当前位置:首页 » 编程语言 » hadoop与python

hadoop与python

发布时间: 2025-10-12 16:53:20

㈠ 如何在Hadoop环境下搭建python

搭建 Python 环境在 Hadoop 上的步骤如下:

  • 安装 Hadoop:在你的计算机上安装 Hadoop。

  • 安装 Python:请确保你的计孙拿算机上已经安装了 Python。

  • 配置 Hadoop 环境:编辑 Hadoop 的配置文件,以确保 Hadoop 可以与 Python 配合使用。

  • 安装相关模块:请安装所需的 Python 模块,以便在 Hadoop 环境下使用 Python。

  • 测试灶行 Python 安装:请运行一些测试脚本,以确保 Python 可以在 Hadoop 环境下正常工作。

  • 这些步骤可以帮助你在 Hadoop 环境下搭建 Python。请注意,具体的步骤可能因 Hadoop 的版本和环境而异,请仔细查则辩搭看相关文档。

㈡ 如何使用Python为Hadoop编写一个简单的MapRece程序

MichaelG.Noll在他的Blog中提到如何在Hadoop中用Python编写MapRece程序,韩国的gogamza在其Bolg中也提到如何用C编汪瞎写MapRece程序(我稍微修改了一下原程序,因为他的Map对单词切分使用tab键)。我合并他们两人的文章,也让国内的Hadoop用户能够使用别的语言来编写MapRece程序。首先您得配好您的Hadoop集群,这方面的介绍网上比较多,这儿给个链接(Hadoop学习笔记二安装部署)。HadoopStreaming帮助返锋我们用非Java的编程语言使用MapRece,Streaming用STDIN(标准输入)和STDOUT(标准输出)来和我们编写的Map和Rece进行数据的交换数据。任何能够使用STDIN和STDOUT都可以用来编写MapRece程序,比如我们用Python的sys.stdin和sys.stdout,或者是C中的stdin和stdout。我们还是使用Hadoop的例子WordCount来做示范如何编写MapRece,在WordCount的例子中漏陵晌我们要解决计算在一批文档中每一个单词的出现频率。首先我们在Map程序中会接受到这批文档每一行的数据,然后我们编写的Map程序把这一行按空格切开成一个数组。并对这个数组遍历按"1"用标准的输出输出来,代表这个单词出现了一次。在Rece中我们来统计单词的出现频率。PythonCodeMap:mapper.py#!/usr/bin/envpythonimportsys#={}#inputcomesfromSTDIN(standardinput)forlineinsys.stdin:#=line.strip()#=filter(lambdaword:word,line.split())#:#writetheresultstoSTDOUT(standardoutput);##Recestep,i.e.theinputforrecer.py##tab-delimited;thetrivialwordcountis1print'%s\t%s'%(word,1)Rece:recer.py#!/usr/bin/#={}#.stdin:#=line.strip()#parsetheinputwegotfrommapper.pyword,count=line.split()#convertcount(currentlyastring)tointtry:count=int(count)word2count[word]=word2count.get(word,0)+countexceptValueError:#countwasnotanumber,sosilently#ignore/discardthislinepass#sortthewordslexigraphically;##thisstepisNOTrequired,wejustdoitsothatour##wordcountexamplessorted_word2count=sorted(word2count.items(),key=itemgetter(0))#writetheresultstoSTDOUT(standardoutput)forword,countinsorted_word2count:print'%s\t%s'%(word,count)CCodeMap:Mapper.c#include#include#include#include#defineBUF_SIZE2048#defineDELIM"\n"intmain(intargc,char*argv[]){charbuffer[BUF_SIZE];while(fgets(buffer,BUF_SIZE-1,stdin)){intlen=strlen(buffer);if(buffer[len-1]=='\n')buffer[len-1]=0;char*querys=index(buffer,'');char*query=NULL;if(querys==NULL)continue;querys+=1;/*nottoinclude'\t'*/query=strtok(buffer,"");while(query){printf("%s\t1\n",query);query=strtok(NULL,"");}}return0;}h>h>h>h>Rece:Recer.c#include#include#include#include#defineBUFFER_SIZE1024#defineDELIM"\t"intmain(intargc,char*argv[]){charstrLastKey[BUFFER_SIZE];charstrLine[BUFFER_SIZE];intcount=0;*strLastKey='\0';*strLine='\0';while(fgets(strLine,BUFFER_SIZE-1,stdin)){char*strCurrKey=NULL;char*strCurrNum=NULL;strCurrKey=strtok(strLine,DELIM);strCurrNum=strtok(NULL,DELIM);/*necessarytocheckerrorbut.*/if(strLastKey[0]=='\0'){strcpy(strLastKey,strCurrKey);}if(strcmp(strCurrKey,strLastKey)){printf("%s\t%d\n",strLastKey,count);count=atoi(strCurrNum);}else{count+=atoi(strCurrNum);}strcpy(strLastKey,strCurrKey);}printf("%s\t%d\n",strLastKey,count);/*flushthecount*/return0;}h>h>h>h>首先我们调试一下源码:chmod+xmapper.pychmod+xrecer.pyecho"foofooquuxlabsfoobarquux"|./mapper.py|./recer.pybar1foo3labs1quux2g++Mapper.c-oMapperg++Recer.c-oRecerchmod+xMapperchmod+xRecerecho"foofooquuxlabsfoobarquux"|./Mapper|./你可能看到C的输出和Python的不一样,因为Python是把他放在词典里了.我们在Hadoop时,会对这进行排序,然后相同的单词会连续在标准输出中输出.在Hadoop中运行程序首先我们要下载我们的测试文档wget页面中摘下的用php编写的MapRece程序,供php程序员参考:Map:mapper.php#!/usr/bin/php$word2count=array();//inputcomesfromSTDIN(standardinput)while(($line=fgets(STDIN))!==false){//$line=strtolower(trim($line));//$words=preg_split('/\W/',$line,0,PREG_SPLIT_NO_EMPTY);//increasecountersforeach($wordsas$word){$word2count[$word]+=1;}}//writetheresultstoSTDOUT(standardoutput)////Recestep,i.e.theinputforrecer.pyforeach($word2countas$word=>$count){//tab-delimitedecho$word,chr(9),$count,PHP_EOL;}?>Rece:mapper.php#!/usr/bin/php$word2count=array();//inputcomesfromSTDINwhile(($line=fgets(STDIN))!==false){//$line=trim($line);//parsetheinputwegotfrommapper.phplist($word,$count)=explode(chr(9),$line);//convertcount(currentlyastring)toint$count=intval($count);//sumcountsif($count>0)$word2count[$word]+=$count;}//sortthewordslexigraphically////thissetisNOTrequired,wejustdoitsothatour////wordcountexamplesksort($word2count);//writetheresultstoSTDOUT(standardoutput)foreach($word2countas$word=>$count){echo$word,chr(9),$count,PHP_EOL;}?>作者:马士华发表于:2008-03-05

