python开源代码
‘壹’ python代码解释
Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样。它使你能够专注于解决问题而不是去搞明白语言本身。易学
Python极其容易上手,因为Python有极其简单的语法。免费、开源
Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。高层语言
用Python语言编写程序的时候无需考虑诸如如何管理你的程序使用的内存一类的底层细节。可移植性
由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工作在不同平台上)。这些平台包括linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS、OS/390、z/OS、Palm OS、QNX、VMS、Psion、Acom RISC OS、VxWorks、PlayStation、Sharp Zaurus、Windows CE、PocketPC、Symbian以及Google基于linux开发的android平台。解释性
一个用编译性语言比如C或C++写的程序可以从源文件(即C或C++语言)转换到一个你的计算机使用的语言(二进制代码,即0和1)。这个过程通过编译器和不同的标记、选项完成。运行程序的时候,连接/转载器软件把你的程序从硬盘复制到内存中并且运行。而Python语言写的程序不需要编译成二进制代码。你可以直接从源代码运行程序。在计算机内部,Python解释器把源代码转换成称为字节码的中间形式,然后再把它翻译成计算机使用的机器语言并运行。这使得使用Python更加简单。也使得Python程序更加易于移植。面向对象
Python既支持面向过程的编程也支持面向对象的编程。在“面向过程”的语言中,程序是由过程或仅仅是可重用代码的函数构建起来的。在“面向对象”的语言中,程序是由数据和功能组合而成的对象构建起来的。可扩展性
如果需要一段关键代码运行得更快或者希望某些算法不公开,可以部分程序用C或C++编写,然后在Python程序中使用它们。可嵌入性
可以把Python嵌入C/C++程序,从而向程序用户提供脚本功能。丰富的库
Python标准库确实很庞大。它可以帮助处理各种工作,包括正则表达式、文档生成、单元测试、线程、数据库、网页浏览器、CGI、FTP、电子邮件、XML、XML-RPC、HTML、WAV文件、密码系统、GUI(图形用户界面)、Tk和其他与系统有关的操作。这被称作Python的“功能齐全”理念。除了标准库以外,还有许多其他高质量的库,如wxPython、Twisted和Python图像库等等。规范的代码
Python采用强制缩进的方式使得代码具有较好可读性。而Python语言写的程序不需要编译成二进制代码。
‘贰’ Python 有像WordPress这样的开源程序么
python的开源程序很多,除了wordpress外还有如下:
Django: Python Web应用开发框架
Django 应该是最出名的Python框架,GAE甚至Erlang都有框架受它影响。Django是走大而全的方向,它最出名的是其全自动化的管理后台:只需要使用起ORM,做简单的对象定义,它就能自动生成数据库结构、以及全功能的管理后台。
Diesel:基于Greenlet的事件I/O框架
Diesel提供一个整洁的API来编写网络客户端和服务器。支持TCP和UDP。
Flask:一个用Python编写的轻量级Web应用框架
Flask是一个使用Python编写的轻量级Web应用框架。基于Werkzeug WSGI工具箱和Jinja2 模板引擎。Flask也被称为“microframework”,因为它使用简单的核心,用extension增加其他功能。Flask没有默认使用的数据库、窗体验证工具。
Cubes:轻量级Python OLAP框架
Cubes是一个轻量级Python框架,包含OLAP、多维数据分析和浏览聚合数据(aggregated data)等工具。
Kartograph.py:创造矢量地图的轻量级Python框架
Kartograph是一个Python库,用来为ESRI生成SVG地图。Kartograph.py目前仍处于beta阶段,你可以在virtualenv环境下来测试。
Pulsar:Python的事件驱动并发框架
Pulsar是一个事件驱动的并发框架,有了pulsar,你可以写出在不同进程或线程中运行一个或多个活动的异步服务器。
Web2py:全栈式Web框架
Web2py是一个为Python语言提供的全功能Web应用框架,旨在敏捷快速的开发Web应用,具有快速、安全以及可移植的数据库驱动的应用,兼容Google App Engine。
Falcon:构建云API和网络应用后端的高性能Python框架
Falcon是一个构建云API的高性能Python框架,它鼓励使用REST架构风格,尽可能以最少的力气做最多的事情。
Dpark:Python版的Spark
DPark是Spark的Python克隆,是一个Python实现的分布式计算框架,可以非常方便地实现大规模数据处理和迭代计算。DPark由豆瓣实现,目前豆瓣内部的绝大多数数据分析都使用DPark完成,正日趋完善。
Buildbot:基于Python的持续集成测试框架
Buildbot是一个开源框架,可以自动化软件构建、测试和发布等过程。每当代码有改变,服务器要求不同平台上的客户端立即进行代码构建和测试,收集并报告不同平台的构建和测试结果。
Zerorpc:基于ZeroMQ的高性能分布式RPC框架
Zerorpc是一个基于ZeroMQ和MessagePack开发的远程过程调用协议(RPC)实现。和 Zerorpc 一起使用的 Service API 被称为 zeroservice。Zerorpc 可以通过编程或命令行方式调用。
