基数排序python
首先谢谢邀请,
python中有的算法还是比较多的?
python之所以火是因为人工智能的发展,人工智能的发展离不开算法!
感觉有本书比较适合你,不过可惜的是这本书没有电子版,只有纸质的。
这本书对于算法从基本的入门到实现,循序渐进的介绍,比如里面就涵盖了数学建模的常用算法。
第 1章从数学建模到人工智能
1.1数学建模1.1.1数学建模与人工智能1.1.2数学建模中的常见问题1.2人工智能下的数学1.2.1统计量1.2.2矩阵概念及运算1.2.3概率论与数理统计1.2.4高等数学——导数、微分、不定积分、定积分
第2章 Python快速入门
2.1安装Python2.1.1Python安装步骤2.1.2IDE的选择2.2Python基本操作2.2.1第 一个小程序2.2.2注释与格式化输出2.2.3列表、元组、字典2.2.4条件语句与循环语句2.2.5break、continue、pass2.3Python高级操作2.3.1lambda2.3.2map2.3.3filter
第3章Python科学计算库NumPy
3.1NumPy简介与安装3.1.1NumPy简介3.1.2NumPy安装3.2基本操作3.2.1初识NumPy3.2.2NumPy数组类型3.2.3NumPy创建数组3.2.4索引与切片3.2.5矩阵合并与分割3.2.6矩阵运算与线性代数3.2.7NumPy的广播机制3.2.8NumPy统计函数3.2.9NumPy排序、搜索3.2.10NumPy数据的保存
第4章常用科学计算模块快速入门
4.1Pandas科学计算库4.1.1初识Pandas4.1.2Pandas基本操作4.2Matplotlib可视化图库4.2.1初识Matplotlib4.2.2Matplotlib基本操作4.2.3Matplotlib绘图案例4.3SciPy科学计算库4.3.1初识SciPy4.3.2SciPy基本操作4.3.3SciPy图像处理案例第5章Python网络爬虫5.1爬虫基础5.1.1初识爬虫5.1.2网络爬虫的算法5.2爬虫入门实战5.2.1调用API5.2.2爬虫实战5.3爬虫进阶—高效率爬虫5.3.1多进程5.3.2多线程5.3.3协程5.3.4小结
第6章Python数据存储
6.1关系型数据库MySQL6.1.1初识MySQL6.1.2Python操作MySQL6.2NoSQL之MongoDB6.2.1初识NoSQL6.2.2Python操作MongoDB6.3本章小结6.3.1数据库基本理论6.3.2数据库结合6.3.3结束语
第7章Python数据分析
7.1数据获取7.1.1从键盘获取数据7.1.2文件的读取与写入7.1.3Pandas读写操作7.2数据分析案例7.2.1普查数据统计分析案例7.2.2小结
第8章自然语言处理
8.1Jieba分词基础8.1.1Jieba中文分词8.1.2Jieba分词的3种模式8.1.3标注词性与添加定义词8.2关键词提取8.2.1TF-IDF关键词提取8.2.2TextRank关键词提取8.3word2vec介绍8.3.1word2vec基础原理简介8.3.2word2vec训练模型8.3.3基于gensim的word2vec实战
第9章从回归分析到算法基础
9.1回归分析简介9.1.1“回归”一词的来源9.1.2回归与相关9.1.3回归模型的划分与应用9.2线性回归分析实战9.2.1线性回归的建立与求解9.2.2Python求解回归模型案例9.2.3检验、预测与控制
第10章 从K-Means聚类看算法调参
10.1K-Means基本概述10.1.1K-Means简介10.1.2目标函数10.1.3算法流程10.1.4算法优缺点分析10.2K-Means实战
第11章 从决策树看算法升级
11.1决策树基本简介11.2经典算法介绍11.2.1信息熵11.2.2信息增益11.2.3信息增益率11.2.4基尼系数11.2.5小结11.3决策树实战11.3.1决策树回归11.3.2决策树的分类
第12章 从朴素贝叶斯看算法多变193
12.1朴素贝叶斯简介12.1.1认识朴素贝叶斯12.1.2朴素贝叶斯分类的工作过程12.1.3朴素贝叶斯算法的优缺点12.23种朴素贝叶斯实战
第13章 从推荐系统看算法场景
13.1推荐系统简介13.1.1推荐系统的发展13.1.2协同过滤13.2基于文本的推荐13.2.1标签与知识图谱推荐案例13.2.2小结
第14章 从TensorFlow开启深度学习之旅
14.1初识TensorFlow14.1.1什么是TensorFlow14.1.2安装TensorFlow14.1.3TensorFlow基本概念与原理14.2TensorFlow数据结构14.2.1阶14.2.2形状14.2.3数据类型14.3生成数据十二法14.3.1生成Tensor14.3.2生成序列14.3.3生成随机数14.4TensorFlow实战
希望对你有帮助!!!
