c语言中stack
⑴ c语言 栈的操作
#include
#include
#define Max 100
typedef char T;
typedef struct MyStack
{
T aa[Max];
unsigned int p;
} stack;
//创建空栈
stack* createEmptyStack()
{
stack* st = (stack *)malloc(sizeof(stack));
int i=0;
for(i=0;i<Max;i++)
st->aa[i]=0;
st->p=0;
return st;
};
//栈判空
int isEmpty(const stack* st)
{
if(st->p==0) return 1;
else return 0;
};
//求栈的大小
unsigned int size(const stack* st)
{
return st->p;
};
//push操作
void push(stack* st,const T a)
{
st->p=st->p+1;
if(st->p==Max)
{
printf("栈满\n");
st->p--;
return;
}
st->aa[st->p]=a;
};
//pop操作
T pop(stack* st)
{
if(isEmpty(st))
{
printf("栈空");
return NULL;
}
char t=st->aa[st->p];
st->p=st->p-1;
printf("%c ",t);
return t;
};
//栈销毁
void destroy(stack* st)
{
free(st);
};
int main()
{
stack* st = createEmptyStack();
if(isEmpty(st)) printf("MyStack is empty\n");
else printf("MyStack is not empty\n");
push(st,'a');
push(st,'b');
push(st,'c');
push(st,'d');
push(st,'e');
printf("%d\n",size(st));
while(!isEmpty(st)) pop(st);
destroy(st);
system("pause");
return 0;
}
⑵ C语言 push和pop函数可以直接用吗
#include<stdio.h>
#include<stdlib.h>
#defineMAXSIZE32
typedefstruct{
int*elem;/*栈的存储区*/
intmax;/*栈的容量,即找中最多能存放的元素个数*/
inttop;/*栈顶指针*/
}Stack;
intInitStack(Stack*S,intn)/*创建容量为n的空栈*/
{
S->elem=(int*)malloc(n*sizeof(int));
if(S->elem==NULL)return-1;
S->max=n;
S->top=0;//栈顶初值0
return0;
}
intPush(Stack*S,intitem)/*将整数item压入栈顶*/
{
if(S->top==S->max){
printf("Stackisfull! ");
return-1;
}
S->elem[S->top++]=item;//压栈,栈顶加1
return0;
}
intStackEmpty(StackS)
{
return(!S.top)?1:0;/*判断栈是否为空*/
}
intPop(Stack*S)/*栈顶元素出栈*/
{
if(!S->top){
printf("Popanemptystack! ");
return-1;
}
returnS->elem[--S->top];//弹出栈,栈顶减1
}
voidMultibaseOutput(longn,intB)
{
intm;StackS;
if(InitStack(&S,MAXSIZE)){
printf("Failure! ");
return;
}
do{
if(Push(&S,B))//------
{
printf("Failure! ");
return;
}
n=n-1;//--------
}while(n!=0);
while(!StackEmpty(S)){/*输出B进制的数*/
m=Pop(&S);
if(m<10)printf("%d",m);/*小于10,输出数字*/
elseprintf("%c",m+55);/*大于或等于10,输出相应的字符*/
}
printf(" ");
}
⑶ 怎样用C语言写出对栈进行的五种运算:push()、pop()、top()、empty()、makempty()
这是我用链表写的:
#include <stdio.h>
#include <stdlib.h>
typedef struct node
{
int x;
struct node *next;
}Node;
typedef struct stack
{
Node *top;
}Stack;
void InitStack(Stack *s)
{
s->top=NULL;
}
int IsEmpty(Stack *s)
{
if(s->top==NULL)
return 1;
else
return 0;
}
void PushStack(Stack *s,int x)
{
Node *p;
p=(Node*)malloc(sizeof(Node));
p->x=x;
// p->next=NULL;
p->next=s->top;
s->top=p;
}
int PopStack(Stack *s)
{
int data;
Node *p;
p=(Node *)malloc(sizeof(Node));
if(IsEmpty(s))
{
printf("the stack is empty!\n");
free(p);
return -1;
}
else
{
p=s->top;
data=p->x;
s->top=p->next;
free(p);
return data;
}
}
int main (int argc,char **argv)
{
int i;
Stack s;
InitStack(&s);
for(i=0;i<1000;i++)
{
PushStack(&s,i);
}
for(i=0;i<1000;i++)
{
printf("%d\n",PopStack(&s));
}
}
⑷ C语言中用stack pop() top 等与栈有关的函数需要什么头文件啊
1、C语言标准库当中没有与stack栈相关的标准类。
2、可以自定义这个头文件,例如:
structStack
{
intmData[100];
intmLen;
};
//初始化栈
voidInitStack(Stack&S)
{
S.mLen=0;
}
//元素进栈
voidPush(Stack&S,intitem)
{
S.mData[S.mLen++]=item;
}
//删除栈顶元素
intPop(Stack&S)
{
S.mLen--;
