python贝叶斯网络
⑴ 各种编程语言的深度学习库整理大全!
各种编程语言的深度学习库整理大全!
python1. Theano是一个python类库,用数组向量来定义和计算数学表达式。它使得在Python环境下编写深度学习算法变得简单。在它基础之上还搭建了许多类库。
1.Keras是一个简洁、高度模块化的神经网络库,它的设计参考了Torch,用Python语言编写,支持调用GPU和CPU优化后的Theano运算。
2.Pylearn2是一个集成大量深度学习常见模型和训练算法的库,如随机梯度下降等。它的功能库都是基于Theano之上。
3.Lasagne是一个搭建和训练神经网络的轻量级封装库,基于Theano。它遵循简洁化、透明化、模块化、实用化和专一化的原则。
4.Blocks也是一个基于Theano的帮助搭建神经网络的框架。
2. Caffe是深度学习的框架,它注重于代码的表达形式、运算速度以及模块化程度。它是由伯克利视觉和学习中心(Berkeley Vision and Learning Center, BVLC)以及社区成员共同开发。谷歌的DeepDream项目就是基于Caffe框架完成。这个框架是使用BSD许可证的C++库,并提供了Python调用接口。
3. nolearn囊括了大量的现有神经网络函数库的封装和抽象接口、大名鼎鼎的Lasagne以及一些机器学习的常用模块。
4. Genism也是一个用Python编写的深度学习小工具,采用高效的算法来处理大规模文本数据。
5. Chainer在深度学习的理论算法和实际应用之间架起一座桥梁。它的特点是强大、灵活、直观,被认为是深度学习的灵活框架。
6. deepnet是基于GPU的深度学习算法函数库,使用Python语言开发,实现了前馈神经网络(FNN)、受限玻尔兹曼机(RBM)、深度信念网络(DBN)、自编码器(AE)、深度玻尔兹曼机(DBM)和卷积神经网络(CNN)等算法。
7. Hebel也是深度学习和神经网络的一个Python库,它通过pyCUDA控制支持CUDA的GPU加速。它实现了最重要的几类神经网络模型,提供了多种激活函数和模型训练方法,例如momentum、Nesterov momentum、dropout、和early stopping等方法。
8. CXXNET是一个基于MShadow开发的快速、简洁的分布式深度学习框架。它是一个轻量级、易扩展的C++/CUDA神经网络工具箱,提供友好的Python/Matlab接口来进行训练和预测。
9. DeepPy是基于NumPy的深度学习框架。
10. DeepLearning是一个用C++和Python共同开发的深度学习函数库。
11. Neon是Nervana System 的深度学习框架,使用Python开发。
Matlab
1. ConvNet 卷积神经网络是一类深度学习分类算法,它可以从原始数据中自主学习有用的特征,通过调节权重值来实现。
2. DeepLearnToolBox是用于深度学习的Matlab/Octave工具箱,它包含深度信念网络(DBN)、栈式自编码器(stacked AE)、卷积神经网络(CNN)等算法。
3. cuda-convet是一套卷积神经网络(CNN)代码,也适用于前馈神经网络,使用C++/CUDA进行运算。它能对任意深度的多层神经网络建模。只要是有向无环图的网络结构都可以。训练过程采用反向传播算法(BP算法)。
4. MatConvNet是一个面向计算机视觉应用的卷积神经网络(CNN)Matlab工具箱。它简单高效,能够运行和学习最先进的机器学习算法。
CPP
1. eblearn是开源的机器学习C++封装库,由Yann LeCun主导的纽约大学机器学习实验室开发。它用基于能量的模型实现卷积神经网络,并提供可视化交互界面(GUI)、示例以及示范教程。
2. SINGA是Apache软件基金会支持的一个项目,它的设计目标是在现有系统上提供通用的分布式模型训练算法。
