当前位置:首页 » 编程语言 » 零起点python大数据

零起点python大数据

发布时间: 2025-04-16 12:55:00

Ⅰ 新手python数据分析如何入门

1、数据获取Python具有灵活易用,便利读写的特点,其能够非常便利地调用数据库和本地的数据,同时,Python也是当下网络爬虫的首选东西。Scrapy爬虫,Python开发的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,能够用于数据挖掘、监测和自动化测验。
2、数据整理NumPy供给了许多高档的数值编程东西,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司运用,以及核心的科学核算组织如:Lawrence
Livermore,NASA用其处理一些原本运用C++,Fortran或Matlab等所做的使命。PandasPandas是根据NumPy的一种东西,该东西是为了处理数据剖析使命而创立的。Pandas纳入了大量库和一些标准的数据模型,供给了高效地操作大型数据集所需的东西。pandas供给了大量能使咱们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强壮而高效的数据剖析环境的重要因素之一。
3、建模剖析Scikit-learn从事数据剖析建模必学的包,供给及汇总了当时数据剖析范畴常见的算法及处理问题,如分类问题、回归问题、聚类问题、降维、模型挑选、特征工程。
4、数据可视化如果在Python中看可视化,你可能会想到Matplotlib。除此之外,Seaborn是一个类似的包,这是用于统计可视化的包。关于自学python入门,Python数据剖析怎么入门,以上就是一个根本的学习路线规划了。

Ⅱ 零基础,学python好还是学大数据好,

Python是一种面向对象、交互式计算机程序设计语言。它的特点是语法简捷而清晰。由于它的易学、易读的特性,有些学校用它代替C语言作为基础入门的语言。同时Python且具有丰富和强大的类库,基本上能胜任平时需要的编程工作,而且它对一些新兴的技术例如大数据、机器学习等也有较好的支持。大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。大数据专业要学的内容分为两种。

大数据专业相对来说还是有一定难度的,毕竟大数据开发技术所包含的编程技术知识是比较杂且多的如果是计算机专业的学生或者自身有一定大数据开发基础的人学大数据相对来说还会比较容易,会比非计算机专业的人士好很多,但对于零基础小伙伴学习来说想要学习大数据,难度还是很高的。应该根据自身的知识基础、能力特点和兴趣爱好来选择学习方向。千锋教育拥有多年IT培训服务经验,采用全程面授高品质、高体验培养模式,合作企业达20000余家,覆盖全国一线二线城市大中小型公司,成功帮助20000余名人才实现就业。

Ⅲ 如何用Python进行大数据挖掘和分析

如何用Python进行大数据挖掘和分析?快速入门路径图
大数据无处不在。在时下这个年代,不管你喜欢与否,在运营一个成功的商业的过程中都有可能会遇到它。
什么是 大数据 ?
大数据就像它看起来那样——有大量的数据。单独而言,你能从单一的数据获取的洞见穷其有限。但是结合复杂数学模型以及强大计算能力的TB级数据,却能创造出人类无法制造的洞见。大数据分析提供给商业的价值是无形的,并且每天都在超越人类的能力。
大数据分析的第一步就是要收集数据本身,也就是众所周知的“数据挖掘”。大部分的企业处理着GB级的数据,这些数据有用户数据、产品数据和地理位置数据。今天,我将会带着大家一起探索如何用 Python 进行大数据挖掘和分析?
为什么选择Python?
Python最大的优点就是简单易用。这个语言有着直观的语法并且还是个强大的多用途语言。这一点在大数据分析环境中很重要,并且许多企业内部已经在使用Python了,比如Google,YouTube,迪士尼等。还有,Python是开源的,并且有很多用于数据科学的类库。
现在,如果你真的要用Python进行大数据分析的话,毫无疑问你需要了解Python的语法,理解正则表达式,知道什么是元组、字符串、字典、字典推导式、列表和列表推导式——这只是开始。
数据分析流程
一般可以按“数据获取-数据存储与提取-数据预处理-数据建模与分析-数据可视化”这样的步骤来实施一个数据分析项目。按照这个流程,每个部分需要掌握的细分知识点如下:
数据获取:公开数据、Python爬虫
外部数据的获取方式主要有以下两种。
第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。
另一种获取外部数据的方式就是爬虫。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。
在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………
以及,如何用 Python 库(urllib、BeautifulSoup、requests、scrapy)实现网页爬虫。
掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、使用cookie信息、模拟用户登录、抓包分析、搭建代理池等等,来应对不同网站的反爬虫限制。
数据存取:SQL语言
在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:
提取特定情况下的数据
数据库的增、删、查、改
数据的分组聚合、如何建立多个表之间的联系
数据预处理:Python(pandas)
很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
选择:数据访问
缺失值处理:对缺失数据行进行删除或填充
重复值处理:重复值的判断与删除
异常值处理:清除不必要的空格和极端、异常数据
相关操作:描述性统计、Apply、直方图等
合并:符合各种逻辑关系的合并操作
分组:数据划分、分别执行函数、数据重组
Reshaping:快速生成数据透视表
概率论及统计学知识
需要掌握的知识点如下:
基本统计量:均值、中位数、众数、百分位数、极值等
其他描述性统计量:偏度、方差、标准差、显着性等
其他统计知识:总体和样本、参数和统计量、ErrorBar
概率分布与假设检验:各种分布、假设检验流程
其他概率论知识:条件概率、贝叶斯等
有了统计学的基本知识,你就可以用这些统计量做基本的分析了。你可以使用 Seaborn、matplotlib 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。
Python 数据分析
掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:
回归分析:线性回归、逻辑回归
基本的分类算法:决策树、随机森林……
基本的聚类算法:k-means……
特征工程基础:如何用特征选择优化模型
调参方法:如何调节参数优化模型
Python 数据分析包:scipy、numpy、scikit-learn等
在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。
当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。
然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去了解如何通过特征提取、参数调节来提升预测的精度。
你可以通过 Python 中的 scikit-learn 库来实现数据分析、数据挖掘建模和分析的全过程。
总结
其实做数据挖掘不是梦,5步就能让你成为一个Python爬虫高手!

