当前位置:首页 » 编程语言 » python爬虫模块

python爬虫模块

发布时间: 2023-06-03 12:13:31

‘壹’ python编程基础之(五)Scrapy爬虫框架

经过前面四章的学习,我们已经可以使用Requests库、Beautiful Soup库和Re库,编写基本的Python爬虫程序了。那么这一章就来学习一个专业的网络爬虫框架--Scrapy。没错,是框架,而不是像前面介绍的函数功能库。

Scrapy是一个快速、功能强大的网络爬虫框架。

可能大家还不太了解什么是框架,爬虫框架其实是实现爬虫功能的一个软件结构和功能组件的集合。

简而言之, Scrapy就是一个爬虫程序的半成品,可以帮助用户实现专业的网络爬虫。

使用Scrapy框架,不需要你编写大量的代码,Scrapy已经把大部分工作都做好了,允许你调用几句代码便自动生成爬虫程序,可以节省大量的时间。

当然,框架所生成的代码基本是一致的,如果遇到一些特定的爬虫任务时,就不如自己使用Requests库搭建来的方便了。

PyCharm安装

测试安装:

出现框架版本说明安装成功。

掌握Scrapy爬虫框架的结构是使用好Scrapy的重中之重!

先上图:

整个结构可以简单地概括为: “5+2”结构和3条数据流

5个主要模块(及功能):

(1)控制所有模块之间的数据流。

(2)可以根据条件触发事件。

(1)根据请求下载网页。

(1)对所有爬取请求进行调度管理。

(1)解析DOWNLOADER返回的响应--response。

(2)产生爬取项--scraped item。

(3)产生额外的爬取请求--request。

(1)以流水线方式处理SPIDER产生的爬取项。

(2)由一组操作顺序组成,类似流水线,每个操作是一个ITEM PIPELINES类型。

(3)清理、检查和查重爬取项中的HTML数据并将数据存储数据库中。

2个中间键:

(1)对Engine、Scheler、Downloader之间进行用户可配置的控制。

(2)修改、丢弃、新增请求或响应。

(1)对请求和爬取项进行再处理。

(2)修改、丢弃、新增请求或爬取项。

3条数据流:

(1):图中数字 1-2

1:Engine从Spider处获得爬取请求--request。

2:Engine将爬取请求转发给Scheler,用于调度。

(2):图中数字 3-4-5-6

3:Engine从Scheler处获得下一个要爬取的请求。

4:Engine将爬取请求通过中间件发送给Downloader。

5:爬取网页后,Downloader形成响应--response,通过中间件发送给Engine。

6:Engine将收到的响应通过中间件发送给Spider处理。

(3):图中数字 7-8-9

7:Spider处理响应后产生爬取项--scraped item。

8:Engine将爬取项发送给Item Pipelines。

9:Engine将爬取请求发送给Scheler。

任务处理流程:从Spider的初始爬取请求开始爬取,Engine控制各模块数据流,不间断从Scheler处获得爬取请求,直至请求为空,最后到Item Pipelines存储数据结束。

作为用户,只需配置好Scrapy框架的Spider和Item Pipelines,也就是数据流的入口与出口,便可完成一个爬虫程序的搭建。Scrapy提供了简单的爬虫命令语句,帮助用户一键配置剩余文件,那我们便来看看有哪些好用的命令吧。

Scrapy采用命令行创建和运行爬虫

PyCharm打开Terminal,启动Scrapy:

Scrapy基本命令行格式:

具体常用命令如下:

下面用一个例子来学习一下命令的使用:

1.建立一个Scrapy爬虫工程,在已启动的Scrapy中继续输入:

执行该命令,系统会在PyCharm的工程文件中自动创建一个工程,命名为pythonDemo。

2.产生一个Scrapy爬虫,以教育部网站为例http://www.moe.gov.cn:

命令生成了一个名为demo的spider,并在Spiders目录下生成文件demo.py。

命令仅用于生成demo.py文件,该文件也可以手动生成。

观察一下demo.py文件:

3.配置产生的spider爬虫,也就是demo.py文件:

4.运行爬虫,爬取网页:

