python实现排序
#encoding=utf-8
importrandom
fromimport
defdirectInsertSort(seq):
"""直接插入排序"""
size=len(seq)
foriinrange(1,size):
tmp,j=seq[i],i
whilej>0andtmp<seq[j-1]:
seq[j],j=seq[j-1],j-1
seq[j]=tmp
returnseq
defdirectSelectSort(seq):
"""直接选择排序"""
size=len(seq)
foriinrange(0,size-1):
k=i;j=i+1
whilej<size:
ifseq[j]<seq[k]:
k=j
j+=1
seq[i],seq[k]=seq[k],seq[i]
returnseq
defbubbleSort(seq):
"""冒泡排序"""
size=len(seq)
foriinrange(1,size):
forjinrange(0,size-i):
ifseq[j+1]<seq[j]:
seq[j+1],seq[j]=seq[j],seq[j+1]
returnseq
def_divide(seq,low,high):
"""快速排序划分函数"""
tmp=seq[low]
whilelow!=high:
whilelow<highandseq[high]>=tmp:high-=1
iflow<high:
seq[low]=seq[high]
low+=1
whilelow<highandseq[low]<=tmp:low+=1
iflow<high:
seq[high]=seq[low]
high-=1
seq[low]=tmp
returnlow
def_quickSort(seq,low,high):
"""快速排序辅助函数"""
iflow>=high:return
mid=_divide(seq,low,high)
_quickSort(seq,low,mid-1)
_quickSort(seq,mid+1,high)
defquickSort(seq):
"""快速排序包裹函数"""
size=len(seq)
_quickSort(seq,0,size-1)
returnseq
defmerge(seq,left,mid,right):
tmp=[]
i,j=left,mid
whilei<midandj<=right:
ifseq[i]<seq[j]:
tmp.append(seq[i])
i+=1
else:
tmp.append(seq[j])
j+=1
ifi<mid:tmp.extend(seq[i:])
ifj<=right:tmp.extend(seq[j:])
seq[left:right+1]=tmp[0:right-left+1]
def_mergeSort(seq,left,right):
ifleft==right:
return
else:
mid=(left+right)/2
_mergeSort(seq,left,mid)
_mergeSort(seq,mid+1,right)
merge(seq,left,mid+1,right)
#二路并归排序
defmergeSort(seq):
size=len(seq)
_mergeSort(seq,0,size-1)
returnseq
if__name__=='__main__':
s=[random.randint(0,100)foriinrange(0,20)]
prints
print" "
printdirectSelectSort((s))
printdirectInsertSort((s))
printbubbleSort((s))
printquickSort((s))
printmergeSort((s))
② Python对数据进行排序-中英文
sort_values(by,axis=0,ascending=True,inplace=False,kind='quicksort',na_position='last')
参数说明:
by: 可以填入字符串或者字符串组成的列表。也就是说, 如果axis=0,那么by="列名";如果axis=1,那么by="行名"。
axis: {0 or ‘index’, 1 or ‘columns’}, default 0,意思就是如果 axis=0,就按照索引排序,即纵向排序;如果axis=1,则按列排序,即横向排序。默认是axis=0 。
ascending: 输入布尔型, True是升序 , False是降序 ,也可以可以是[True,False],即第一个字段升序,第二个字段降序 。
inplace : 输入布尔型,是否用排序后的数据框替换现有的数据框
kind: 排序的方法,{‘quicksort’, ‘mergesort’, ‘heapsort’},默认是使用‘quicksort’。这个参数用的比较少,大家可以试一试。
