当前位置:首页 » 编程语言 » redispythonapi

redispythonapi

发布时间: 2023-06-02 03:58:42

① redis队列什么意思

Redis队列功能介绍

List

常用命令:

Blpop删除,并获得该列表中的第一元素,或阻塞,直到有一个可用

Brpop删除,并获得该列表中的最后一个元素,或阻塞,直到有一个可用

Brpoplpush

Lindex获取一个元素,通过其索引列表

Linsert在列表中的另一个元素之前或之后插入一个元素

Llen获得队列(List)的长度

Lpop从队列的左边出队一个元素

Lpush从队列的左边入队一个或多个元素

Lpushx当队列存在时,从队到左边入队一个元素

Lrange从列表中获取指定返回的元素

Lrem从列表中删除元素

Lset设置队列里面一个元素的值

Ltrim修剪到指定范围内的清单

Rpop从队列的右边出队一个元素

Rpoplpush删除列表中的最后一个元素,将其追加到另一个列表

Rpush从队列的右边入队一个元素

Rpushx从队列的右边入队一个元素,仅队列存在时有效

Redis支持phppython、c等接口

应用场景:

Redislist的应用场景非常多,也是Redis最重要的数据结构之一,比如twitter的关注列表,粉丝列表等都可以用Redis的list结构来实现。

Lists就是链表,相信略有数据结构知识的人都应该能理解其结构。使用Lists结构,我们可以轻松地实现最新消息排行等功能。

Lists的另一个应用就是消息队列,

可以利用Lists的PUSH操作,将任务存在Lists中,然后工作线程再用POP操作将任务取出进行执行。Redis还提供了操作Lists中某一段的api,你可以直接查询,删除Lists中某一段的元素。

如果需要还可以用redis的Sorted-Sets数据结构来做优先队列.可以给每条消息加上一个唯一的序号。这里就不详细介绍了。

实现方式:

Redislist的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销,Redis内部的很多实现,包括发送缓冲队列等也都是用的这个数据结构。

示意图:

1)入队

② 什么是Redis

redis 就是一个数据库,不过与传统数据库不同的是 redis 的数据是存在内存和部分文件中的,所以读写速度非常快,因此 redis 被广泛应用于缓存方向。另外,redis 也经常用来做分布式锁。redis 提供了多种数据类型来支持不同的业务场景。除此之外,redis 支持事务 、持久化、LUA脚本、LRU驱动事件、多种集群方案。

③ 盘点Python常用的模块和包

模块

1.定义

计算机在开发过程中,代码越写越多,也就越难以维护,所以为了编写可维护的代码,我们会把函数进行分组,放在不同的文件里。在python里,一个.py文件就是一个模块。

2.优点:

提高代码的可维护性。

提高代码的复用,当模块完成时就可以在其他代码中调用。

引用其他模块,包含python内置模块和其他第三方模块。

避免函数名和变量名等名称冲突。

python内建模块:

1.sys模块

2.random模块

3.os模块:

os.path:讲解

https://www.cnblogs.com/yufeihlf/p/6179547.html

数据可视化

1.matplotlib :

是Python可视化程序库的泰斗,它的设计和在1980年代被设计的商业化程序语言MATLAB非常接近。比如pandas和Seaborn就是matplotlib的外包,它们让你能用更少的代码去调用 matplotlib的方法。

访问

https://matplotlib.org/

颜色:

https://www.cnblogs.com/darkknightzh/p/6117528.html

教程:

https://wizardforcel.gitbooks.io/matplotlib-user-guide/3.1.html

2.Seaborn:

它是构建在matplotlib的基础上的,用简洁的代码来制作好看的图表。Seaborn跟matplotlib最大的区别就是它的默认绘图风格和色彩搭配都具有现代美感。

访问:

http://seaborn.pydata.org/index.html

3.ggplot:

gplot 跟 matplotlib 的不同之处是它允许你叠加不同的图层来完成一幅图

访问:

http://ggplot.yhathq.com/

4.Mayavi:

Mayavi2完全用Python编写,因此它不但是一个方便实用的可视化软件,而且可以方便地用Python编写扩展,嵌入到用户编写的Python程序中,或者直接使用其面向脚本的API:mlab快速绘制三维图

访问:http://code.enthought.com/pages/mayavi-project.html

讲解:https://blog.csdn.net/ouening/article/details/76595427https://www.jianshu.com/p/81e6f4f1cdd8

5.TVTK:

TVTK库对标准的VTK库进行包装,提供了Python风格的API、支持Trait属性和numpy的多维数组。

VTK (http://www.vtk.org/) 是一套三维的数据可视化工具,它由C++编写,包涵了近千个类帮助我们处理和显示数据

讲解:https://docs.huihoo.com/scipy/scipy-zh-cn/tvtk_intro.html

机器学习

1.Scikit-learn

是一个简单且高效的数据挖掘和数据分析工具,易上手,可以在多个上下文中重复使用。它基于NumPy, SciPy 和 matplotlib,开源,可商用(基于 BSD 许可)。

访问:

讲解:https://blog.csdn.net/finafily0526/article/details/79318401

2.Tensorflow

最初由谷歌机器智能科研组织中的谷歌大脑团队(Google Brain Team)的研究人员和工程师开发。该系统设计的初衷是为了便于机器学习研究,能够更快更好地将科研原型转化为生产项目。

相关推荐:《Python视频教程》

Web框架

1.Tornado

访问:http://www.tornadoweb.org/en/stable/

2.Flask

访问:http://flask.pocoo.org/

3.Web.py

访问:http://webpy.org/

4.django

https://www.djangoproject.com/

5.cherrypy

http://cherrypy.org/

6.jinjs

http://docs.jinkan.org/docs/jinja2/

GUI 图形界面

1.Tkinter

https://wiki.python.org/moin/TkInter/

2.wxPython

https://www.wxpython.org/

3.PyGTK

http://www.pygtk.org/

4.PyQt

https://sourceforge.net/projects/pyqt/

5.PySide

http://wiki.qt.io/Category:LanguageBindings::PySide

科学计算

教程

https://docs.huihoo.com/scipy/scipy-zh-cn/index.html#

1.numpy

访问

http://www.numpy.org/

讲解

https://blog.csdn.net/lm_is_dc/article/details/81098805

2.sympy

sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值、求极限、解方程、求积分、微分方程、级数展开、矩阵运算等等计算问题

访问

https://docs.sympy.org/0.7.1/guide.html#guide

讲解

https://www.jianshu.com/p/339c91ae9f41

解方程

https://www.cnblogs.com/zyg123/p/10549354.html

3.SciPy

官网

https://www.scipy.org/

讲解

https://blog.csdn.net/wsp_1138886114/article/details/80444621

4.pandas

官网

http://pandas.pydata.org/

讲解

https://www.cnblogs.com/linux-wangkun/p/5903945.html

5.blaze

官网

http://blaze.readthedocs.io/en/latest/index.html

密码学

1.cryptography

https://pypi.python.org/pypi/cryptography/

2.hashids

http://www.oschina.net/p/hashids

3.Paramiko

http://www.paramiko.org/

4.Passlib

https://pythonhosted.org/passlib/

5.PyCrypto

https://pypi.python.org/pypi/pycrypto

6.PyNacl

http://pynacl.readthedocs.io/en/latest/

爬虫相关

requests

http://www.python-requests.org/

scrapy

https://scrapy.org/

pyspider

https://github.com/binux/pyspider

portia

https://github.com/scrapinghub/portia

html2text

https://github.com/Alir3z4/html2text

BeautifulSoup

https://www.crummy.com/software/BeautifulSoup/

lxml

http://lxml.de/

selenium

http://docs.seleniumhq.org/

mechanize

https://pypi.python.org/pypi/mechanize

PyQuery

https://pypi.python.org/pypi/pyquery/

creepy

https://pypi.python.org/pypi/creepy

gevent

一个高并发的网络性能库

http://www.gevent.org/

图像处理

bigmoyan

http://scikit-image.org/

Python Imaging Library(PIL)