如果爬取成功,会发现在pythonDemo下多了一个t20210816_551472.html的文件,我们所爬取的网页内容都已经写入该文件了。

以上就是Scrapy框架的简单使用了。

Request对象表示一个HTTP请求,由Spider生成,由Downloader执行。

Response对象表示一个HTTP响应,由Downloader生成,有Spider处理。

Item对象表示一个从HTML页面中提取的信息内容,由Spider生成,由Item Pipelines处理。Item类似于字典类型,可以按照字典类型来操作。

‘贰’ python爬虫项目实战:爬取用户的所有信息,如性别、年龄等

python爬虫项目实战:
爬取糗事网络用户的所有信息,包括用户名、性别、年龄、内容等等。

10个步骤实现项目功能,下面开始实例讲解:
1.导入模块
import re
import urllib.request
from bs4 import BeautifulSoup
2.添加头文件,防止爬取过程被咐迹链拒绝衡孙链接
def qiuShi(url,page):
################### 模拟成高仿度浏览器的行为 ##############

heads ={
'Connection':'keep-alive',
'Accept-Language':'zh-CN,zh;q=0.9',
'Accept':'text/html,application/xhtml+xml,application/xml;
q=0.9,image/webp,image/apng, / ;q=0.8',
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36',
}
headall = []
for key,value in heads.items():
items = (key,value)

headall.append(items)

opener = urllib.request.build_opener()

opener.addheaders = headall

urllib.request.install_opener(opener)

data = opener.open(url).read().decode()

################## end ########################################
3.创建soup解析器对象
soup = BeautifulSoup(data,'lxml')
x = 0
4.开始使用BeautifulSoup4解析器提取用州铅户名信息
############### 获取用户名 ########################
name = []

unames = soup.find_all('h2')

for uname in unames:

name.append(uname.get_text())

#################end#############################
5.提取发表的内容信息
############## 发表的内容 #########################
cont = []
data4 = soup.find_all('div',class_='content')

data4 = str(data4)

soup3 = BeautifulSoup(data4,'lxml')
contents = soup3.find_all('span')
for content in contents:

cont.append(content.get_text())

##############end####################################
6.提取搞笑指数
#################搞笑指数##########################
happy = []

data2 = soup.find_all('span',class_="stats-vote")

data2 = str(data2) # 将列表转换成字符串形式才可以使用

soup1 = BeautifulSoup(data2,'lxml')
happynumbers = soup1.find_all('i',class_="number")
for happynumber in happynumbers:

happy.append(happynumber.get_text())

##################end#############################
7.提取评论数
############## 评论数 ############################
comm = []
data3 = soup.find_all('a',class_='qiushi_comments')
data3 = str(data3)

soup2 = BeautifulSoup(data3,'lxml')
comments = soup2.find_all('i',class_="number")
for comment in comments:

comm.append(comment.get_text())
############end#####################################
8.使用正则表达式提取性别和年龄
######## 获取性别和年龄 ##########################

pattern1 = '<div class="articleGender (w ?)Icon">(d ?)</div>'
sexages = re.compile(pattern1).findall(data)

9.设置用户所有信息输出的格局设置
################## 批量输出用户的所以个人信息 #################
print()
for sexage in sexages:
sa = sexage
print(' ' 17, '= = 第', page, '页-第', str(x+1) + '个用户 = = ',' ' 17)

print('【用户名】:',name[x],end='')

print('【性别】:',sa[0],' 【年龄】:',sa[1])

print('【内容】:',cont[x])

print('【搞笑指数】:',happy[x],' 【评论数】:',comm[x])
print(' ' 25,' 三八分割线 ',' ' 25)
x += 1
###################end##########################
10.设置循环遍历爬取13页的用户信息
for i in range(1,14):

url = ' https://www.qiushike.com/8hr/page/'+str(i)+'/'
qiuShi(url,i)
运行结果,部分截图:

‘叁’ 精通Python网络爬虫之网络爬虫学习路线

欲精通Python网络爬虫,必先了解网络爬虫学习路线,本篇经验主要解决这个问题。部分内容参考自书籍《精通Python网络爬虫》。

作者:韦玮

转载请注明出处

随着大数据时代的到来,人们对数据资源的需求越来越多,而爬虫是一种很好的自动采集数据的手段。

那么,如何才能精通Python网络爬虫呢?学习Python网络爬虫的路线应该如何进行呢?在此为大家具体进行介绍。

1、选择一款合适的编程语言

事实上,Python、PHP、JAVA等常见的语言都可以用于编写网络爬虫,你首先需要选择一款合适的编程语言,这些编程语言各有优势,可以根据习惯进行选择。在此笔者推荐使用Python进行爬虫项目的编写,其优点是:简洁、掌握难度低。