na_position : {‘first’, ‘last’}, 缺失值的排序 ,也就说决定将缺失值放在数据的最前面还是最后面 。first是排在前面,last是排在后面,默认是用last 。
例子:
scores= pd.DataFrame([[87,56,85],[46,87,97],[34,65,86]],columns=['jack', 'rose', 'mike'])
scores
1.对‘rose’这一列进行降序排序:
df_sc=scores.sort_values(by='rose',ascending=False)
df_sc
2.对第0行进行升序排序:
scores.sort_values(by=0,axis=1,ascending=True)
3.第1行进行升序,第0行进行降序:
scores.sort_values(by=[1,0],axis=1,ascending=[True,False]
4.观察数据
data.head:
查看数据的前五行。
data.tail:
查看数据的后五行。
data.shape :
查看矩阵或数组的维数,或者是说数据表的结构(有几行几列)。
data.info :
查看数据的基本信息,如:数据类型、缺失值数量等。
#brand目标:中文-中英-英文
2.1 包含中文,纯英文
for i in range(0,len(file1)):
result = re.compile(u'[\u4e00-\u9fa5]')
contents = file1['brand'][i]
match = result.search(contents)
if match:
file1.loc[i,['index1']]=0 #0为包含中文
else:
file1.loc[i,['index1']]=1 #1为纯英文
2.1 包含英文,纯中文
for i in range(0,len(file1)):
file1.loc[i,['index2']]=len(re.findall('[a-zA-Z]+', file1['brand'][i]) ) #0为纯中文,1为包含英文
③ 面试官常问十大经典算法排序(用Python实现)
算法是一种与语言无关的东西,更确切地说就算解决问题的思路,就是一个通用的思想的问题。代码本身不重要,算法思想才是重中之重
我们在面试的时候总会被问到一下算法,虽然算法是一些基础知识,但是难起来也会让人非常头疼。
排序算法应该算是一些简单且基础的算法,但是我们可以从简单的算法排序锻炼我们的算法思维。这里我就介绍经典十大算法用python是怎么实现的。
十大经典算法可以分为两大类:
比较排序: 通过对数组中的元素进行比较来实现排序。
非比较排序: 不通过比较来决定元素间的相对次序。
算法复杂度
冒泡排序比较简单,几乎所有语言算法都会涉及的冒泡算法。
基本原理是两两比较待排序数据的大小 ,当两个数据的次序不满足顺序条件时即进行交换,反之,则保持不变。
每次选择一个最小(大)的,直到所有元素都被输出。
将第一个元素逐个插入到前面的有序数中,直到插完所有元素为止。
从大范围到小范围进行比较-交换,是插入排序的一种,它是针对直接插入排序算法的改进。先对数据进行预处理,使其基本有序,然后再用直接插入的排序算法排序。
该算法是采用 分治法 对集合进行排序。
把长度为n的输入序列分成两个长度为n/2的子序列,对这两个子序列分别采用归并排序,最终合并成序列。
选取一个基准值,小数在左大数在在右。
利用堆这种数据结构所设计的一种排序算法。
堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。利用最大堆和最小堆的特性。
采用字典计数-还原的方法,找出待排序的数组中最大和最小的元素,统计数组中每个值为i的元素出现的次数,对所有的计数累加,将每个元素放在新数组依次排序。
设置一个定量的数组当作空桶;遍历输入数据,并且把数据一个一个放到对应的桶里去;对每个不是空的桶进行排序;从不是空的桶里把排好序的数据拼接起来。
元素分布在桶中:
然后,元素在每个桶中排序:
取得数组中的最大数,并取得位数;从最低位开始取每个位组成新的数组;然后进行计数排序。
上面就是我整理的十大排序算法,希望能帮助大家在算法方面知识的提升。看懂之后可以去试着自己到电脑上运行一遍。最后说一下每个排序是没有调用数据的,大家记得实操的时候要调用。
参考地址:https://www.runoob.com/w3cnote/ten-sorting-algorithm.html
④ python如何对一组数排序
python对一组数排序的方法:
1、使用sorted()方法可以进行升序排序
2、可以operator模块方法进行多级排序
operator 模块方法允许多级排序。例如,可以先按 grade 排序,然后再按 age 排序
更多Python知识,请关注:Python自学网!!