http://www.pythonware.com/procts/pil/

pillow:

http://pillow.readthedocs.io/en/latest/

自然语言处理

1.nltk:

http://www.nltk.org/

教程

https://blog.csdn.net/wizardforcel/article/details/79274443

2.snownlp

https://github.com/isnowfy/snownlp

3.Pattern

https://github.com/clips/pattern

4.TextBlob

http://textblob.readthedocs.io/en/dev/

5.Polyglot

https://pypi.python.org/pypi/polyglot

6.jieba:

https://github.com/fxsjy/jieba

数据库驱动

mysql-python

https://sourceforge.net/projects/mysql-python/

PyMySQL

https://github.com/PyMySQL/PyMySQL

PyMongo

https://docs.mongodb.com/ecosystem/drivers/python/

pymongo

MongoDB库

访问:https://pypi.python.org/pypi/pymongo/

redis

Redis库

访问:https://pypi.python.org/pypi/redis/

cxOracle

Oracle库

访问:https://pypi.python.org/pypi/cx_Oracle

SQLAlchemy

SQL工具包及对象关系映射(ORM)工具

访问:http://www.sqlalchemy.org/

peewee,

SQL工具包及对象关系映射(ORM)工具

访问:https://pypi.python.org/pypi/peewee

torndb

Tornado原装DB

访问:https://github.com/bdarnell/torndb

Web

pycurl

URL处理工具

smtplib模块

发送电子邮件

其他库暂未分类

1.PyInstaller:

是一个十分有用的第三方库,它能够在Windows、Linux、 Mac OS X 等操作系统下将 Python 源文件打包,通过对源文件打包, Python 程序可以在没有安装 Python 的环境中运行,也可以作为一个 独立文件方便传递和管理。

