当前位置:首页 » 编程语言 » python爬虫豆瓣250

python爬虫豆瓣250

发布时间: 2023-06-02 06:59:56

python爬虫实战(1)requests爬取豆瓣电影TOP250

爬取时间:2020/11/25
系统环境:Windows 10
所用工具:Jupyter NotebookPython 3.0
涉及的库:requestslxmlpandasmatplotlib umpy

蛋肥想法: 先将电影名称、原名、评分、评价人数、分类信息从网站上爬取下来。

蛋肥想法: print数据列表后发现电影原名、分类信息等存在不需要的字符,需预先处理;同时因为后续想做一个豆瓣电影TOP250的维度分布图,而同一电影存在多个发行国家、类型(如“法国 美国 / 剧情 动作 犯罪”),为了简(偷)便(懒),这里均取第一个作为记入的数据;最后将数据保存为xlsx。

蛋肥想法: 蛋肥想知道在豆瓣电影TOP250中年份、国家、类型的维度数据,为了练手,使用刚才保存成xlsx的数据,并分别画成雷达图、柱形图、扇形图。

❷ python爬虫怎么做

大到各类搜索引擎,小到日常数据采集,都离不开网络爬虫。爬虫的基本原理很简单,遍历网络中网页,抓取感兴趣的数据内容。这篇文章会从零开始介绍如何编写一个网络爬虫抓取数据做告宏,然后会一步步逐渐完善爬虫的抓取功能。

工具安装

我们需要安装python,python的requests和BeautifulSoup库。我们用Requests库用抓取网页的内容,使用BeautifulSoup库来从网页中提取数据。

安装python

运行pipinstallrequests

运行pipinstallBeautifulSoup

抓取网页

完成必要工具安装后,我们正式开始编写我们的爬虫。我们的第一个任务是要抓取所有豆瓣上的图书信息。我们以/subject/26986954/为例,首先看看开如何抓取网页的内容。

使用python的requests提供的get()方法我们可以非常简单的获取的指定网页的内纯册容,代码如下:

提取内容

抓取到网页的内容后,我们要做的就是提取出我们想要的内容。在我们的第一个例子中,我们只需要提取书名。首先我们导入BeautifulSoup库,使用BeautifulSoup我们可以非常简单的提取网页的特定内容。

连续抓取网页

到目前为止,我们已经可以抓取单个网页的内容了,现在让我们看看如何抓取整个网站的内容。我们知道网页之间是通过超链接互相连接在一起的,通过链接我们可以访问整个网络。所以我们可以从每个页面提取出包含指向其它网页的链接,然后重复的对新链接进行抓取。

通过以上几步我们就可以写出一个最原始的爬虫。在理解了爬虫原理的基础上,我们可以进一步对爬虫进行完善。

写过一个系列关于爬虫的文章:/i6567289381185389064/。感兴趣的可以前往查看。

Python基本环境的搭建,爬虫的基本原理以及爬虫的原型

Python爬虫入门(第1部分)

如何使用BeautifulSoup对网页内容进行提取

Python爬虫入门(第2部分)

爬虫运行时数据的存储数据,以sqlite和MySQL作为示例

Python爬虫入门(第3部分)

使用seleniumwebdriver对动态网页进行抓取

Python爬虫入门(第4部分)

讨论了如何处理网站的反爬虫策略

Python爬友如虫入门(第5部分)

对Python的Scrapy爬虫框架做了介绍,并简单的演示了如何在Scrapy下进行开发

Python爬虫入门(第6部分)

❸ python爬虫小白求帮助:爬取豆瓣网的内容 不知道哪里出问题了 只能print一行

只获取到一个movie_name 和 一个movies_score,然后遍历这两个值,循环一定是只走两遍。不知道你这个是不是豆瓣top250 我看页面元素好像不对了

❹ 豆瓣为什么用python

1.从语言排行榜上看
Python虽然是25岁的大叔级编程语言,但是近年来Python反而变得越来越流行,在TIOBE编程语言指数排行榜中,Python的排名从去年的第六名飙升到了第四名:

2.语言本身简洁,优美,功能超级强大
Python的语法非常接近英语,去掉了传统的C++/java使用大括号来区分一个方法体或者类的形式,而是采用强制缩进来表示一个方法或者类。风格统一,非常优美.而且内置了很多高效的库,打个比方,同样一项工作C语言可能要1000行,java要100行,python可能只要10行. 而且从桌面应用,web开发,自动化测试运维,爬虫,人工智能,大数据处理都能做,以后会详细讲一下.

