pythonredisapi
1. python客户端redis-py
使用pip进行安装: pip install redis
redis-py的使用方法也比较简单,下面将逐步骤介绍。
1)导入依赖库:
import redis
2)生成客户端连接:需要Redis的实例IP和端好让口两个参数:友备局
client = redis.StrictRedis(host='127.0.0.1', port=6379)
3)执行命令
# True
client.set(key, "python-redis")
# world
client.get(key)
输出结果为:
True
key:hello, value:python-redis
5中数据类型API
eval(String script, int keyCount, String... params)
script_load(String script)
evalsha(String sha1, int keyCount, String... params:
eval函数有三个参数,分别是:
·script:滚告Lua脚本内容。
·keyCount:键的个数。
·params:相关参数KEYS和ARGV。
script_load和evalsha函数要一起使用,首先使用script_load将脚本加载到 Redis中
evalsha函数用来执行脚本的哈希值,它需要三个参数:
·scriptSha:脚本的SHA1。
·keyCount:键的个数。
·params:相关参数KEYS和ARGV。
import redis
client = redis.StrictRedis(host='127.0.0.1', port=6379)
script = "return redis.call('get',KEYS[1])"
scriptSha = client.script_load(script)
print client.evalsha(scriptSha, 1, "hello");
2. redis队列什么意思
Redis队列功能介绍
List
常用命令:
Blpop删除,并获得该列表中的第一元素,或阻塞,直到有一个可用
Brpop删除,并获得该列表中的最后一个元素,或阻塞,直到有一个可用
Brpoplpush
Lindex获取一个元素,通过其索引列表
Linsert在列表中的另一个元素之前或之后插入一个元素
Llen获得队列(List)的长度
Lpop从队列的左边出队一个元素
Lpush从队列的左边入队一个或多个元素
Lpushx当队列存在时,从队到左边入队一个元素
Lrange从列表中获取指定返回的元素
Lrem从列表中删除元素
Lset设置队列里面一个元素的值
Ltrim修剪到指定范围内的清单
Rpop从队列的右边出队一个元素
Rpoplpush删除列表中的最后一个元素,将其追加到另一个列表
Rpush从队列的右边入队一个元素
Rpushx从队列的右边入队一个元素,仅队列存在时有效
Redis支持php、python、c等接口
应用场景:
Redislist的应用场景非常多,也是Redis最重要的数据结构之一,比如twitter的关注列表,粉丝列表等都可以用Redis的list结构来实现。
Lists就是链表,相信略有数据结构知识的人都应该能理解其结构。使用Lists结构,我们可以轻松地实现最新消息排行等功能。
Lists的另一个应用就是消息队列,
可以利用Lists的PUSH操作,将任务存在Lists中,然后工作线程再用POP操作将任务取出进行执行。Redis还提供了操作Lists中某一段的api,你可以直接查询,删除Lists中某一段的元素。
如果需要还可以用redis的Sorted-Sets数据结构来做优先队列.可以给每条消息加上一个唯一的序号。这里就不详细介绍了。
实现方式:
Redislist的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销,Redis内部的很多实现,包括发送缓冲队列等也都是用的这个数据结构。
示意图:
1)入队
3. python和java需要什么呀
好的基础知识,就可以了
4. Python 常用的标准库以及第三方库有哪些
Python常用库大全,看看有没有你需要的。
环境管理
管理 Python 版本和环境的工具
p – 非常简单的交互式 python 版本管理工具。
pyenv – 简单的 Python 版本管理工具。
Vex – 可以在虚拟环境中执行命令。
virtualenv – 创建独立 Python 环境的工具。
virtualenvwrapper- virtualenv 的一组扩展。
包管理
管理包和依赖的工具。
pip – Python 包和依赖关系管理工具。
pip-tools – 保证 Python 包依赖关系更新的一组工具。
conda – 跨平台,Python 二进制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分发的新标准,意在取代 eggs。
包仓库
本地 PyPI 仓库服务和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 镜像工具。
devpi – PyPI 服务和打包/测试/分发工具。
localshop – 本地 PyPI 服务(自定义包并且自动对 PyPI 镜像)。