returnS.mData[S.mLen];
}
//返回栈顶元素
intPeek(Stack&S)
{
returnS.mData[S.mLen-1];
}
//判断栈是否为空
boolEmptyStack(Stack&S)
{
if(S.mLen==0)returntrue;
returnfalse;
}
//清空栈
voidClear(Stack&S)
{
for(inti=0;i<S.mLen;++i)
{
Pop(S);
}
}
⑸ 借用C语言中堆和栈的区别来说明IOS中两者的
一、预备知识—程序的内存分配
一个由C/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其
操作方式类似于数据结构中的栈。 (补充:局部变量, 生命周期外自动被系统回收)
2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回
收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。 (补充:malloc、alloc出的空间,必须手动释放)
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的
全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另
一块区域。 - 程序结束后由系统释放。 (补充:static 关键字修饰的变量 该区上的数据在应用程序的整个生命周期中一直存在 只有当程序退出时才会被系统回收)
4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区—存放函数体的二进制代码。
//半路插入IOS中的理解
操作系统iOS中应用程序使用的计算机内存不是统一分配空间,运行代码使用的空间在三个不同的内存区域,分成三个段:“text segment“,“stack segment”,“heap segment”。
段“text segment”是应用程序运行时应用程序代码存在的内存段。每一个指令,每一个单个函数、过程、方法和执行代码都存在这个内存段中直到应用程序退出。一般情况下,你不会真的不得不知道这个段的任何事情。
当应用开始以后,函数main()被调用,一些空间分配在”stack”中。这是为应用分配的另一个段的内存空间,这是为了函数变量存储需要而分配的内存。每一次在应用中调用一个函数,“stack”的一部分会被分配在”stack”中,称之为”frame”。新函数的本地变量分配在这里。
正如名称所示,“stack”是后进先出(LIFO)结构。当函数调用其他的函数时,“stack frame”会被创建;当其他函数退出后,这个“frame”会自动被破坏。
“heap”段也称为”data”段,提供一个保存中介贯穿函数的执行过程,全局和静态变量保存在“heap”中,直到应用退出。
为了访问你创建在heap中的数据,你最少要求有一个保存在stack中的指针,因为你的CPU通过stack中的指针访问heap中的数据。
你可以认为stack中的一个指针仅仅是一个整型变量,保存了heap中特定内存地址的数据。实际上,它有一点点复杂,但这是它的基本结构。
简而言之,操作系统使用stack段中的指针值访问heap段中的对象。如果stack对象的指针没有了,则heap中的对象就不能访问。这也是内存泄露的原因。
在iOS操作系统的stack段和heap段中,你都可以创建数据对象。
stack对象的优点主要有两点,一是创建速度快,二是管理简单,它有严格的生命周期。stack对象的缺点是它不灵活。创建时长度是多大就一直是多大,创建时是哪个函数创建的,它的owner就一直是它。不像heap对象那样有多个owner,其实多个owner等同于引用计数。只有heap对象才是采用“引用计数”方法管理它。
stack对象的创建
只要栈的剩余空间大于stack对象申请创建的空间,操作系统就会为程序提供这段内存空间,否则将报异常提示栈溢出。
heap对象的创建
操作系统对于内存heap段是采用链表进行管理的。操作系统有一个记录空闲内存地址的链表,当收到程序的申请时,会遍历链表,寻找第一个空间大于所申请的heap节点,然后将该节点从空闲节点链表中删除,并将该节点的空间分配给程序。
例如:
NSString的对象就是stack中的对象,NSMutableString的对象就是heap中的对象。前者创建时分配的内存长度固定且不可修改;后者是分配内存长度是可变的,可有多个owner,适用于计数管理内存管理模式。
两类对象的创建方法也不同,前者直接创建“NSString * str1=@"welcome";“,而后者需要先分配再初始化“NSMutableString * mstr1=[[NSMutableString alloc] initWithString:@"welcome"];”。
再补充一点,这里说的是操作系统的堆和栈。
在我们学习“数据结构”时,接触到的堆和栈的概念和这个操作系统中的堆和栈不是一回事的。
操作系统的堆和栈是指对内存进行操作和管理的一些方式。
“数据结构“的堆实际上指的就是(满足堆性质的)优先Queue的一种数据结构,第1个元素有最高的优先权;栈实际上就是满足先进后出的性质的数据或数据结构。
//插入结束
二、例子程序
这是一个前辈写的,非常详细
//main.cpp
int a = 0; 全局初始化区
char *p1; 全局未初始化区
main()
{
int b; 栈
char s[] = "abc"; 栈
char *p2; 栈
char *p3 = "123456"; 123456/0在常量区,p3在栈上。
static int c =0; 全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); 123456/0放在常量区,编译器可能会将它与p3所指向的"123456"
优化成一个地方。
}
二、堆和栈的理论知识
2.1申请方式
stack:
由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空
间
heap:
需要程序员自己申请,并指明大小,在c中malloc函数
如p1 = (char *)malloc(10);
在C++中用new运算符
如p2 = new char[10];
但是注意p1、p2本身是在栈中的。
2.2
申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢
出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表
中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的
首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。
另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部
分重新放入空闲链表中。