2.Ipython

一种交互式计算和开发环境

讲解

https://www.cnblogs.com/zzhzhao/p/5295476.html

命令

ls、cd 、run、edit、clear、exist

④ Python 常用的标准库以及第三方库有哪些

Python常用库大全,看看有没有你需要的。
环境管理
管理 Python 版本和环境的工具
p – 非常简单的交互式 python 版本管理工具。
pyenv – 简单的 Python 版本管理工具。
Vex – 可以在虚拟环境中执行命令。
virtualenv – 创建独立 Python 环境的工具。
virtualenvwrapper- virtualenv 的一组扩展。
包管理
管理包和依赖的工具。
pip – Python 包和依赖关系管理工具。
pip-tools – 保证 Python 包依赖关系更新的一组工具。
conda – 跨平台,Python 二进制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分发的新标准,意在取代 eggs。
包仓库
本地 PyPI 仓库服务和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 镜像工具。
devpi – PyPI 服务和打包/测试/分发工具。
localshop – 本地 PyPI 服务(自定义包并且自动对 PyPI 镜像)。
分发
打包为可执行文件以便分发。
PyInstaller – 将 Python 程序转换成独立的执行文件(跨平台)。
dh-virtualenv – 构建并将 virtualenv 虚拟环境作为一个 Debian 包来发布。
Nuitka – 将脚本、孝高模块、包编译成可执行文件或扩展模块。
py2app – 将 Python 脚本变为独立软件包(Mac OS X)。
py2exe – 将 Python 脚本变为独立软件包(Windows)。
pynsist – 一个用来创建 Windows 安装程序的工具,可以在安装程序中打包 Python本身。
构建工具
源码编译成软件。
buildout – 一个构建系统,从多个组件来创建,组装和部署应用。
BitBake – 针对嵌入式 Linux 的类似 make 的构建工具。
fabricate – 对任何语言自动找到依赖关系的构建工具。
PlatformIO – 多平台命令行构建工具。
PyBuilder – 纯 Python 实现的持续化构建工具。
SCons – 软件构建工具。
交互式解析器
交互式 Python 解析器。
IPython – 功能丰富的工具,非常有效的使用交互式 Python。
bpython- 界面丰富的 Python 解析器。
ptpython – 高级交互式Python解析器, 构建于python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的网际邮件扩充协议)类型检测。
imghdr – (Python 标准库)检测图片类型。
mimetypes – (Python 标准库)将文件名映射为 MIME 类型。
path.py – 对 os.path 进行封装的模块。
pathlib – (Python3.4+ 标准库)跨平台的、面向对象的路径操作库。
python-magic- 文件类型检测的第三方库 libmagic 的 Python 接口。
Unipath- 用面向对象的方式操作文件和目录
watchdog – 管理文件系统事件的 API 和 shell 工具
日期和时间
操作日期和时间的类库。
arrow- 更好的 Python 日期时间操作类库。
Chronyk – Python 3 的类库,用于解析手写格式的时间和日期。
dateutil – Python datetime 模块的扩展。
delorean- 解肢携决 Python 中有关日期处理的棘手问题的库。
moment – 一个用来处理时间和日期的Python库。灵感来自于Moment.js。
PyTime – 一个简单易用的Python模历慎伏块,用于通过字符串来操作日期/时间。
pytz – 现代以及历史版本的世界时区定义。将时区数据库引入Python。
when.py – 提供用户友好的函数来帮助用户进行常用的日期和时间操作。
文本处理
用于解析和操作文本的库。
通用
chardet – 字符编码检测器,兼容 Python2 和 Python3。
difflib – (Python 标准库)帮助我们进行差异化比较。
ftfy – 让Unicode文本更完整更连贯。
fuzzywuzzy – 模糊字符串匹配。
Levenshtein – 快速计算编辑距离以及字符串的相似度。
pangu.py – 在中日韩语字符和数字字母之间添加空格。
pyfiglet -figlet 的 Python实现。
shortuuid – 一个生成器库,用以生成简洁的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 转换形式 。
uniout – 打印可读的字符,而不是转义的字符串。
xpinyin – 一个用于把汉字转换为拼音的库。

⑤ 如何使用Redis 做队列操作

  • redis设计用来做缓存的,但是由于它自身的某种特性使得它可以用来做消息队列,它有几个阻塞式的API可以使用,正是这些阻塞式的API让其有能力做消息队列;

  • 另外,做消息队列的其他特性例如FIFO(先入先出)也很容易实现,只需要一个list对象从头取数据,从尾部塞数据即可;

  • redis能做消息队列还得益于其list对象blpop brpop接口以及Pub/Sub(发布/订阅)的某些接口,它们都是阻塞版的,所以可以用来做消息队列。

⑥ linux下redis 怎么使用

1. 安装,软件仓库里有的并且满足需要那就直接从软件仓库里安装

ubuntu: sudo apt-get install redis-server
centOS: yum install redis
其他的也差不多

另一种编译安装就比较麻烦一点,去官网下载合适的版本的源代码,make ...

2. 使用 a)命令行使用 redis-cli

b) shell 调用同a

c) 通过其他语言调用,比如php,则需要安装php-redis扩展,Python则需要安装Python-redis模块,其他语言类似,然后就是在各个语言中根据api调用啦

⑦ Python 常用的标准库以及第三方库有哪些

参考:知乎
Python 常用的标准库以及第三方库


standard libs:

itertools

functools 学好python有必要掌握上面这两个库吧,
re 正则
subprocess 调用shell命令的神器
pdb 调试
traceback 调试
pprint 漂亮的输出
logging 日志
threading和multiprocessing 多线程
urllib/urllib2/httplib http库,httplib底层一点,推荐第三方的库requests
os/sys 系统,环境相关
Queue 队列
pickle/cPickle 序列化工具
hashlib md5, sha等hash算法
cvs
json/simplejson python的json库,据so上的讨论和benchmark,simplejson的性能要高于json
timeit 计算代码运行的时间等等
cProfile python性能测量模块
glob 类似与listfile,可以用来查找文件
atexit 有一个注册函数,可用于正好在脚本退出运行前执行一些代码
dis python 反汇编,当对某条语句不理解原理时,可以用dis.dis 函数来查看代码对应的python 解释器指令等等。