贵在坚持,自己掌握一些,在工作中不断打磨,高薪不是梦!!
② 面试必会八大排序算法(Python)
一、插入排序
介绍
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据。
算法适用于少量数据的排序,时间复杂度为O(n^2)。
插入排算法是稳定的排序方法。
步骤
①从第一个元素开始,该元素可以认为已经被排序
②取出下一个元素,在已经排序的元素序列中从后向前扫描
③如果该元素(已排序)大于新元素,将该元素移到下一位置
④重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
⑤将新元素插入到该位置中
⑥重复步骤2
排序演示
算法实现
二、冒泡排序
介绍
冒泡排序(Bubble Sort)是一种简单的排序算法,时间复杂度为O(n^2)。
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
原理
循环遍历列表,每次循环找出循环最大的元素排在后面;
需要使用嵌套循环实现:外层循环控制总循环次数,内层循环负责每轮的循环比较。
步骤
①比较相邻的元素。如果第一个比第二个大,就交换他们两个。
②对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
③针对所有的元素重复以上的步骤,除了最后一个。
④持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
算法实现:
三、快速排序
介绍
快速排序(Quicksort)是对冒泡排序的一种改进,借用了分治的思想,由C. A. R. Hoare在1962年提出。
基本思想
快速排序的基本思想是:挖坑填数 + 分治法。
首先选出一个轴值(pivot,也有叫基准的),通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
实现步骤
①从数列中挑出一个元素,称为 “基准”(pivot);
②重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边);
③对所有两个小数列重复第二步,直至各区间只有一个数。
排序演示
算法实现
四、希尔排序
介绍
希尔排序(Shell Sort)是插入排序的一种,也是缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法,时间复杂度为:O(1.3n)。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
·插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率;
·但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位。
基本思想
①希尔排序是把记录按下标的一定量分组,对每组使用直接插入算法排序;
②随着增量逐渐减少,每组包1含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法被终止。
排序演示
算法实现
五、选择排序
介绍
选择排序(Selection sort)是一种简单直观的排序算法,时间复杂度为Ο(n2)。
基本思想
选择排序的基本思想:比较 + 交换。
第一趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;
第二趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;
以此类推,第 i 趟,在待排序记录ri ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
排序演示
选择排序的示例动画。红色表示当前最小值,黄色表示已排序序列,蓝色表示当前位置。
算法实现
六、堆排序
介绍
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。
利用数组的特点快速指定索引的元素。
基本思想
堆分为大根堆和小根堆,是完全二叉树。
大根堆的要求是每个节点的值不大于其父节点的值,即A[PARENT[i]] >=A[i]。
在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
排序演示
算法实现
七、归并排序
介绍
归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
基本思想
归并排序算法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
算法思想
自上而下递归法(假如序列共有n个元素)