分发
打包为可执行文件以便分发。
PyInstaller – 将 Python 程序转换成独立的执行文件(跨平台)。
dh-virtualenv – 构建并将 virtualenv 虚拟环境作为一个 Debian 包来发布。
Nuitka – 将脚本、孝高模块、包编译成可执行文件或扩展模块。
py2app – 将 Python 脚本变为独立软件包(Mac OS X)。
py2exe – 将 Python 脚本变为独立软件包(Windows)。
pynsist – 一个用来创建 Windows 安装程序的工具,可以在安装程序中打包 Python本身。
构建工具
将源码编译成软件。
buildout – 一个构建系统,从多个组件来创建,组装和部署应用。
BitBake – 针对嵌入式 linux 的类似 make 的构建工具。
fabricate – 对任何语言自动找到依赖关系的构建工具。
PlatformIO – 多平台命令行构建工具。
PyBuilder – 纯 Python 实现的持续化构建工具。
SCons – 软件构建工具。
交互式解析器
交互式 Python 解析器。
IPython – 功能丰富的工具,非常有效的使用交互式 Python。
bpython- 界面丰富的 Python 解析器。
ptpython – 高级交互式Python解析器, 构建于python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的网际邮件扩充协议)类型检测。
imghdr – (Python 标准库)检测图片类型。
mimetypes – (Python 标准库)将文件名映射为 MIME 类型。
path.py – 对 os.path 进行封装的模块。
pathlib – (Python3.4+ 标准库)跨平台的、面向对象的路径操作库。
python-magic- 文件类型检测的第三方库 libmagic 的 Python 接口。
Unipath- 用面向对象的方式操作文件和目录
watchdog – 管理文件系统事件的 API 和 shell 工具
日期和时间
操作日期和时间的类库。
arrow- 更好的 Python 日期时间操作类库。
Chronyk – Python 3 的类库,用于解析手写格式的时间和日期。
dateutil – Python datetime 模块的扩展。
delorean- 解肢携决 Python 中有关日期处理的棘手问题的库。
moment – 一个用来处理时间和日期的Python库。灵感来自于Moment.js。
PyTime – 一个简单易用的Python模历慎伏块,用于通过字符串来操作日期/时间。
pytz – 现代以及历史版本的世界时区定义。将时区数据库引入Python。
when.py – 提供用户友好的函数来帮助用户进行常用的日期和时间操作。
文本处理
用于解析和操作文本的库。
通用
chardet – 字符编码检测器,兼容 Python2 和 Python3。
difflib – (Python 标准库)帮助我们进行差异化比较。
ftfy – 让Unicode文本更完整更连贯。
fuzzywuzzy – 模糊字符串匹配。
Levenshtein – 快速计算编辑距离以及字符串的相似度。
pangu.py – 在中日韩语字符和数字字母之间添加空格。
pyfiglet -figlet 的 Python实现。
shortuuid – 一个生成器库,用以生成简洁的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 转换形式 。
uniout – 打印可读的字符,而不是转义的字符串。
xpinyin – 一个用于把汉字转换为拼音的库。
5. 盘点Python常用的模块和包
模块
1.定义
计算机在开发过程中,代码越写越多,也就越难以维护,所以为了编写可维护的代码,我们会把函数进行分组,放在不同的文件里。在python里,一个.py文件就是一个模块。
2.优点:
提高代码的可维护性。
提高代码的复用,当模块完成时就可以在其他代码中调用。
引用其他模块,包含python内置模块和其他第三方模块。
避免函数名和变量名等名称冲突。
python内建模块:
1.sys模块
2.random模块
3.os模块:
os.path:讲解
https://www.cnblogs.com/yufeihlf/p/6179547.html
数据可视化
1.matplotlib :
是Python可视化程序库的泰斗,它的设计和在1980年代被设计的商业化程序语言MATLAB非常接近。比如pandas和Seaborn就是matplotlib的外包,它们让你能用更少的代码去调用 matplotlib的方法。
访问:
https://matplotlib.org/
颜色:
https://www.cnblogs.com/darkknightzh/p/6117528.html
教程:
https://wizardforcel.gitbooks.io/matplotlib-user-guide/3.1.html
2.Seaborn:
它是构建在matplotlib的基础上的,用简洁的代码来制作好看的图表。Seaborn跟matplotlib最大的区别就是它的默认绘图风格和色彩搭配都具有现代美感。