2、掌握Python的一些基础爬虫模块

当然,在进行这一步之前,你应当先掌握Python的一些简单语法基础,然后才可以使用Python语言进行爬虫项目的开发。

在掌握了Python的语法基础之后,你需要重点掌握一个Python的关于爬虫开发的基础模块。这些模块有很多可以供你选择,比如urllib、requests等等,只需要精通一个基础模块即可,不必要都精通,因为都是大同小异的,在此推荐的是掌握urllib,当然你可以根据你的习惯进行选择。

3、深入掌握一款合适的表达式

学会了如何爬取网页内容之后,你还需要学会进行信息的提取。事实上,信息的提取你可以通过表达式进行实现,同样,有很多表达式可以供你选择使用,常见的有正则表达式、XPath表达式、BeautifulSoup等,这些表达式你没有必要都精通,同样,精通1-2个,其他的掌握即可,在此建议精通掌握正则表达式以及XPath表达式,其他的了解掌握即可。正则表达式可以处理的数据的范围比较大,简言之,就是能力比较强,XPath只能处理XML格式的数据,有些形式的数据不能处理,但XPath处理数据会比较快。

4、深入掌握抓包分析技术

事实上,很多网站都会做一些反爬措施,即不想让你爬到他的数据。最常见的反爬手段就是对数据进行隐藏处理,这个时候,你就无法直接爬取相关的数据了。作为爬虫方,如果需要在这种情况下获取数据,那么你需要对相应的数据进行抓包分析,然后再根据分析结果进行处理。一般推荐掌握的抓包分析工具是Fiddler,当然你也可以用其他的抓包分析工具,没有特别的要求。

5、精通一款爬虫框架

事实上,当你学习到这一步的时候,你已经入门了。

这个时候,你可能需要深入掌握一款爬虫框架,因为采用框架开发爬虫项目,效率会更加高,并且项目也会更加完善。

同样,你可以有很多爬虫框架进行选择,比如Scrapy、pySpider等等,一样的,你没必要每一种框架都精通,只需要精通一种框架即可,其他框架都是大同小异的,当你深入精通一款框架的时候,其他的框架了解一下事实上你便能轻松使用,在此推荐掌握Scrapy框架,当然你可以根据习惯进行选择。

6、掌握常见的反爬策略与反爬处理策略

反爬,是相对于网站方来说的,对方不想给你爬他站点的数据,所以进行了一些限制,这就是反爬。

反爬处理,是相对于爬虫方来说的,在对方进行了反爬策略之后,你还想爬相应的数据,就需要有相应的攻克手段,这个时候,就需要进行反爬处理。

事实上,反爬以及反爬处理都有一些基本的套路,万变不离其宗,这些后面作者会具体提到,感兴趣的可以关注。

常见的反爬策略主要有:

IP限制

UA限制

Cookie限制

资源随机化存储

动态加载技术

……

对应的反爬处理手段主要有:

IP代理池技术

用户代理池技术

Cookie保存与处理

自动触发技术

抓包分析技术+自动触发技术

……

这些大家在此先有一个基本的思路印象即可,后面都会具体通过实战案例去介绍。

7、掌握PhantomJS、Selenium等工具的使用

有一些站点,通过常规的爬虫很难去进行爬取,这个时候,你需要借助一些工具模块进行,比如PhantomJS、Selenium等,所以,你还需要掌握PhantomJS、Selenium等工具的常规使用方法。

8、掌握分布式爬虫技术与数据去重技术

如果你已经学习或者研究到到了这里,那么恭喜你,相信现在你爬任何网站都已经不是问题了,反爬对你来说也只是一道形同虚设的墙而已了。

但是,如果要爬取的资源非常非常多,靠一个单机爬虫去跑,仍然无法达到你的目的,因为太慢了。

所以,这个时候,你还应当掌握一种技术,就是分布式爬虫技术,分布式爬虫的架构手段有很多,你可以依据真实的服务器集群进行,也可以依据虚拟化的多台服务器进行,你可以采用urllib+redis分布式架构手段,也可以采用Scrapy+redis架构手段,都没关系,关键是,你可以将爬虫任务部署到多台服务器中就OK。

至于数据去重技术,简单来说,目的就是要去除重复数据,如果数据量小,直接采用数据库的数据约束进行实现,如果数据量很大,建议采用布隆过滤器实现数据去重即可,布隆过滤器的实现在Python中也是不难的。