3.跨平台
类似很多流行编程语言Java、C++、C都能跨平台而且开源,Python也是如此
由于它是开源的,所以也支持可移植性。你可以随处运行Python,换句话说你在window上写的代码,可以很方便的再linux,mac上运行。

4.非常火爆的社区
Python有非常有名的社区,而且人气很火爆,大家可以去python官网经常逛逛,还有github上搜一下python的帖子,很多开源的库,你能想到的基本都已经有人开发了.而且版本还在不断的迭代.

5.很多有名的大公司在用
国外非常有名的有Google,facebook,Yahoo,YueTube,还有美国宇航局NASA,像着名的开源云计算平台openstack也是用python写的,还有国内的豆瓣也是用python写的.

❺ 如何用python爬取豆瓣读书的数据

这两天爬了豆瓣读书的十万条左右的书目信息,用时将近一天,现在趁着这个空闲把代码总结一下,还是菜鸟,都是用的最简单最笨的方法,还请路过的大神不吝赐教。
第一步,先看一下我们需要的库:

import requests #用来请求网页
from bs4 import BeautifulSoup #解析网页
import time #设置延时时间,防止爬取过于频繁被封IP号
import re #正则表达式库
import pymysql #由于爬取的数据太多,我们要把他存入MySQL数据库中,这个库用于连接数据库
import random #这个库里用到了产生随机数的randint函数,和上面的time搭配,使爬取间隔时间随机

这个是豆瓣的网址:x-sorttags-all
我们要从这里获取所有分类的标签链接,进一步去爬取里面的信息,代码先贴上来:

import requests
from bs4 import BeautifulSoup #导入库

url="httom/tag/?icn=index-nav"
wb_data=requests.get(url) #请求网址
soup=BeautifulSoup(wb_data.text,"lxml") #解析网页信息
tags=soup.select("#content > div > div.article > div > div > table > tbody > tr > td > a")
#根据CSS路径查找标签信息,CSS路径获取方法,右键-检查- selector,tags返回的是一个列表
for tag in tags:
tag=tag.get_text() #将列表中的每一个标签信息提取出来
helf="hom/tag/"
#观察一下豆瓣的网址,基本都是这部分加上标签信息,所以我们要组装网址,用于爬取标签详情页
url=helf+str(tag)
print(url) #网址组装完毕,输出

以上我们便爬取了所有标签下的网址,我们将这个文件命名为channel,并在channel中创建一个channel字符串,放上我们所有爬取的网址信息,等下爬取详情页的时候直接从这里提取链接就好了,如下:

channel='''
tag/程序
'''

现在,我们开始第二个程序。


QQ图片20160915233329.png


标签页下每一个图片的信息基本都是这样的,我们可以直接从这里提取到标题,作者,出版社,出版时间,价格,评价人数,以及评分等信息(有些外国作品还会有译者信息),提取方法与提取标签类似,也是根据CSS路径提取。
我们先用一个网址来实验爬取:

url="htt/tag/科技"
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text.encode("utf-8"), "lxml")
tag=url.split("?")[0].split("/")[-1] #从链接里面提取标签信息,方便存储
detils=soup.select("#subject_list > ul > li > div.info > div.pub") #抓取作者,出版社信息,稍后我们用spite()函数再将他们分离出来
scors=soup.select("#subject_list > ul > li > div.info > div.star.clearfix > span.rating_nums") #抓取评分信息
persons=soup.select("#subject_list > ul > li > div.info > div.star.clearfix > span.pl") #评价人数
titles=soup.select("#subject_list > ul > li > div.info > h2 > a") #书名
#以上抓取的都是我们需要的html语言标签信息,我们还需要将他们一一分离出来
for detil,scor,person,title in zip(detils,scors,persons,titles):
#用一个zip()函数实现一次遍历
#因为一些标签中有译者信息,一些标签中没有,为避免错误,所以我们要用一个try来把他们分开执行
try:
author=detil.get_text().split("/",4)[0].split()[0] #这是含有译者信息的提取办法,根据“/” 把标签分为五部分,然后依次提取出来
yizhe= detil.get_text().split("/", 4)[1]
publish=detil.get_text().split("/", 4)[2]
time=detil.get_text().split("/", 4)[3].split()[0].split("-")[0] #时间我们只提取了出版年份
price=ceshi_priceone(detil) #因为价格的单位不统一,我们用一个函数把他们换算为“元”
scoe=scor.get_text() if True else "" #有些书目是没有评分的,为避免错误,我们把没有评分的信息设置为空
person=ceshi_person(person) #有些书目的评价人数显示少于十人,爬取过程中会出现错误,用一个函数来处理
title=title.get_text().split()[0]
#当没有译者信息时,会显示IndexError,我们分开处理
except IndexError:
try:
author=detil.get_text().split("/", 3)[0].split()[0]
yizhe="" #将detil信息划分为4部分提取,译者信息直接设置为空,其他与上面一样
publish=detil.get_text().split("/", 3)[1]
time=detil.get_text().split("/", 3)[2].split()[0].split("-")[0]
price=ceshi_pricetwo(detil)
scoe=scor.get_text() if True else ""
person=ceshi_person(person)
title=title.get_text().split()[0]
except (IndexError,TypeError):
continue
#出现其他错误信息,忽略,继续执行(有些书目信息下会没有出版社或者出版年份,但是数量很少,不影响我们大规模爬取,所以直接忽略)
except TypeError:
continue

#提取评价人数的函数,如果评价人数少于十人,按十人处理
def ceshi_person(person):
try:
person = int(person.get_text().split()[0][1:len(person.get_text().split()[0]) - 4])
except ValueError:
person = int(10)
return person

#分情况提取价格的函数,用正则表达式找到含有特殊字符的信息,并换算为“元”
def ceshi_priceone(price):
price = detil.get_text().split("/", 4)[4].split()
if re.match("USD", price[0]):
price = float(price[1]) * 6
elif re.match("CNY", price[0]):
price = price[1]
elif re.match("A$", price[0]):
price = float(price[1:len(price)]) * 6
else:
price = price[0]
return price
def ceshi_pricetwo(price):
price = detil.get_text().split("/", 3)[3].split()
if re.match("USD", price[0]):
price = float(price[1]) * 6
elif re.match("CNY", price[0]):
price = price[1]
elif re.match("A$", price[0]):
price = float(price[1:len(price)]) * 6
else:
price = price[0]
return price

实验成功后,我们就可以爬取数据并导入到数据库中了,以下为全部源码,特殊情况会用注释一一说明。

import requests
from bs4 import BeautifulSoup
import time
import re
import pymysql
from channel import channel #这是我们第一个程序爬取的链接信息
import random

def ceshi_person(person):
try:
person = int(person.get_text().split()[0][1:len(person.get_text().split()[0]) - 4])
except ValueError:
person = int(10)
return person

def ceshi_priceone(price):
price = detil.get_text().split("/", 4)[4].split()
if re.match("USD", price[0]):
price = float(price[1]) * 6
elif re.match("CNY", price[0]):
price = price[1]
elif re.match("A$", price[0]):
price = float(price[1:len(price)]) * 6
else:
price = price[0]
return price

def ceshi_pricetwo(price):
price = detil.get_text().split("/", 3)[3].split()
if re.match("USD", price[0]):
price = float(price[1]) * 6
elif re.match("CNY", price[0]):
price = price[1]
elif re.match("A$", price[0]):
price = float(price[1:len(price)]) * 6
else:
price = price[0]
return price