Bottle: 微型Python Web框架
Bottle是一个简单高效的遵循WSGI的微型python Web框架。说微型,是因为它只有一个文件,除Python标准库外,它不依赖于任何第三方模块。
Tornado:异步非阻塞IO的Python Web框架
Tornado的全称是Torado Web Server,从名字上看就可知道它可以用作Web服务器,但同时它也是一个Python Web的开发框架。最初是在FriendFeed公司的网站上使用,FaceBook收购了之后便开源了出来。
webpy: 轻量级的Python Web框架
webpy的设计理念力求精简(Keep it simple and powerful),源码很简短,只提供一个框架所必须的东西,不依赖大量的第三方模块,它没有URL路由、没有模板也没有数据库的访问。
Scrapy:Python的爬虫框架
Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便。
‘叁’ 去哪里找python的开源项目
GitHub是一个面向开源及私有软件项目的托管平台,因为只支持git 作为唯一的版本库格式进行托管,故名GitHub。作为开源代码库以及版本控制系统,Github拥有超过900万开发者用户。随着越来越多的应用程序转移到了云上,Github已经成为了管理软件开发以及发现已有代码的首选方法。在GitHub,用户可以十分轻易地找到海量的开源代码。
下面给大家介绍一些GitHub上25个开源项目:
(1)TensorFlow Models
如果你对机器学习和深度学习感兴趣,一定听说过TensorFlow。TensorFlow Models是一个开源存储库,可以找到许多与深度学习相关的库和模型。
(GitHub: https://github.com/tensorflow/models )
(2)Keras
Keras是一个高级神经网络API,用Python编写,能够在TensorFlow,CNTK或Theano之上运行。旨在完成深度学习的快速开发(GitHub: https://github.com/keras-team/keras )
(3)Flask
Flask 是一个微型的 Python 开发的 Web 框架,基于Werkzeug WSGI工具箱和Jinja2 模板引擎,使用BSD授权。
(GitHub: https://github.com/pallets/flask )
(4)scikit-learn
scikit-learn是一个用于机器学习的Python模块,基于 NumPy、SciPy 和 matplotlib 构建。,并遵循 BSD 许可协议。
(GitHub: https://github.com/scikit-learn )
(5)Zulip
Zulip是一款功能强大的开源群聊应用程序,它结合了实时聊天的即时性和线程对话的生产力优势。Zulip作为一个开源项目,被许多世界500强企业,大型组织以及其他需要实时聊天系统的用户选择使用,该系统允许用户每天轻松处理数百或数千条消息。Zulip拥有超过300名贡献者,每月合并超过500次提交,也是规模最大,发展最快的开源群聊项目。
(GitHub: https://github.com/zulip/zulip )
相关推荐:《Python入门教程》
(6)Django
Django 是 Python 编程语言驱动的一个开源模型-视图-控制器(MVC)风格的 Web 应用程序框架,旨在快速开发出清晰,实用的设计。使用 Django,我们在几分钟之内就可以创建高品质、易维护、数据库驱动的应用程序。
(GitHub: https://github.com/django/django )
(7)Rebound
Rebound 是一个当你得到编译错误时即时获取 Stack Overflow 结果的命令行工具。 就用 rebound 命令执行你的文件。这对程序员来说方便了不少。
(GitHub: https://github.com/shobrook/rebound )
(8)Google Images Download
这是一个命令行python程序,用于搜索Google Images上的关键字/关键短语,并可选择将图像下载到您的计算机。你也可以从另一个python文件调用此脚本。
(GitHub: https://github.com/hardikvasa/google-images-download )
(9)YouTube-dl
youtube-dl 是基于 Python 的命令行媒体文件下载工具,完全开源免费跨平台。用户只需使用简单命令并提供在线视频的网页地址即可让程序自动进行嗅探、下载、合并、命名和清理,最终得到已经命名的完整视频文件。
(GitHub: htt ps://github.com/rg3/youtube-dl )
(10)System Design Primer
此repo是一个系统的资源集合,可帮助你了解如何大规模构建系统。
(GitHub: https://github.com/donnemartin/system-design-primer )
(11)Mask R-CNN
Mask R-CNN用于对象检测和分割。这是对Python 3,Keras和TensorFlow的Mask R-CNN实现。该模型为图像中对象的每个实例生成边界框和分割蒙版。它基于特Feature Pyramid Network(FPN)和 ResNet101 backbone。
(GitHub: https://github.com/matterport/Mask_RCNN )
(12)Face Recognition
Face Recognition 是一个基于 Python 的人脸识别库,使用十分简便。这还提供了一个简单的face_recognition命令行工具,可以让您从命令行对图像文件夹进行人脸识别!