㈢ 如何使用Python为Hadoop编写一个简单的MapRece程序

在这个实例中,我将会向大家介绍如何使用Python 为 Hadoop编写一个简单的MapRece
程序。
尽管Hadoop 框架是使用Java编写的但是我们仍然需要使用像C++、Python等语言来实现Hadoop程序。尽管Hadoop官方网站给的示例程序是使用Jython编写并打包成Jar文件,这样显然造成了不便,其实,不一定非要这样来实现,我们可以使用Python与Hadoop 关联进行编程,看看位于/src/examples/python/WordCount.py 的例子,你将了解到我在说什么。

我们想要做什么?

我们将编写一个简单的 MapRece 程序,使用的是C-Python,而不是Jython编写后打包成jar包的程序。
我们的这个例子将模仿 WordCount 并使用Python来实现,例子通过读取文本文件来统计出单词的出现次数。结果也以文本形式输出,每一行包含一个单词和单词出现的次数,两者中间使用制表符来想间隔。

先决条件

编写这个程序之前,你学要架设好Hadoop 集群,这样才能不会在后期工作抓瞎。如果你没有架设好,那么在后面有个简明教程来教你在Ubuntu linux 上搭建(同样适用于其他发行版linux、unix)

如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立单节点的 Hadoop 集群

如何使用Hadoop Distributed File System (HDFS)在Ubuntu Linux 建立多节点的 Hadoop 集群

Python的MapRece代码

使用Python编写MapRece代码的技巧就在于我们使用了 HadoopStreaming 来帮助我们在Map 和 Rece间传递数据通过STDIN (标准输入)和STDOUT (标准输出).我们仅仅使用Python的sys.stdin来输入数据,使用sys.stdout输出数据,这样做是因为HadoopStreaming会帮我们办好其他事。这是真的,别不相信!