#这是上面的那个测试函数,我们把它放在主函数中
def mains(url):
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text.encode("utf-8"), "lxml")
tag=url.split("?")[0].split("/")[-1]
detils=soup.select("#subject_list > ul > li > div.info > div.pub")
scors=soup.select("#subject_list > ul > li > div.info > div.star.clearfix > span.rating_nums")
persons=soup.select("#subject_list > ul > li > div.info > div.star.clearfix > span.pl")
titles=soup.select("#subject_list > ul > li > div.info > h2 > a")
for detil,scor,person,title in zip(detils,scors,persons,titles):
l = [] #建一个列表,用于存放数据
try:
author=detil.get_text().split("/",4)[0].split()[0]
yizhe= detil.get_text().split("/", 4)[1]
publish=detil.get_text().split("/", 4)[2]
time=detil.get_text().split("/", 4)[3].split()[0].split("-")[0]
price=ceshi_priceone(detil)
scoe=scor.get_text() if True else ""
person=ceshi_person(person)
title=title.get_text().split()[0]
except IndexError:
try:
author=detil.get_text().split("/", 3)[0].split()[0]
yizhe=""
publish=detil.get_text().split("/", 3)[1]
time=detil.get_text().split("/", 3)[2].split()[0].split("-")[0]
price=ceshi_pricetwo(detil)
scoe=scor.get_text() if True else ""
person=ceshi_person(person)
title=title.get_text().split()[0]
except (IndexError,TypeError):
continue

except TypeError:
continue
l.append([title,scoe,author,price,time,publish,person,yizhe,tag])
#将爬取的数据依次填入列表中


sql="INSERT INTO allbooks values(%s,%s,%s,%s,%s,%s,%s,%s,%s)" #这是一条sql插入语句
cur.executemany(sql,l) #执行sql语句,并用executemary()函数批量插入数据库中
conn.commit()

#主函数到此结束


# 将Python连接到MySQL中的python数据库中
conn = pymysql.connect( user="root",password="123123",database="python",charset='utf8')
cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS allbooks') #如果数据库中有allbooks的数据库则删除
sql = """CREATE TABLE allbooks(
title CHAR(255) NOT NULL,
scor CHAR(255),
author CHAR(255),
price CHAR(255),
time CHAR(255),
publish CHAR(255),
person CHAR(255),
yizhe CHAR(255),
tag CHAR(255)
)"""
cur.execute(sql) #执行sql语句,新建一个allbooks的数据库


start = time.clock() #设置一个时钟,这样我们就能知道我们爬取了多长时间了
for urls in channel.split():
urlss=[urls+"?start={}&type=T".format(str(i)) for i in range(0,980,20)] #从channel中提取url信息,并组装成每一页的链接
for url in urlss:
mains(url) #执行主函数,开始爬取
print(url) #输出要爬取的链接,这样我们就能知道爬到哪了,发生错误也好处理
time.sleep(int(format(random.randint(0,9)))) #设置一个随机数时间,每爬一个网页可以随机的停一段时间,防止IP被封
end = time.clock()
print('Time Usage:', end - start) #爬取结束,输出爬取时间
count = cur.execute('select * from allbooks')
print('has %s record' % count) #输出爬取的总数目条数

# 释放数据连接
if cur:
cur.close()
if conn:
conn.close()

这样,一个程序就算完成了,豆瓣的书目信息就一条条地写进了我们的数据库中,当然,在爬取的过程中,也遇到了很多问题,比如标题返回的信息拆分后中会有空格,写入数据库中会出现错误,所以只截取了标题的第一部分,因而导致数据库中的一些书名不完整,过往的大神如果有什么办法,还请指教一二。
等待爬取的过程是漫长而又欣喜的,看着电脑上一条条信息被刷出来,成就感就不知不觉涌上心头;然而如果你吃饭时它在爬,你上厕所时它在爬,你都已经爬了个山回来了它还在爬时,便会有点崩溃了,担心电脑随时都会坏掉(还是穷学生换不起啊啊啊啊~)
所以,还是要好好学学设置断点,多线程,以及正则,路漫漫其修远兮,吾将上下而求索~共勉~