2.3申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意
思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有
的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将
提示overflow。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储
的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小
受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。2.4申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是
直接在进程的地址空间中保留一块内存,虽然用起来最不方便。但是速度快,也最灵活。
2.5堆和栈中的存储内容
栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可
执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈
的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地
址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容由程序员安排。
2.6存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到
edx中,再根据edx读取字符,显然慢了。
2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就
走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自
由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由
度大。 (经典!)
⑹ 急!用c语言实现链栈的操作
typedef struct node
{ ElemType data;
struct node *next;
} LinkStack;
⑴置空栈
void InitLinkStack( LinkStack * & s)
{ s=NULL;
}
⑵判栈空
int IsEmptyLinkStack(LinkStack *s )
{ if(s==NULL)
return 1;
else
return 0;
}
⑶ 入栈/*将元素x插入链栈top的栈顶*/
void PushLinkStack(LinkStack* &s , ElemType x)
{ LinkStack *p;
p=malloc(sizeof(LinkStack)); /*生成新结点*s */
p->data=x;
p->next=s;
s=p;
}
⑷出栈/*删除链栈top的栈顶结点*/
int PopLinkStack (LinkStack* & s, ElemType &x)
{ LinkStack *p;
if(s==NULL) return 0;
x = s->data; /*将栈顶数据存入*x */
p = s; /*保存栈顶结点地址*/
s = s->next; /*删除原栈顶结点*/
free (p); /*释放原栈顶结点*/
return 1; /*返回新栈顶指针*/
}
(5) 取栈顶元素
int GetLinkStackTop (LinkStack* s, ElemType &x)
{
if(s==NULL) return 0;
x = s->data; /*将栈顶数据存入*x */
return 1; /*返回新栈顶指针*/
}
主函数怎么写吧
⑺ C语言(C++)堆和栈的区别
一个由c/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放
4、文字常量区—常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区—存放函数体的二进制代码。
二、例子程序
这是一个前辈写的,非常详细
//main.cpp
int a = 0; 全局初始化区
char *p1; 全局未初始化区
main()
{
int b; 栈
char s[] = "abc"; 栈
char *p2; 栈
char *p3 = "123456"; 123456\0在常量区,p3在栈上。
static int c =0; 全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
}
二、堆和栈的理论知识
2.1申请方式
stack:
由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间
heap:
需要程序员自己申请,并指明大小,在c中malloc函数
如p1 = (char *)malloc(10);
在C++中用new运算符
如p2 = (char *)malloc(10);
但是注意p1、p2本身是在栈中的。
2.2
申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
2.3申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
2.4申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。
2.5堆和栈中的存储内容
栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。
2.6存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。
2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。
⑻ C语言代码组成 - BSS、Data、Stack、Heap、Code、Const
一段C语言经过编译连接后,成为一段可以运行的代码,可运行的代码可以分为以下四个部分组成:全局变量/静态变量区、堆、栈、代码区。其中全局变量/静态变量区又分为未初始化变量区和初始化变量区,代码区又分为代码和常量区。即汇总下来,代码可以分为6部分组成,包括:BSS区(未初始化的全局变量/静态变量区)、Data区(实始化的全局变量区)、Stack区(栈区)、heap区(堆区)、Code区(代码区)、const区(常量区)。
一、BSS区和Data区
C语言编程中定义的全局变量、静态局部变量,就是分配在全局变量/静态变量区域,但是为什么又要分为BSS区域和Data区域呢?其实我们在定义全局或者静态变量区,有时我会对它赋初始值,有的又不会赋初始化,比如我们定义的全局变量,初始化的赋值,是怎么样写到变量区域中的,我们定义的静态局部变量,在定义时初始化后,为什么后面函数被调用,又不会再初始化呢?这个局部静态变量是怎么样实始化的,什么时候初始化的?