① 将序列每相邻两个数字进行归并操作,形成 floor(n/2)个序列,排序后每个序列包含两个元素;
② 将上述序列再次归并,形成 floor(n/4)个序列,每个序列包含四个元素;
③ 重复步骤②,直到所有元素排序完毕。
自下而上迭代法
① 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
② 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
③ 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
④ 重复步骤③直到某一指针达到序列尾;
⑤ 将另一序列剩下的所有元素直接复制到合并序列尾。
排序演示
算法实现
八、基数排序
介绍
基数排序(Radix Sort)属于“分配式排序”,又称为“桶子法”。
基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m) ,其中 r 为采取的基数,而m为堆数。
在某些时候,基数排序法的效率高于其他的稳定性排序法。
基本思想
将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
基数排序按照优先从高位或低位来排序有两种实现方案:
MSD(Most significant digital) 从最左侧高位开始进行排序。先按k1排序分组, 同一组中记录, 关键码k1相等,再对各组按k2排序分成子组, 之后, 对后面的关键码继续这样的排序分组, 直到按最次位关键码kd对各子组排序后. 再将各组连接起来,便得到一个有序序列。MSD方式适用于位数多的序列。
LSD (Least significant digital)从最右侧低位开始进行排序。先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列。LSD方式适用于位数少的序列。
排序效果
算法实现
九、总结
各种排序的稳定性、时间复杂度、空间复杂度的总结:
平方阶O(n²)排序:各类简单排序:直接插入、直接选择和冒泡排序;
从时间复杂度来说:
线性对数阶O(nlog₂n)排序:快速排序、堆排序和归并排序;
O(n1+§))排序,§是介于0和1之间的常数:希尔排序 ;
线性阶O(n)排序:基数排序,此外还有桶、箱排序。
③ 十大经典算法之动图演示
前面好奇心已经带大家从 冒泡排序 开始,一直到 基数排序 ,从头过了一遍,那么这里归纳一下,将 十个经典算法 的 演示图 都放出来,供大家对比参考学习。
每张图都会附带详细 解说链接 ,有需要的同学可以 点击详细了解学习 。
Python 实现经典算法之冒泡排序
Python 实现经典算法之选择排序
Python 实现经典算法之插入排序
Python 实现经典算法之希尔排序
Python 实现经典算法之归并排序
Python 实现经典算法之堆排序
Python 实现经典算法之快速排序
Python 实现经典算法之计数排序
Python 实现经典算法之桶排序
Python 实现经典算法之基数排序
好了,上面就是 经典十大排序算法 的图片演示了,我 尽可能 的都是放了动图。
部分文章里面可能不止一张图片,我这里碍于篇幅和排版,就没放。有需要的同学也可以 点击 附带的 链接 详细 学习
④ python包含什么算法
Python基础算法有哪些?
1.
冒泡排序:是一种简单直观的排序算法。重复地走访过要排序的数列,一次比较两个元素,如果顺序错误就交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该排序已经完成。
2.
插入排序:没有冒泡排序和选择排序那么粗暴,其原理最容易理解,插入排序是一种最简单直观的排序算法啊,它的工作原理是通过构建有序序列,对于未排序数据在已排序序列中从后向前排序,找到对应位置。
3.
希尔排序:也被叫做递减增量排序方法,是插入排序的改进版本。希尔排序是基于插入排序提出改进方法的排序算法,先将整个待排序的记录排序分割成为若干个子序列分别进行直接插入排序,待整个序列中的记录基本有序时,再对全记录进行依次直接插入排序。
4. 归并排序:是建立在归并操作上的一种有效的排序算法。该算法是采用分治法Divide and的一个非常典型的应用。
5. 快速排序:由东尼·霍尔所发展的一种排序算法。又是一种分而治之思想在排序算法上的典型应用,本质上快速排序应该算是冒泡排序基础上的递归分治法。
6.
堆排序:是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质,即子结点的键值或索引总是小于它的父结点。
7.
计算排序:其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中,作为一种线性时间复杂度的排序,计算排序要求输入的数据必须是具有确定范围的整数。