❻ .利用python获得豆瓣电影前30部电影的中文片名,排名,导演,主演,上映时间

热门频道

首页

博客

研修院

VIP

APP

问答

下载

社区

推荐频道

活动

招聘

专题

打开CSDN APP
Copyright © 1999-2020, CSDN.NET, All Rights Reserved

打开APP

python 网络爬虫 1.2 获取豆瓣TOP250电影的中英文名、港台名、导演、上映年份、电影分类以及评分,将数据存入文档。 原创
2021-07-19 01:03:15
2点赞

zynaln

码龄8年

关注
题目:
获取豆瓣TOP250电影的中英文名、港台名、导演、上映年份、电影分类以及评分,将数据存入文档。
代码:

输出结果:

文章知识点与官方知识档案匹配
Python入门技能树网络爬虫urllib
201761 人正在系统学习中
打开CSDN APP,看更多技术内容

最新发布 用python爬取豆瓣影评及影片信息(评论时间、用户ID、评论内容)
用python爬取豆瓣影评及影片信息(评论时间、用户ID、评论内容)
继续访问

python
写评论

7

14

2



分享

❼ python爬虫怎么处理豆瓣网页异常请求

1.URLError

首先解释下URLError可能产生的原因:

  • 网络无连接,即本机无法上网

  • 连接不到特定的服务器

  • 服务器不存在

  • 在代码中,我们需要用try-except语句来包围并捕获相应的异常。下面是一个例子,先感受下它的风骚

    Python

    1

    2

    3

    4

    5

    6

    7

  • import urllib2

    requset = urllib2.Request('http://www.xxxxx.com')

    try:

    urllib2.urlopen(requset)

    except urllib2.URLError, e:

    print e.reason

  • 我们利用了 urlopen方法访问了一个不存在的网址,运行结果如下:

    Python

    1

  • [Errno 11004] getaddrinfo failed

  • 它说明了错误代号是11004,错误原因是 getaddrinfo failed

    2.HTTPError

    HTTPError是URLError的子类,在你利用urlopen方法发出一个请求时,服务器上都会对应一个应答对象response,其中它包含一个数字”状态码”。举个例子,假如response是一个”重定向”,需定位到别的地址获取文档,urllib2将对此进行处理。

    其他不能处理的,urlopen会产生一个HTTPError,对应相应的状态吗,HTTP状态码表示HTTP协议所返回的响应的状态。下面将状态码归结如下:

    100:继续 客户端应当继续发送请求。客户端应当继续发送请求的剩余部分,或者如果请求已经完成,忽略这个响应。

    101: 转换协议 在发送完这个响应最后的空行后,服务器将会切换到在Upgrade 消息头中定义的那些协议。只有在切换新的协议更有好处的时候才应该采取类似措施。

    102:继续处理 由WebDAV(RFC 2518)扩展的状态码,代表处理将被继续执行。

    200:请求成功 处理方式:获得响应的内容,进行处理

    201:请求完成,结果是创建了新资源。新创建资源的URI可在响应的实体中得到 处理方式:爬虫中不会遇到

    202:请求被接受,但处理尚未完成 处理方式:阻塞等待

    204:服务器端已经实现了请求,但是没有返回新的信 息。如果客户是用户代理,则无须为此更新自身的文档视图。 处理方式:丢弃

    300:该状态码不被HTTP/1.0的应用程序直接使用, 只是作为3XX类型回应的默认解释。存在多个可用的被请求资源。 处理方式:若程序中能够处理,则进行进一步处理,如果程序中不能处理,则丢弃
    301:请求到的资源都会分配一个永久的URL,这样就可以在将来通过该URL来访问此资源 处理方式:重定向到分配的URL