以上是如果你想精通Python网络爬虫的学习研究路线,按照这些步骤学习下去,可以让你的爬虫技术得到非常大的提升。

至于有些朋友问到,使用Windows系统还是Linux系统,其实,没关系的,一般建议学习的时候使用Windows系统进行就行,比较考虑到大部分朋友对该系统比较数据,但是在实际运行爬虫任务的时候,把爬虫部署到Linux系统中运行,这样效率比较高。由于Python的可移植性非常好,所以你在不同的平台中运行一个爬虫,代码基本上不用进行什么修改,只需要学会部署到Linux中即可。所以,这也是为什么说使用Windows系统还是Linux系统进行学习都没多大影响的原因之一。

本篇文章主要是为那些想学习Python网络爬虫,但是又不知道从何学起,怎么学下去的朋友而写的。希望通过本篇文章,可以让你对Python网络爬虫的研究路线有一个清晰的了解,这样,本篇文章的目的就达到了,加油!

本文章由作者韦玮原创,转载请注明出处。

‘肆’ Python中的爬虫框架有哪些呢

实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来爬虫。但很多人选择Python来写爬虫,为什么呢?因为Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实现你想要的功能。更重要的,Python也是数据挖掘和分析的好能手。那么,Python爬虫一般用什么框架比较好?
一般来讲,只有在遇到比较大型的需求时,才会使用Python爬虫框架。这样的做的主要目的,是为了方便管理以及扩展。本文我将向大家推荐十个Python爬虫框架。
1、Scrapy:Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。它是很强大的爬虫框架,可以满足简单的页面爬取,比如可以明确获知url pattern的情况。用这个框架可以轻松爬下来如亚马逊商品信息之类的数据。但是对于稍微复杂一点的页面,如weibo的页面信息,这个框架就满足不了需求了。它的特性有:HTML, XML源数据 选择及提取 的内置支持;提供了一系列在spider之间共享的可复用的过滤器(即 Item Loaders),对智能处理爬取数据提供了内置支持。
2、Crawley:高速爬取对应网站的内容,支持关系和非关系数据库,数据可以导出为JSON、XML等。
3、Portia:是一个开源可视化爬虫工具,可让使用者在不需要任何编程知识的情况下爬取网站!简单地注释自己感兴趣的页面,Portia将创建一个蜘蛛来从类似的页面提取数据。简单来讲,它是基于scrapy内核;可视化爬取内容,不需要任何开发专业知识;动态匹配相同模板的内容。

4、newspaper:可以用来提取新闻、文章和内容分析。使用多线程,支持10多种语言等。作者从requests库的简洁与强大得到灵感,使用Python开发的可用于提取文章内容的程序。支持10多种语言并且所有的都是unicode编码。
5、Python-goose:Java写的文章提取工具。Python-goose框架可提取的信息包括:文章主体内容、文章主要图片、文章中嵌入的任何Youtube/Vimeo视频、元描述、元标签。
6、Beautiful Soup:名气大,整合了一些常用爬虫需求。它是一个可以从HTML或XML文件中提取数据的Python库。它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式.Beautiful Soup会帮你节省数小时甚至数天的工作时间。Beautiful Soup的缺点是不能加载JS。
7、mechanize:它的优点是可以加载JS。当然它也有缺点,比如文档严重缺失。不过通过官方的example以及人肉尝试的方法,还是勉强能用的。
8、selenium:这是一个调用浏览器的driver,通过这个库你可以直接调用浏览器完成某些操作,比如输入验证码。Selenium是自动化测试工具,它支持各种浏览器,包括 Chrome,Safari,Firefox等主流界面式浏览器,如果在这些浏览器里面安装一个 Selenium 的插件,可以方便地实现Web界面的测试. Selenium支持浏览器驱动。Selenium支持多种语言开发,比如 Java,C,Ruby等等,PhantomJS 用来渲染解析JS,Selenium 用来驱动以及与Python的对接,Python进行后期的处理。
9、cola:是一个分布式的爬虫框架,对于用户来说,只需编写几个特定的函数,而无需关注分布式运行的细节。任务会自动分配到多台机器上,整个过程对用户是透明的。项目整体设计有点糟,模块间耦合度较高。
10、PySpider:一个国人编写的强大的网络爬虫系统并带有强大的WebUI。采用Python语言编写,分布式架构,支持多种数据库后端,强大的WebUI支持脚本编辑器,任务监视器,项目管理器以及结果查看器。Python脚本控制,可以用任何你喜欢的html解析包。