3. NVIDIA DIGITS是用于开发、训练和可视化深度神经网络的一套新系统。它把深度学习的强大功能用浏览器界面呈现出来,使得数据科学家和研究员可以实时地可视化神经网络行为,快速地设计出最适合数据的深度神经网络。
4. Intel? Deep Learning Framework提供了Intel?平台加速深度卷积神经网络的一个统一平台。
Java
1. N-Dimensional Arrays for Java (ND4J) 是JVM平台的科学计算函数库。它主要用于产品中,也就是说函数的设计需求是运算速度快、存储空间最省。
2. Deeplearning4j 是第一款商业级别的开源分布式深度学习类库,用Java和Scala编写。它的设计目的是为了在商业环境下使用,而不是作为一款研究工具。
3. Encog是一个机器学习的高级框架,涵盖支持向量机、人工神经网络、遗传编程、贝叶斯网络、隐马可夫模型等,也支持遗传算法。
JavaScript
1. Convnet.js 由JavaScript编写,是一个完全在浏览器内完成训练深度学习模型(主要是神经网络)的封装库。不需要其它软件,不需要编译器,不需要安装包,不需要GPU,甚至不费吹灰之力。
Lua
1. Torch是一款广泛适用于各种机器学习算法的科学计算框架。它使用容易,用快速的脚本语言LuaJit开发,底层是C/CUDA实现。Torch基于Lua编程语言。
Julia
1. Mocha是Julia的深度学习框架,受C++框架Caffe的启发。Mocha中通用随机梯度求解程序和通用模块的高效实现,可以用来训练深度/浅层(卷积)神经网络,可以通过(栈式)自编码器配合非监督式预训练(可选)完成。它的优势特性包括模块化结构、提供上层接口,可能还有速度、兼容性等更多特性。
Lisp
1. Lush(Lisp Universal Shell)是一种面向对象的编程语言,面向对大规模数值和图形应用感兴趣的广大研究员、实验员和工程师们。它拥有机器学习的函数库,其中包含丰富的深度学习库。
Haskell
1. DNNGraph是Haskell用于深度神经网络模型生成的领域特定语言(DSL)。
.NET
1. Accord.NET 是完全用C#编写的.NET机器学习框架,包括音频和图像处理的类库。它是产品级的完整框架,用于计算机视觉、计算机音频、信号处理和统计应用领域。
R
1. darch包可以用来生成多层神经网络(深度结构)。训练的方法包括了对比散度的预训练和众所周知的训练算法(如反向传播法或共轭梯度法)的细调。
2. deepnet实现了许多深度学习框架和神经网络算法,包括反向传播(BP)、受限玻尔兹曼机(RBM)、深度信念网络(DBP)、深度自编码器(Deep autoencoder)等等。
⑵ Python 与深度学习有哪些与建筑设计相接轨的可能性
关注这个问题快一周了,到目前来说还是没发现什么太大的惊喜。我感觉建筑设计界还是要学习一个,不要看到深度学习很火,就弄个大新闻,把这玩意往建筑设计上搬呀。
其实深度学习这事儿到底怎么就能和建筑设计挂钩上?如果单单指“深度学习”,那我的理解是套用了许多层的人工神经网络,这种技术能在建筑设计中扮演什么角色?我目前还真没发现直接用深度学习这种技术来辅助建筑设计的例子。但是如果把题主提问的概念放宽松一点,变成“如何使用机器学习等算法来帮助建筑设计”,那我想还是有比较好的例子的。
机器学习技术是用来让程序的运行性能随着输入量和时间的积累慢慢提高的一种技术。例如你写了一个程序来预测一栋别墅的房价,这个程序的作用是能根据输入数据的[城市,街道,区位,面积,户型,..]等参数预测房价,为了提高程序预测的准确度,你需要先给程序喂一些已经有了估价结果的数据,程序学习一定的数据以后就能自己预测房价了。那么,这种程序工作的方式和我们做建筑设计的工作流程有什么联系呢? 我们做设计时,同样也是先调研和参考大量同类建筑的案例,积累到一定量以后,才能自己动手开始做设计。了解了这一点,便可以设想一种利用机器学习来辅助建筑设计的思路:先让程序学习以前的建筑设计方案,然后程序就能自己去做设计了!