3th libs:

paramiko ssh python 库
selenium 浏览器自动化测试工具selenium的python 接口
lxml python 解析html,xml 的神器
mechanize Stateful programmatic web browsing

pycurl cURL library mole for Python
Fabric Fabric is a Python (2.5 or higher) library and command-line tool for streamlining the use of SSH for application deployment or systems administration tasks.

xmltodict xml 转 dict,真心好用
urllib3 和 requests: 当然其实requests就够了 Requests: HTTP for Humans
flask web 微框架
ipdb 调试神器,同时推荐ipython!结合ipython使用
redis redis python接口
pymongo mongodbpython接口
PIL python图像处理
mako python模版引擎
numpy , scipy 科学计算
matplotlib 画图

scrapy 爬虫
django/tornado/web.py/web2py/uliweb/flask/twisted/bottle/cherrypy.等等 python web框架/服务器
sh 1.08 — sh v1.08 documentation 用来运行shell 模块的 极佳选择

⑧ Python客户端redis-py

使用pip进行安装: pip install redis

redis-py的使用方法也比较简单,下面将逐步骤介绍。

1)导入依赖库:

import redis

2)生成客户端连接:需要Redis的实例IP和端好让口两个参数:友备局

client = redis.StrictRedis(host='127.0.0.1', port=6379)

3)执行命令

# True 

client.set(key, "python-redis") 

# world 

client.get(key)

输出结果为:

True 

key:hello, value:python-redis

5中数据类型API

eval(String script, int keyCount, String... params) 

script_load(String script) 

evalsha(String sha1, int keyCount, String... params:

eval函数有三个参数,分别是:

·script:滚告Lua脚本内容。

·keyCount:键的个数。

·params:相关参数KEYS和ARGV。

script_load和evalsha函数要一起使用,首先使用script_load将脚本加载到 Redis中

evalsha函数用来执行脚本的哈希值,它需要三个参数:

·scriptSha:脚本的SHA1。

·keyCount:键的个数。

·params:相关参数KEYS和ARGV。

import redis

client = redis.StrictRedis(host='127.0.0.1', port=6379)

script = "return redis.call('get',KEYS[1])"

scriptSha = client.script_load(script)

print client.evalsha(scriptSha, 1, "hello");

⑨ redis是什么

Redis是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。从2010年3月15日起,Redis的开发工作由VMware主持。

redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。
Redis 是一个高性能的key-value数据库。 redis的出现,很大程度补偿了memcached这类key/value存储的不足,在部 分场合可以对关系数据库起到很好的补充作用。它提供了Python,Ruby,Erlang,PHP客户端,使用很方便。[1]
Redis支持主从同步。数据可以从主服务器向任意数量的从服务器上同步,从服务器可以是关联其他从服务器的主服务器。这使得Redis可执行单层树复制。从盘可以有意无意的对数据进行写操作。由于完全实现了发布/订阅机制,使得从数据库在任何地方同步树时,可订阅一个频道并接收主服务器完整的消息发布记录。同步对读取操作的可扩展性和数据冗余很有帮助。

热点内容
内置存储卡可以拆吗 发布:2025-05-18 04:16:35 浏览:333
编译原理课时设置 发布:2025-05-18 04:13:28 浏览:376
linux中进入ip地址服务器 发布:2025-05-18 04:11:21 浏览:610
java用什么软件写 发布:2025-05-18 03:56:19 浏览:31
linux配置vim编译c 发布:2025-05-18 03:55:07 浏览:107
砸百鬼脚本 发布:2025-05-18 03:53:34 浏览:941
安卓手机如何拍视频和苹果一样 发布:2025-05-18 03:40:47 浏览:739
为什么安卓手机连不上苹果7热点 发布:2025-05-18 03:40:13 浏览:802
网卡访问 发布:2025-05-18 03:35:04 浏览:510
接收和发送服务器地址 发布:2025-05-18 03:33:48 浏览:371