访问:
http://seaborn.pydata.org/index.html
3.ggplot:
gplot 跟 matplotlib 的不同之处是它允许你叠加不同的图层来完成一幅图
访问:
http://ggplot.yhathq.com/
4.Mayavi:
Mayavi2完全用Python编写,因此它不但是一个方便实用的可视化软件,而且可以方便地用Python编写扩展,嵌入到用户编写的Python程序中,或者直接使用其面向脚本的API:mlab快速绘制三维图
访问:http://code.enthought.com/pages/mayavi-project.html
讲解:https://blog.csdn.net/ouening/article/details/76595427https://www.jianshu.com/p/81e6f4f1cdd8
5.TVTK:
TVTK库对标准的VTK库进行包装,提供了Python风格的API、支持Trait属性和numpy的多维数组。
VTK (http://www.vtk.org/) 是一套三维的数据可视化工具,它由C++编写,包涵了近千个类帮助我们处理和显示数据
讲解:https://docs.huihoo.com/scipy/scipy-zh-cn/tvtk_intro.html
机器学习
1.Scikit-learn
是一个简单且高效的数据挖掘和数据分析工具,易上手,可以在多个上下文中重复使用。它基于NumPy, SciPy 和 matplotlib,开源,可商用(基于 BSD 许可)。
访问:
讲解:https://blog.csdn.net/finafily0526/article/details/79318401
2.Tensorflow
最初由谷歌机器智能科研组织中的谷歌大脑团队(Google Brain Team)的研究人员和工程师开发。该系统设计的初衷是为了便于机器学习研究,能够更快更好地将科研原型转化为生产项目。
相关推荐:《Python视频教程》
Web框架
1.Tornado
访问:http://www.tornadoweb.org/en/stable/
2.Flask
访问:http://flask.pocoo.org/
3.Web.py
访问:http://webpy.org/
4.django
https://www.djangoproject.com/
5.cherrypy
http://cherrypy.org/
6.jinjs
http://docs.jinkan.org/docs/jinja2/
GUI 图形界面
1.Tkinter
https://wiki.python.org/moin/TkInter/
2.wxPython
https://www.wxpython.org/
3.PyGTK
http://www.pygtk.org/
4.PyQt
https://sourceforge.net/projects/pyqt/
5.PySide
http://wiki.qt.io/Category:LanguageBindings::PySide
科学计算
教程
https://docs.huihoo.com/scipy/scipy-zh-cn/index.html#
1.numpy
访问
http://www.numpy.org/
讲解
https://blog.csdn.net/lm_is_dc/article/details/81098805
2.sympy
sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值、求极限、解方程、求积分、微分方程、级数展开、矩阵运算等等计算问题
访问
https://docs.sympy.org/0.7.1/guide.html#guide
讲解
https://www.jianshu.com/p/339c91ae9f41
解方程
https://www.cnblogs.com/zyg123/p/10549354.html
3.SciPy
官网
https://www.scipy.org/
讲解
https://blog.csdn.net/wsp_1138886114/article/details/80444621
4.pandas
官网
http://pandas.pydata.org/
讲解
https://www.cnblogs.com/linux-wangkun/p/5903945.html
5.blaze
官网
http://blaze.readthedocs.io/en/latest/index.html
密码学
1.cryptography
https://pypi.python.org/pypi/cryptography/
2.hashids
http://www.oschina.net/p/hashids
3.Paramiko
http://www.paramiko.org/
4.Passlib
https://pythonhosted.org/passlib/
5.PyCrypto
https://pypi.python.org/pypi/pycrypto
6.PyNacl
http://pynacl.readthedocs.io/en/latest/
爬虫相关
requests