    302:请求到的资源在一个不同的URL处临时保存 处理方式:重定向到临时的URL

    304:请求的资源未更新 处理方式:丢弃

    400:非法请求 处理方式:丢弃

    401:未授权 处理方式:丢弃

    403:禁止 处理方式:丢弃

    404:没有找到 处理方式:丢弃

    500:服务器内部错误 服务器遇到了一个未曾预料的状况,导致了它无法完成对请求的处理。一般来说,这个问题都会在服务器端的源代码出现错误时出现。

    501:服务器无法识别 服务器不支持当前请求所需要的某个功能。当服务器无法识别请求的方法,并且无法支持其对任何资源的请求。

    502:错误网关 作为网关或者代理工作的服务器尝试执行请求时,从上游服务器接收到无效的响应。

    503:服务出错 由于临时的服务器维护或者过载,服务器当前无法处理请求。这个状况是临时的,并且将在一段时间以后恢复。

    HTTPError实例产生后会有一个code属性,这就是是服务器发送的相关错误号。
    因为urllib2可以为你处理重定向,也就是3开头的代号可以被处理,并且100-299范围的号码指示成功,所以你只能看到400-599的错误号码。

    下面我们写一个例子来感受一下,捕获的异常是HTTPError,它会带有一个code属性,就是错误代号,另外我们又打印了reason属性,这是它的父类URLError的属性。

    Python

    1

    2

    3

    4

    5

    6

    7

    8

  • import urllib2

    req = urllib2.Request('httt/cqcre')

    try:

    urllib2.urlopen(req)

    except urllib2.HTTPError, e:

    print e.code

    print e.reason

  • 运行结果如下

    Python

    1

    2

  • 403

    Forbidden

  • 错误代号是403,错误原因是Forbidden,说明服务器禁止访问。

    我们知道,HTTPError的父类是URLError,根据编程经验,父类的异常应当写到子类异常的后面,如果子类捕获不到,那么可以捕获父类的异常,所以上述的代码可以这么改写

    Python

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

  • import urllib2

    req = urllib2.Request('hcqcre')

    try:

    urllib2.urlopen(req)

    except urllib2.HTTPError, e:

    print e.code

    except urllib2.URLError, e:

    print e.reason

    else:

    print "OK"

  • 如果捕获到了HTTPError,则输出code,不会再处理URLError异常。如果发生的不是HTTPError,则会去捕获URLError异常,输出错误原因。

    另外还可以加入 hasattr属性提前对属性进行判断,代码改写如下

    Python

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

  • import urllib2

    req = urllib2.Request('httcqcre')

    try:

    urllib2.urlopen(req)

    except urllib2.URLError, e:

    if hasattr(e,"code"):

    print e.code

    if hasattr(e,"reason"):

    print e.reason

    else:

    print "OK"

  • 首先对异常的属性进行判断,以免出现属性输出报错的现象。

    以上,就是对URLError和HTTPError的相关介绍,以及相应的错误处理办法,小伙伴们加油!

热点内容
内置存储卡可以拆吗 发布:2025-05-18 04:16:35 浏览:333
编译原理课时设置 发布:2025-05-18 04:13:28 浏览:376
linux中进入ip地址服务器 发布:2025-05-18 04:11:21 浏览:610
java用什么软件写 发布:2025-05-18 03:56:19 浏览:31
linux配置vim编译c 发布:2025-05-18 03:55:07 浏览:107
砸百鬼脚本 发布:2025-05-18 03:53:34 浏览:941
安卓手机如何拍视频和苹果一样 发布:2025-05-18 03:40:47 浏览:739
为什么安卓手机连不上苹果7热点 发布:2025-05-18 03:40:13 浏览:802
网卡访问 发布:2025-05-18 03:35:04 浏览:510
接收和发送服务器地址 发布:2025-05-18 03:33:48 浏览:371