如果分析编译后的汇编代码,就会发现在代码运行起来后,会有一段给变量赋值的指令,这一段代码,不是我们C代码对应的汇编,而是C编译器生成的汇编译代码,这段代码的作用就是给初始化了的静态变量和全局变量进行初始化。这也是为什么全局/静态变量区域,要分BSS和Data的原因。
二、Stack区
栈是一种先进后出的数据结构,这种数据结构正好完美的匹配函数调用时的模型过程,比如函数f(a)在运行过程中调用函数f(b),f(a)在运行过程中的变量就是分配在栈中,通过在调用f(b)前,会将代码中用到的R0~Rn寄存器的值保存到栈中,同时将函数的传入参数写入到栈中,然后进入f(b)函数,函数f(b)的变量b分配在栈中,当函数运行完毕后,释放变量b,将栈中存放的f(a)函数的运行的R0~Rn寄存器值恢复到寄存器中,同时f(b)的返回结果存入到栈中,这样f(a)继续运行。当一个函数运行完毕后,它在栈中分配的临时变量会全部释放。
对于中断也是一样的,中断发生时,也是一个函数打断了另一个函数的运行,这种现场的保存(即寄存器的值),都是通过栈来完成的。所以栈的作用有:
三、Heap区
全局变量分配的内存在代码整个运行周期内都是有效的,而在栈区分配的内存在函数调用完成后,就会释放。这两种内存模型都是由编译器决定它的使用,代码是无法控制的。那有没有内存是由用户控制的,要用时,就自由分配,不用时,就自行释放?答案是肯定的,这部分内存就是堆。
用户需要使用的动态内存,就是通过malloc函数,调用分配的,在没有释放前,可一直由代码使用。当这部分内存不再需要使用时,可以通过free函数进行释放,将它归还到堆中。从这中可以看出,堆的内存,是按需分配的。这就是赋予了代码很大的自由度,但这也是会带来负作用的,比如:内存碎片化导致的malloc失败;忘记释放内存导致的内存泄露,而这些往往是致命的失误。
四、Code区
代码区就是编译后机器指令,这些指令决定了功能的执行。我们编译的代码一般是下载进flash中,但是运行,却有两种方式:在RAM中运行和在ROM中运行。 在RAM中运行,即是boot启动后,将flash中的代码复制到RAM中,然后PC指针在指到RAM中的代码中开始运行。 有时在调试时,我们可以直接将代码下载进RAM中运行进行调试,这样加快调试速度。便是大部分的情况我们的代码是从flash中开始运行的。
五、常量区
代码中的常量,一部分是作为立即数,在代码区中,但是像定义的字符串、给某数组赋值的一串数值,这些常量,就存在常量区,我们常用const来定义一个常量,即该变量不能再必变。这部分的变量,编译器一般将它定义的flash中。
六、各个区域大小的是如何决定的:
code区和const区:是由代码的大小和代码中常量的多少来决定的。
bss区和data区:这是由代码中定义的全局变量和局部变量的多少来决定的。
stack区:这个可以由使用都自行定义大小,但使用都要根据自已代码的情况,评估出一个合理的值,再定义其大小,如果定义的太小,很容易爆栈,导至代码异常,但是如果定义的太大,就容易浪费内存。
heap区:RAM剩下的部分,编译器就会作为堆区使用。
七、嵌入式代码一般启动过程
以STM32为例,通过分析其汇编启支代码,大致可以分为以下几个步骤:
如果大家想看编译扣,代码文件的组成,可以查看统后生的map文件,里面有详细的数据,包括各个函数的分配内存,BSS,Data,Stack,Heap,Text的分配情况。
如果相要了解详细的代码启动过程,可看它的启动汇编文件。