http://www.python-requests.org/
scrapy
https://scrapy.org/
pyspider
https://github.com/binux/pyspider
portia
https://github.com/scrapinghub/portia
html2text
https://github.com/Alir3z4/html2text
BeautifulSoup
https://www.crummy.com/software/BeautifulSoup/
lxml
http://lxml.de/
selenium
http://docs.seleniumhq.org/
mechanize
https://pypi.python.org/pypi/mechanize
PyQuery
https://pypi.python.org/pypi/pyquery/
creepy
https://pypi.python.org/pypi/creepy
gevent
一个高并发的网络性能库
http://www.gevent.org/
图像处理
bigmoyan
http://scikit-image.org/
Python Imaging Library(PIL)
http://www.pythonware.com/procts/pil/
pillow:
http://pillow.readthedocs.io/en/latest/
自然语言处理
1.nltk:
http://www.nltk.org/
教程
https://blog.csdn.net/wizardforcel/article/details/79274443
2.snownlp
https://github.com/isnowfy/snownlp
3.Pattern
https://github.com/clips/pattern
4.TextBlob
http://textblob.readthedocs.io/en/dev/
5.Polyglot
https://pypi.python.org/pypi/polyglot
6.jieba:
https://github.com/fxsjy/jieba
数据库驱动
mysql-python
https://sourceforge.net/projects/mysql-python/
PyMySQL
https://github.com/PyMySQL/PyMySQL
PyMongo
https://docs.mongodb.com/ecosystem/drivers/python/
pymongo
MongoDB库
访问:https://pypi.python.org/pypi/pymongo/
redis
Redis库
访问:https://pypi.python.org/pypi/redis/
cxOracle
Oracle库
访问:https://pypi.python.org/pypi/cx_Oracle
SQLAlchemy
SQL工具包及对象关系映射(ORM)工具
访问:http://www.sqlalchemy.org/
peewee,
SQL工具包及对象关系映射(ORM)工具
访问:https://pypi.python.org/pypi/peewee
torndb
Tornado原装DB
访问:https://github.com/bdarnell/torndb
Web
pycurl
URL处理工具
smtplib模块
发送电子邮件
其他库暂未分类
1.PyInstaller:
是一个十分有用的第三方库,它能够在Windows、Linux、 Mac OS X 等操作系统下将 Python 源文件打包,通过对源文件打包, Python 程序可以在没有安装 Python 的环境中运行,也可以作为一个 独立文件方便传递和管理。
2.Ipython
一种交互式计算和开发环境
讲解
https://www.cnblogs.com/zzhzhao/p/5295476.html
命令
ls、cd 、run、edit、clear、exist
6. Python语言学什么_python语言能做什么
这里整理了一份系统全面的Python开发学习路线,主要涉及以下知识,感兴趣的小伙伴欢迎一起来学习~
第一阶段:专业核心基础
阶段目标:
1.熟练掌握Python的开发环境与编程核心知识
2.熟练运用Python面向对象知识进行程序开发
3.对Python的核心库和组件有深入理解
4.熟练应用SQL语句进行数据库常用操作
5.熟练运用Linux操作系统命令及环境配置
6.熟练使用MySQL,掌握数据库高级操作
7.能综合运用所学知识完成项目
知识点:
Python编程基础、Python面向对象、Python高级进阶、MySQL数据库、Linux操作系统。
1、Python编程基础,语法规则,函数与参数,数据类型,模块与包,文件IO,培养扎实的Python编程基本功,同时对Python核心对象和库的编程有熟练的运用。
2、Python面向对象,核心对象,异常处理,多线程,网络编程,深入理解面向对象编程,异常处理机制,多线程原理,网络协议知识,并熟练运用于项目中。
3、类的原理,MetaClass,下划线的特殊方法,递归,魔术方法,反射,迭代器,装饰器,UnitTest,Mock。深入理解面向对象底层原理,掌握Python开发高级进阶技术,理解单元测试技术。