Ⅳ 如何从零开始学python

1、学习的时候,我们都是要从Python的基础语法开始学习 ,了解什么是Python的变量 什么是循环 什么是函数,什么是模块。类等等。总之,基础是学习以后高级开发的基石。
这个阶段可以,选择一些经典书籍或者视频进行学习。
书籍可以看看《python快乐编程—基础入门》这本书,是针对零基础学生来编写的书。

2、在学习完基础语法的时候,你也对python有了一定程度的了解了,也知道Python有很多的学习方向,比如说数据采集方向(爬虫),或者Web开发方向,也可能是最近特别火热的人工智能方向。每个方向所需要的技术都是不尽相同的,所以在我们学习完成Python的基础语法之后,一定要慎重选择自己之后的进阶方向。
3、在进阶阶段,建议以最新的python视频学习为主,相关书籍为辅,这个阶段主要是学的技术是最新的,不要给自己留一个学完之后技术已经过时的惨败后果。
此外还有一些小小的学习技巧分享给大家,希望大家调整好心态,坚持下去!
1.作为小白刚接触编程,理解起来慢很正常。不能理解的东西,也不要死磕太久,在不断的练习中,你对代码的理解会越来越深。
2.个人认为,人按学习能力可以暴力分为:上手快&忘得快,上手慢&理解深,上手快&理解深。好了,第三类人我就不想多说什么了。。。相信很多小伙伴都是第二类人!
3. 遇到问题,别死磕,多用搜索引擎,多看大牛的博客。
4. 觉得某个知识点时间花得久了,无非是想短时间投入,获得较大的成就感,或者说想一帆风顺敲代码,别遇到什么bug。不存在的。而且,一般情况下,花越多时间理解的知识点,花越多时间改好的bug,不是会获得越大的成就感才对嘛?!

Ⅳ Python数据分析怎么入门

一、数据获取Python具有灵活易用,方便读写的特点,其可以非常方便地调用数据库和本地的数据,同时,Python也是当下网络爬虫的首选工具。Scrapy爬虫,Python开发的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。

二、数据整理NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些本来使用C++,Fortran或Matlab等所做的任务。PandasPandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。Pandas纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。

三、建模分析Scikit-learn从事数据分析建模必学的包,提供及汇总了当前数据分析领域常见的算法及解决问题,如分类问题、回归问题、聚类问题、降维、模型选择、特征工程。四、数据可视化如果在Python中看可视化,你可能会想到Matplotlib。除此之外,Seaborn是一个类似的包,这是用于统计可视化的包。

关于Python数据分析怎么入门,环球青藤小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。如果您还想继续了解关于python编程的学习方法及素材等内容,可以点击本站其他文章学习。

热点内容
缓存与存储 发布:2025-04-25 17:14:59 浏览:739
sql中selectinto语句 发布:2025-04-25 17:14:14 浏览:219
pilpython安装 发布:2025-04-25 17:12:55 浏览:805
安卓手机usb偏好设置在哪里 发布:2025-04-25 17:02:53 浏览:575
梁箍筋加密区间 发布:2025-04-25 17:02:10 浏览:427
大同忘记密码找回多少钱 发布:2025-04-25 16:55:22 浏览:985
手机ip被加入黑名单限制访问 发布:2025-04-25 16:40:51 浏览:731
内网的服务器地址怎么查 发布:2025-04-25 16:29:32 浏览:926
视频缓存下载浏览器 发布:2025-04-25 16:21:53 浏览:1002
批量抖音脚本 发布:2025-04-25 15:58:10 浏览:836