⑤ python常见的三种列表排序算法分别是什么
排序是计算机程序设计中的一种重要操作,它的功能是将一个数据元素的任意序列,重新排列成一个关键字有序的序列。那么python列表排序算法有哪些?本文主要为大家讲述python中禅棚经常用的三种排序算法:冒泡排序、插入排序和选择排序。
1、冒泡排序
冒泡排序,Bubble
Sort,是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢浮到数列的顶端。
2、插入排序
插戚袭差入排序,Insertion
Sort,是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前的扫描过程中,需要把已排序元素逐步向后挪位,为最新元素提供插入空间。
3、选择高皮排序
选择排序,Selection
Sort,是一种简单直观的排序算法。它的工作原理如下:首先在未排序序列中找到最小、最大元素,存放到排序序列的起始位置,然后再从剩余未排序元素中继续寻找最小、最大元素。放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
⑥ python中进行字符串排序
python中没有直接的方法对字符串进行排序,原因是字符串类型是不允许直接修改元素的。
因此字符串排序的主要方法是将字符串转换成字符数组,
然后散尺借用sorted函数进行排序,
最后用join方法重新拼装字符串。
输出结果
我们可以使用sort方法和sorted函数滚陵根据长度进行排序,方法是将键作为参数传递给排序的方法。
输出结果
我们可以将任何函数传递给key参数。sort方法将根据给定给键参数的函数的返回值对列表进行排序。同样的道理冲备高也适用于排序后的函数。
输出结果
输出结果
输出结果
⑦ python实现字符串行表排序
a = ['b', 'a', 'c', 'ab', 'aa', 'aaa']
a.sort(key=lambda x: str(len(x)) + x)
print(a)
#['a', 'b', 'c', 'aa', 'ab', 'aaa']
⑧ Python中对列表进行排序的方法有哪些呢
python中有两种排序方法,list内置sort()方法或者python内置的全局sorted()方法
二者区别为:
sort()方法对list排序会修改list本身,不会返回新list。sort()只能对list进行排序。
sorted()方法会返回新的list,保留原来的list。sorted 可以对所有可迭代的对象进行排序操作。
⑨ python 按年份从小到大排序
要按照年份从小到大对Python列表进行排序,可以使用列表的sort()方法,同时指定一个lambda函数来提取年份并进行比较。
以下是示例代码:
# 定义包含年份的列表
years = [1988, 1999, 1976, 2005, 1968, 2010]
# 使用lambda函数来提取年份并进行比较
years.sort(key=lambda x: x)
# 打印排序后的年份列表
print(years)
在这个示例代码中,我们首先定义了一个包含年份的列表。然后,我们使用sort()方法来对列樱桥亏表进行排序,并指定一个lambda函数作为key参数,该函数提取列表中每脊神个元素的年份值进行比较。最后,我们打印排序后的年份列表,以检查排序是否消唯成功。
输出结果应该是:
[1968, 1976, 1988, 1999, 2005, 2010]
这表明列表按照年份从小到大进行了排序。
⑩ Python实现的快速排序算法详解
Python实现的快速排序算法详解
本文实例讲述了Python实现的快速排序算法。分享给大家供大家参考,具体如下:
快速排序基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
如序列[6,8,1,4,3,9],选择6作为基准数。从右向左扫描,寻找比基准数小的数字为3,交换6和3的位置,[3,8,1,4,6,9],接着从左向右扫描,寻找比基准数大的数字为8,交换6和8的位置,[3,6,1,4,8,9]。重复上述过程,直到基准数左边的数字都比其小,右边的数字都比其大。然后分别对基准数左边和右边的序列递归进行上述方法。
实现代码如下:
def parttion(v, left, right):
key = v[left]
low = left
high = right
while low < high:
while (low < high) and (v[high] >= key):
high -= 1
v[low] = v[high]
while (low < high) and (v[low] <= key):
low += 1
v[high] = v[low]
v[low] = key
return low
def quicksort(v, left, right):
if left < right:
p = parttion(v, left, right)
quicksort(v, left, p-1)
quicksort(v, p+1, right)
return v
s = [6, 8, 1, 4, 3, 9, 5, 4, 11, 2, 2, 15, 6]
print("before sort:",s)
s1 = quicksort(s, left = 0, right = len(s) - 1)
print("after sort:",s1)
运行结果:
before sort: [6, 8, 1, 4, 3, 9, 5, 4, 11, 2, 2, 15, 6]
after sort: [1, 2, 2, 3, 4, 4, 5, 6, 6, 8, 9, 11, 15]