这篇2010年的论文 Computer-generated residential building layouts 可以说就是以上思路的典范。作者自称“使用数据驱动的方式设计了能自动创建视觉效果非常好的建筑布局的工具”,但我觉得论文的质量是远远超过了这样谦逊的描述,因为论文实现的思路极大程度借鉴了现实中建筑师开展设计工作的流程,而且用了贝叶斯网络这个非常漂亮的数学模型描述了一个建筑program在空间中的分布,而贝叶斯网络的训练数据全部来自真实的建筑师的设计方案。个人认为用机器学习的思路去处理建筑布局问题相比于过去十年来Shape Grammar的那种Proceral Modeling的思路来得更为正确。
论文是怎么展开的呢?首先,作者总结了前人工作,说明了以前基于穷举的算法都行不通,要在3D空间中去穷举这么复杂的空间分配问题就和猴子随意敲键盘得到一部莎士比亚作品的难度差不多。接着作者又批判了上个世纪90年代Muller搞的Shape Grammar那一套也不行,因为Shape Grammar就是图形语法,我们知道,编程语言是是基于有限规则的语法集生成的,而建筑设计中这样的规则条款很难形式化描述,而且会倾向于让语法数量变得无穷多。顺带一提,几十年前计算机科学家在攻克语音识别和机器翻译难题的时候,也是认为自然语言是完全基于有限的规则生成的,但后来才发现行不通,直到后来改成基于统计的方法进行研究后,才有了突破性进展。 那么shape grammar不适合建筑设计的另外一点在于,建筑设计不是玩弄图形变换的游戏,每一个建筑空间都有基于功能,心理和效用等因素的考虑。之前也有过用shape grammar分析赖特壁炉式住宅的语法规则的论文,但是应用范围实在太窄。所以这条路是走不通的。
论文作者认为,做方案,一定要基于人的舒适和心理需求,习惯和社会关系等因素,将他们综合考量后才会有比较合理的结果。例如,房间的形状最好是凸包而不要做成凹的,因为在采光上,家具摆放和视线上方正规整的形体都更优;建筑各个功能要形成开放性 - 私密性的梯度,因为这正反映了建筑被使用的方式。 为了研究更好的方法,作者去找到了一家建筑事务所的建筑师们向他们咨询职业建筑师的工作方式,得到了一个特别有用的结论:建筑师在初期和客户咨询后,在画平面的详图之前,一般都会用泡泡图来思考问题,而泡泡图则反映了一个建筑方案高度浓缩的信息,包括私密性,房间邻接关系,采光,业主喜好和文化习俗。
作者最后提到,准备把这个东西运用到更多的建筑类型上,例如办公楼等。如果这玩意儿成熟,再也不用担心建筑师不失业了,偶也!
最后我再说说对这玩意的评价吧。最近几十年知识工作的自动化简直如火如荼地吹遍天南地北的各个行业,许多人都担心低端的劳动职位会不会被取代,例如驾驶汽车,快递,写新闻稿,翻译,速记等等等,这种担心真的不是毫无理由啊!当优雅简洁的数学模型遇到计算机这个可以暴力计算的机器,结合起来就创造了一类又一类可成规模复制的智能机器,想想还是让人后怕的。不过也不用太担心就是,建筑设计行业人所占的因素还是很大的,很多时候甲方找人做设计,都是看重设计师本身,出了专业能力外,沟通,人格魅力,背景,执照等的背书也是很重要的,不过未来这种建筑界持续了很久的行业模式会不会被颠覆就不得而知了。另外,程序也需要吃许多训练数据才能提高自己的设计修养,在目前来看建筑设计的各位同行都把自己搜集的方案当成宝一样藏着,数据量的大而全也很难保证,不知道以后BIM的普及会不会让这方面得到改善。