4、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,PDBC,深入理解数据库管理系首裤如统通用知识及MySQL数据库的使用与管理。为Python后台开发打下坚实基础。
5、Linux安装配置,文件目录操作,VI命令,管理,用户与权限,环境配置,Docker,Shell编程Linux作为一个主流的服务器操作系统,是每一个开发工程师必须掌握的重点技术,并且能够熟练运用。
第二阶段:PythonWEB开发
阶段目标:
1.熟练掌握Web前端开发纯蚂技术,HTML,CSS,JavaScript及前端框架
2.深入理解Web系统中的前后端交互过程与通信协议
3.熟练运用Web前端和Django和Flask等主流框架完成Web系统开发
4.深入理解网络协议,分布式,PDBC,AJAX,JSON等知识
5.能够运用所学知识开发一个MiniWeb框架,掌握框架实现原理
6.使用Web开发框架实现贯穿项目
知识点:
Web前端编程、Web前端高级、Django开发框架、Flask开发框架、Web开发项目实战。
1、Web页面元素,布局,CSS样式,盒模型,JavaScript,JQuery与Bootstrap掌握前者启端开发技术,掌握JQuery与BootStrap前端开发框架,完成页面布局与美化。
2、前端开发框架Vue,JSON数据,网络通信协议,Web服务器与前端交互熟练使用Vue框架,深入理解HTTP网络协议,熟练使用Swagger,AJAX技术实现前后端交互。
3、自定义Web开发框架,Django框架的基本使用,Model属性及后端配置,Cookie与Session,模板Templates,ORM数据模型,Redis二级缓存,RESTful,MVC模型掌握Django框架常用API,整合前端技术,开发完整的WEB系统和框架。
4、Flask安装配置,App对象的初始化和配置,视图函数的路由,Request对象,Abort函数,自定义错误,视图函数的返回值,Flask上下文和请求钩子,模板,数据库扩展包Flask-Sqlalchemy,数据库迁移扩展包Flask-Migrate,邮件扩展包Flask-Mail。掌握Flask框架的常用API,与Django框架的异同,并能独立开发完整的WEB系统开发。
第三阶段:爬虫与数据分析
阶段目标:
1.熟练掌握爬虫运行原理及常见网络抓包工具使用,能够对HTTP及HTTPS协议进行抓包分析
2.熟练掌握各种常见的网页结构解析库对抓取结果进行解析和提取
3.熟练掌握各种常见反爬机制及应对策略,能够针对常见的反爬措施进行处理
4.熟练使用商业爬虫框架Scrapy编写大型网络爬虫进行分布式内容爬取
5.熟练掌握数据分析相关概念及工作流程
6.熟练掌握主流数据分析工具Numpy、Pandas和Matplotlib的使用
7.熟练掌握数据清洗、整理、格式转换、数据分析报告编写
8.能够综合利用爬虫爬取豆瓣网电影评论数据并完成数据分析全流程项目实战
知识点:
网络爬虫开发、数据分析之Numpy、数据分析之Pandas。
1、爬虫页面爬取原理、爬取流程、页面解析工具LXML,正则表达式,代理池编写和架构、常见反爬措施及解决方案、爬虫框架结构、商业爬虫框架Scrapy,基于对爬虫爬取原理、网站数据爬取流程及网络协议的分析和了解,掌握网页解析工具的使用,能够灵活应对大部分网站的反爬策略,具备独立完成爬虫框架的编写能力和熟练应用大型商业爬虫框架编写分布式爬虫的能力。
2、Numpy中的ndarray数据结构特点、numpy所支持的数据类型、自带的数组创建方法、算术运算符、矩阵积、自增和自减、通用函数和聚合函数、切片索引、ndarray的向量化和广播机制,熟悉数据分析三大利器之一Numpy的常见使用,熟悉ndarray数据结构的特点和常见操作,掌握针对不同维度的ndarray数组的分片、索引、矩阵运算等操作。
3、Pandas里面的三大数据结构,包括Dataframe、Series和Index对象的基本概念和使用,索引对象的更换及删除索引、算术和数据对齐方法,数据清洗和数据规整、结构转换,熟悉数据分析三大利器之一Pandas的常见使用,熟悉Pandas中三大数据对象的使用方法,能够使用Pandas完成数据分析中最重要的数据清洗、格式转换和数据规整工作、Pandas对文件的读取和操作方法。
4、matplotlib三层结构体系、各种常见图表类型折线图、柱状图、堆积柱状图、饼图的绘制、图例、文本、标线的添加、可视化文件的保存,熟悉数据分析三大利器之一Matplotlib的常见使用,熟悉Matplotlib的三层结构,能够熟练使用Matplotlib绘制各种常见的数据分析图表。能够综合利用课程中所讲的各种数据分析和可视化工具完成股票市场数据分析和预测、共享单车用户群里数据分析、全球幸福指数数据分析等项目的全程实战。
第四阶段:机器学习与人工智能
阶段目标:
1.理解机器学习相关的基本概念及系统处理流程
2.能够熟练应用各种常见的机器学习模型解决监督学习和非监督学习训练和测试问题,解决回归、分类问题
3.熟练掌握常见的分类算法和回归算法模型,如KNN、决策树、随机森林、K-Means等
4.掌握卷积神经网络对图像识别、自然语言识别问题的处理方式,熟悉深度学习框架TF里面的张量、会话、梯度优化模型等
