对于CherryPy的用户来说,不用另外搭设Web服务器就能直接运行 CherryPy应用程序了。实际上,Web服务器是到达CherryPy应用程序的关口,是所有的HTTP请求和响应的必经之地。因此,可以这样理解 CherryPy内建的Web服务器:它是位于处理客户端与服务器端之间的一层软件,用于把底层TCP套按字传输的信息转换成Http请求,并传递给相应 的处理程序;同时,还把上层软件传来的信息打包成Http响应,并向下传递给底层的TCP套按字。
10、Flask
10.jpg (52.97 KB, 下载次数: 2)
2015-7-16 11:10 上传
Flask是一个轻量级的Web应用框架, 使用Python编写。基于 WerkzeugWSGI工具箱和 Jinja2模板引擎。使用 BSD 授权。
Flask也被称为 “microframework” ,因为它使用简单的核心,用 extension 增加其他功能。Flask没有默认使用的数据库、窗体验证工具。然而,Flask保留了扩增的弹性,可以用Flask-extension加入这些功 能:ORM、窗体验证工具、文件上传、各种开放式身份验证技术
❾ python的map和rece和Hadoop的MapRece有什么关系
关系就是都是基于Map-Rece的处理思想设计出来的。
从用户角度看功能其实差不多,
Python的Map函数和Hadoop的Map阶段对输入进行逐行处理;
Python的Rece函数和Hadoop的Rece阶段对输入进行累积处理。
但是其实完整的Hadoop MapRece是Map+Shuffle+Sort+Rece过程。
其中Shuffle过程是为了让分布式机群之间将同Key数据进行互相交换,Sort过程是根据Key对所有数据进行排序,从而才能完成类WordCount功能,而这两步在Python里面当然是需要用户自己去编写的。
❿ python和hadoop有什么联系
一个是编程语言,一个是大数据实现,这完散闷全是两个不同领域的概念。我能想到的关系是这样的:如果Hadoop提供对Python的接口的话,就可以用Python调用Hadoop实贺饥现大数据的一些功能。
hadoop 是 java 开发的,但并不是说开发 hadoop 就冲拍弯一定要使用 java.