‘伍’ Python爬虫笔记(二)requests模块get,post,代理

  import requests

  base_url = 'https://www..com'

  response = requests.get(base_url)

        url=请求url,

        headers =请求头字典,

        params = 请求参数字典。

        timeout = 超时时长,

    )---->response对象

  服务器响应包含:状态行(协议,状态码)、响应头,空行,响应正文

    字符串格式:response.text

    bytes类型:response.content

        response.headers['cookie']

    response.text获取到的字符串类型的响应正文,

    其实是通过下面的步骤获取的:

        response.text = response.content.decode(response.encoding)

    产生的原因:编码和解码的编码格式不一致造成的。

        str.encode('编码')---将字符串按指定编码解码成bytes类型

        bytes.decode('编码')---将bytes类型按指定编码编码成字符串。

    a、response.content.decode('页面正确的编码格式')

        <meta http-equiv="content-type" content="text/html;charset=utf-8">

    b、找到正确的编码,设置到response.encoding中

        response.encoding = 正确的编码

        response.text--->正确的页面内容。

  a、没有请求参数的情况下,只需要确定url和headers字典。

  b、get请求是有请求参数。

    在chrome浏览器中,下面找query_string_params,

    将里面的参数封装到params字典中。

  c、分页主要是查看每页中,请求参数页码字段的变化,

  找到变化规律,用for循环就可以做到分页。

  requests.post(

    url=请求url,

    headers = 请求头字典,

    data=请求数据字典

    timeout=超时时长

  )---response对象

  post请求一般返回数据都是json数据。

(1)response.json()--->json字符串所对应的python的list或者dict

(2)用 json 模块。

    json.loads(json_str)---->json_data(python的list或者dict)

    json.mps(json_data)--->json_str

  post请求能否成功,关键看**请求参数**。

  如何查找是哪个请求参数在影响数据获取?

  --->通过对比,找到变化的参数。

  变化参数如何找到参数的生成方式,就是解决这个ajax请求数据获取的途径。

**寻找的办法**有以下几种:

    (1)写死在页面。

    (2)写在js中。

    (3)请求参数是在之前的一条ajax请求的数据里面提前获取好的。

  代理形象的说,他是网络信息中转站。

  实际上就是在本机和服务器之间架了一座桥。

  a、突破自身ip访问现实,可以访问一些平时访问不到网站。

  b、访问一些单位或者团体的资源。

  c、提高访问速度。代理的服务器主要作用就是中转,

  所以一般代理服务里面都是用内存来进行数据存储的。

  d、隐藏ip。

    ftp代理服务器---21,2121

    HTTP代理服务器---80,8080

    SSL/TLS代理:主要用访问加密网站。端口:443

    telnet代理 :主要用telnet远程控制,端口一般为23

    高度匿名代理:数据包会原封不动转化,在服务段看来,就好像一个普通用户在访问,做到完全隐藏ip。

    普通匿名代理:数据包会做一些改动,服务器有可能找到原ip。

    透明代理:不但改动数据,还会告诉服务,是谁访问的。

    间谍代理:指组织或者个人用于记录用户传输数据,然后进行研究,监控等目的的代理。   

  proxies = {

    '代理服务器的类型':'代理ip'

  }

  response = requests.get(proxies = proxies)

  代理服务器的类型:http,https,ftp

  代理ip:http://ip:port

热点内容
java用什么软件写 发布:2025-05-18 03:56:19 浏览:26
linux配置vim编译c 发布:2025-05-18 03:55:07 浏览:99
砸百鬼脚本 发布:2025-05-18 03:53:34 浏览:934
安卓手机如何拍视频和苹果一样 发布:2025-05-18 03:40:47 浏览:727
为什么安卓手机连不上苹果7热点 发布:2025-05-18 03:40:13 浏览:797
网卡访问 发布:2025-05-18 03:35:04 浏览:504
接收和发送服务器地址 发布:2025-05-18 03:33:48 浏览:366
ef数据库查询数据 发布:2025-05-18 03:29:36 浏览:668
百度云下载文件夹 发布:2025-05-18 03:17:33 浏览:674
php云开发 发布:2025-05-18 03:12:41 浏览:447