5.掌握深度学习卷积神经网络运行机制,能够自定义卷积层、池化层、FC层完成图像识别、手写字体识别、验证码识别等常规深度学习实战项目
知识点:
1、机器学习常见算法、sklearn数据集的使用、字典特征抽取、文本特征抽取、归一化、标准化、数据主成分分析PCA、KNN算法、决策树模型、随机森林、线性回归及逻辑回归模型和算法。熟悉机器学习相关基础概念,熟练掌握机器学习基本工作流程,熟悉特征工程、能够使用各种常见机器学习算法模型解决分类、回归、聚类等问题。
2、Tensorflow相关的基本概念,TF数据流图、会话、张量、tensorboard可视化、张量修改、TF文件读取、tensorflowplayround使用、神经网络结构、卷积计算、激活函数计算、池化层设计,掌握机器学习和深度学习之前的区别和练习,熟练掌握深度学习基本工作流程,熟练掌握神经网络的结构层次及特点,掌握张量、图结构、OP对象等的使用,熟悉输入层、卷积层、池化层和全连接层的设计,完成验证码识别、图像识别、手写输入识别等常见深度学习项目全程实战。
7. 花了2万多买的Python70个项目,现在分享给大家,练手进厂靠它了
前言:
不管学习哪门语言都希望能做出实际的东西来,这个实际的东西当然就是项目啦,不用多说大家都知道学编程语言一定要做项目才行。
这里整理了70个Python实战项目列表,都有完整且详细的教程,你可以从中选择自己想做的项目进行参考学习练手,你也可以从中寻找灵感去做自己的项目。
1、【Python 图片转字符画】
2、【200行Python代码实现2048】
3、【Python3 实现火车票查询工具】
4、【高德API+Python解决租房问题 】
5、【Python3 色情图片识别】
6、【Python 破解验证码】
7、【Python实现简单的Web服务器】
8、【pygame开发打飞机 游戏 】
9、【Django 搭建简易博客】
10、【Python基于共现提取《釜山行》人物关系】
11、【基于scrapy爬虫的天气数据采集(python)】
12、【Flask 开发轻博客】
13、【Python3 图片隐写术】
14、【Python 实现简易 Shell】
15、【使用 Python 解数学方程】
16、【PyQt 实现简易浏览器】
17、【神经网络实现手写字符识别系统 】
18、【Python 实现简单画板】
19、【Python实现3D建模工具】
20、【NBA常规赛结果预测——利用Python进行比赛数据分析】
21、【神经网络实现人脸识别任务】
22、【Python文本解析器】
23、【Python3 & OpenCV 视频转字符动画】
24、【Python3 实现淘女郎照片爬虫 】
25、【Python3实现简单的FTP认证服务器】
26、【基于 Flask 与 MySQL 实现番剧推荐系统】
27、【Python 实现端口扫描器】
28、【使用 Python 3 编写系列实用脚本】
29、【Python 实现康威生命 游戏 】
30、【川普撞脸希拉里(基于 OpenCV 的面部特征交换) 】
31、【Python 3 实现 Markdown 解析器】
32、【Python 气象数据分析 -- 《Python 数据分析实战》】
33、【Python实现键值数据库】
34、【k-近邻算法实现手写数字识别系统】
35、【ebay在线拍卖数据分析】
36、【Python 实现英文新闻摘要自动提取 】
37、【Python实现简易局域网视频聊天工具】
38、【基于 Flask 及爬虫实现微信 娱乐 机器人】
39、【Python实现Python解释器】
40、【Python3基于Scapy实现DDos】
41、【Python 实现密码强度检测器】
42、【使用 Python 实现深度神经网络】
43、【Python实现从excel读取数据并绘制成精美图像】
44、【人机对战初体验:Python基于Pygame实现四子棋 游戏 】
45、【Python3 实现可控制肉鸡的反向Shell】
46、【Python打造漏洞扫描器 】
47、【Python应用马尔可夫链算法实现随机文本生成】
48、【数独 游戏 的Python实现与破解】
49、【使用Python定制词云】
50、【Python开发简单计算器】
51、【Python 实现 FTP 弱口令扫描器】
52、【Python实现Huffman编码解压缩文件】
53、【Python实现Zip文件的暴力破解 】
54、【Python3 智能裁切图片】
55、【Python实现网站模拟登陆】
56、【给Python3爬虫做一个界面.妹子图网实战】
57、【Python 3 实现图片转彩色字符】
58、【自联想器的 Python 实现】
59、【Python 实现简单滤镜】
60、【Flask 实现简单聊天室】
61、【基于PyQt5 实现地图中定位相片拍摄位置】
62、【Python实现模板引擎】
63、【Python实现遗传算法求解n-queens问题】
64、【Python3 实现命令行动态进度条】
65、【Python 获取挂号信息并邮件通知】
66、【Python实现java web项目远端自动化更新部署】
67、【使用 Python3 编写 Github 自动周报生成器】
68、【使用 Python 生成分形图片】
69、【Python 实现 Redis 异步客户端】