(GitHub: https://github.com/ageitgey/face_recognition )
(13)snallygaster
用于扫描HTTP服务器上的机密文件的工具。
(GitHub: https://github.com/hannob/snallygaster )
(14)Ansible
Ansible是一个极其简单的IT自动化系统。它可用于配置管理,应用程序部署,云配置,支持远程任务执行和多节点发布 - 包括通过负载平衡器轻松实现零停机滚动更新等操作。
(GitHub: https://github.com/ansible/ansible )
(15)Detectron
Detectron是Facebook AI 研究院开源的的软件系统,它实现了最先进的目标检测算法,包括Mask R-CNN。它是用Python编写的,由Caffe2深度学习框架提供支持。
(16)asciinema
终端会话记录器和asciinema.org的最佳搭档。
(GitHub: https://github.com/asciinema/asciinema )
(17)HTTPie
HTTPie 是一个开源的命令行的 HTTP 工具包,其目标是使与Web服务的CLI交互尽可能人性化。它提供了一个简单的http命令,允许使用简单自然的语法发送任意HTTP请求,并显示彩色输出。HTTPie可用于测试,调试以及通常与HTTP服务器交互。
(GitHub: https://github.com/jakubroztocil/httpie )
(18)You-Get
You-Get是一个小型命令行实用程序,用于从Web下载媒体内容(视频,音频,图像),支持国内外常用的视频网站。
(GitHub: https://github.com/soimort/you-get )
(19)Sentry
Sentry从根本上讲是一项服务,可以帮助用户实时监控和修复崩溃。基于Django构建,它包含一个完整的API,用于从任何语言、任何应用程序中发送事件。
(GitHub: https://github.com/getsentry/sentry )
(20)Tornado
Tornado是使用Python开发的全栈式(full-stack)Web框架和异步网络库,,最初是由FriendFeed上开发的。通过使用非阻塞网络I / O,Tornado可以扩展到数万个开放连接,是long polling、WebSockets和其他需要为用户维护长连接应用的理想选择。
(GitHub: https://github.com/tornadoweb/tornado )
(21)Magenta
Magenta是一个探索机器学习在创造艺术和音乐过程中的作用的研究项目。这主要涉及开发新的深度学习和强化学习算法,用于生成歌曲,图像,绘图等。但它也是构建智能工具和界面的探索,它允许艺术家和音乐家使用这些模型。
(GitHub: https://github.com/tensorflow/magenta )
(22)ZeroNet
ZeroNet是一个利用比特币的加密算法和BitTorrent技术提供的不受审查的网络,完全开源。
(GitHub: https://github.com/HelloZeroNet/ZeroNet )
(23)Gym
OpenAI Gym是一个用于开发和比较强化学习算法的工具包。这是Gym的开源库,可让让你访问标准化的环境。
(GitHub: https://github.com/openai/gym )
(24)Pandas
Pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。此外,它还有更广泛的目标,即成为所有语言中最强大,最灵活的开源数据分析/操作工具。它目前已经朝着这个目标迈进。
(GitHub: https://github.com/pandas-dev/pandas )
(25)Luigi
Luigi 是一个 Python 模块,可以帮你构建复杂的批量作业管道。处理依赖决议、工作流管理、可视化展示等等,内建 Hadoop 支持。(GitHub: https://github.com/spotify/luigi )
‘肆’ 有python写的程序是否必须开源
“开源”这个词不只是说别人能否得到你的源代码, 而是说, 你是否授权别人在一定条件下使用、修改、重新发布你的代码。 所以开源什么的完全取决于你自己。 当然相对来说, 解释语言从技术上保护代码的难度大一些, 但是从法律上说是没差别的
‘伍’ 收藏!3个最佳学习Python编程的开源库
1、learn-python3
这个存储库一共有19本Jupyter笔记本。它涵盖了字符串和条件之类的基础知识,然后讨论了面向对象编程,以及如何处理异常和一些Python标准库的特性等。每一个主题都有一个“notebook”链接,它会向你介绍该主题和一些示例代码,当你完成这些内容之后,还有一个练习链接,点击后你就可以做一些测试题。
项目地址:https://github.com/jerry-git/learn-python3
2、learn-python
这个存储库还可以作为Python的介绍,帮助你从初级水平上升至中级,这里的中级指的是熟练地使用这种编程语言,而不仅仅是简单的循环和算法。该存储库是一个Python脚本集合,每个脚本都是一个核心类别的子主题,比如“操作符”、“数据类型”和“控制流”。
你不必完整地学习该课程,正如作者指出的那样,你还可以将存储库用作备忘单,在需要的时候,快速查找,查看文档,查看代码,然后运行测试,看代码是否能正常运行,是否按照代码准则编写。
项目地址:https://github.com/trekhleb/learn-python/blob/master/src/control_flow/test_if.py
3、full-speed-python
该存储库快速介绍了字符串和列表等基础知识,然后快速深入到更高级的主题,“类”和“异步编程”等,作者在写这本书时采用了一种实用的方法,用代码示例简要介绍了每个主题,然后直接跳到练习问题,让读者可以自己尝试。你可以在项目详情页下载pdf/epub文件。
项目地址:https://github.com/joaoventura/full-speed-python
关于3个最佳学习Python编程的开源库,青藤小编就和您分享到这里了。如果您对python编程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于python编程的技巧及素材等内容,可以点击本站的其他文章进行学习。