70、【Python 实现中文错别字高亮系统】
最后:
以上项目列表希望可以给你在Python学习中带来帮助~
获取方式:转发 私信“1”
8. Python 常用的标准库以及第三方库有哪些
参考:知乎
Python 常用的标准库以及第三方库
standard libs:
itertools
functools 学好python有必要掌握上面这两个库吧,
re 正则
subprocess 调用shell命令的神器
pdb 调试
traceback 调试
pprint 漂亮的输出
logging 日志
threading和multiprocessing 多线程
urllib/urllib2/httplib http库,httplib底层一点,推荐第三方的库requests
os/sys 系统,环境相关
Queue 队列
pickle/cPickle 序列化工具
hashlib md5, sha等hash算法
cvs
json/simplejson python的json库,据so上的讨论和benchmark,simplejson的性能要高于json
timeit 计算代码运行的时间等等
cProfile python性能测量模块
glob 类似与listfile,可以用来查找文件
atexit 有一个注册函数,可用于正好在脚本退出运行前执行一些代码
dis python 反汇编,当对某条语句不理解原理时,可以用dis.dis 函数来查看代码对应的python 解释器指令等等。
3th libs:
paramiko ssh python 库
selenium 浏览器自动化测试工具selenium的python 接口
lxml python 解析html,xml 的神器
mechanize Stateful programmatic web browsing
pycurl cURL library mole for Python
Fabric Fabric is a Python (2.5 or higher) library and command-line tool for streamlining the use of SSH for application deployment or systems administration tasks.
xmltodict xml 转 dict,真心好用
urllib3 和 requests: 当然其实requests就够了 Requests: HTTP for Humans
flask web 微框架
ipdb 调试神器,同时推荐ipython!结合ipython使用
redis redis python接口
pymongo mongodbpython接口
PIL python图像处理
mako python模版引擎
numpy , scipy 科学计算
matplotlib 画图
scrapy 爬虫
django/tornado/web.py/web2py/uliweb/flask/twisted/bottle/cherrypy.等等 python web框架/服务器
sh 1.08 — sh v1.08 documentation 用来运行shell 模块的 极佳选择
9. 学Java好还是学Python好
学习python或者java可以根据自己的需求来选择。Python是一门上手非常快,容易学的语言,如果选择人工智能、机器学习,可以选择python,而对于后端开发Java目前更占优势。
1、运行速度。Java是静态语言静态编译的,速度上要比Python快的很多,而Python动态类型语言,一边执行一边编译,速度要上慢一些。
2、代码开发效率。Python代码开发效率非常高,同样的函数功能,Java需要十几行,Python只要几行,代码数量要远小于Java,这样开发的时间和效率比Java高很多。
3、数据库的支持。Java跟数据库结合更紧密一些,有大量的数据库支持Java,类似JDBC这样的封装,使得的Java使用数据库更容易。支持Python的数据库也非常多,而且很多主流数据库SQL,Mongodb,Redis都有API支持Python。
4、应用领域。Java主要的战场是在Android手机开发和Web后端开发,而Pvthon主要应用在数据科学,机器学习,人工智能领域和IOT。
学习python或者java推荐选择达内教育,作为国内IT培训的领导品牌,达内已成功为社会输送了众多合格人才,为广大学子提供更多IT行业高薪机会,同时也为中国IT行业的发展做出了巨大的贡献。
想了解更多有关学习python或者java的相关信息,推荐咨询达内教育。该机构是引领行业的职业教育公司,致力于面向IT互联网行业培养人才,达内大型T专场招聘会每年定期举行,为学员搭建快捷高效的双选绿色通道,在提升他们的面试能力、积累面试经验同时也帮助不同技术方向的达内学员快速就业!
10. 如何能让 Python 实时获取到抓包的结果
在 rule 里用 nodejs (懂点 js 应该都能驾驭)橘老 处理所有数据
也可以把数据 post 到你自定义的码旁 api 里(这样就不限定语言了)
BTW,我目前是在 android 机器里安装 anyproxy,监听到特定 app 的特定请求后,在 nodejs 里迟伍橡清洗数据,json 化后添加到远程 redis 队列,后台处理队列的有 python 也有 php