Map: mapper.py

将下列的代码保存在/home/hadoop/mapper.py中,他将从STDIN读取数据并将单词成行分隔开,生成一个列表映射单词与发生次数的关系:
注意:要确保这个脚本有足够权限(chmod +x /home/hadoop/mapper.py)。

#!/usr/bin/env python

import sys

# input comes from STDIN (standard input)
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()
# split the line into words
words = line.split()
# increase counters
for word in words:
# write the results to STDOUT (standard output);
# what we output here will be the input for the
# Rece step, i.e. the input for recer.py
#
# tab-delimited; the trivial word count is 1
print '%s\\t%s' % (word, 1)在这个脚本中,并不计算出单词出现的总数,它将输出 "<word> 1" 迅速地,尽管<word>可能会在输入中出现多次,计算是留给后来的Rece步骤(或叫做程序)来实现。当然你可以改变下编码风格,完全尊重你的习惯。

Rece: recer.py

将代码存储在/home/hadoop/recer.py 中,这个脚本的作用是从mapper.py 的STDIN中读取结果,然后计算每个单词出现次数的总和,并输出结果到STDOUT。
同样,要注意脚本权限:chmod +x /home/hadoop/recer.py

#!/usr/bin/env python

from operator import itemgetter
import sys

# maps words to their counts
word2count = {}

# input comes from STDIN
for line in sys.stdin:
# remove leading and trailing whitespace
line = line.strip()

# parse the input we got from mapper.py
word, count = line.split('\\t', 1)
# convert count (currently a string) to int
try:
count = int(count)
word2count[word] = word2count.get(word, 0) + count
except ValueError:
# count was not a number, so silently
# ignore/discard this line
pass

# sort the words lexigraphically;
#
# this step is NOT required, we just do it so that our
# final output will look more like the official Hadoop
# word count examples
sorted_word2count = sorted(word2count.items(), key=itemgetter(0))

# write the results to STDOUT (standard output)
for word, count in sorted_word2count:
print '%s\\t%s'% (word, count)
测试你的代码(cat data | map | sort | rece)

我建议你在运行MapRece job测试前尝试手工测试你的mapper.py 和 recer.py脚本,以免得不到任何返回结果
这里有一些建议,关于如何测试你的Map和Rece的功能:
——————————————————————————————————————————————
\r\n
# very basic test
hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py
foo 1
foo 1
quux 1
labs 1
foo 1
bar 1
——————————————————————————————————————————————
hadoop@ubuntu:~$ echo "foo foo quux labs foo bar quux" | /home/hadoop/mapper.py | sort | /home/hadoop/recer.py
bar 1
foo 3
labs 1
——————————————————————————————————————————————

# using one of the ebooks as example input
# (see below on where to get the ebooks)
hadoop@ubuntu:~$ cat /tmp/gutenberg/20417-8.txt | /home/hadoop/mapper.py
The 1
Project 1
Gutenberg 1
EBook 1
of 1
[...]
(you get the idea)

quux 2

quux 1

——————————————————————————————————————————————

在Hadoop平台上运行Python脚本

为了这个例子,我们将需要三种电子书:

The Outline of Science, Vol. 1 (of 4) by J. Arthur Thomson\r\n
The Notebooks of Leonardo Da Vinci\r\n
Ulysses by James Joyce
下载他们,并使用us-ascii编码存储 解压后的文件,保存在临时目录,比如/tmp/gutenberg.

hadoop@ubuntu:~$ ls -l /tmp/gutenberg/
total 3592
-rw-r--r-- 1 hadoop hadoop 674425 2007-01-22 12:56 20417-8.txt
-rw-r--r-- 1 hadoop hadoop 1423808 2006-08-03 16:36 7ldvc10.txt
-rw-r--r-- 1 hadoop hadoop 1561677 2004-11-26 09:48 ulyss12.txt
hadoop@ubuntu:~$

复制本地数据到HDFS

在我们运行MapRece job 前,我们需要将本地的文件复制到HDFS中:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -FromLocal /tmp/gutenberg gutenberg
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls
Found 1 items
/user/hadoop/gutenberg <dir>
hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg
Found 3 items
/user/hadoop/gutenberg/20417-8.txt <r 1> 674425
/user/hadoop/gutenberg/7ldvc10.txt <r 1> 1423808
/user/hadoop/gutenberg/ulyss12.txt <r 1> 1561677

执行 MapRece job

现在,一切准备就绪,我们将在运行Python MapRece job 在Hadoop集群上。像我上面所说的,我们使用的是
HadoopStreaming 帮助我们传递数据在Map和Rece间并通过STDIN和STDOUT,进行标准化输入输出。

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-mapper /home/hadoop/mapper.py -recer /home/hadoop/recer.py -input gutenberg/*
-output gutenberg-output
在运行中,如果你想更改Hadoop的一些设置,如增加Rece任务的数量,你可以使用“-jobconf”选项:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-jobconf mapred.rece.tasks=16 -mapper ...

一个重要的备忘是关于Hadoop does not honor mapred.map.tasks
这个任务将会读取HDFS目录下的gutenberg并处理他们,将结果存储在独立的结果文件中,并存储在HDFS目录下的
gutenberg-output目录。
之前执行的结果如下:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop jar contrib/streaming/hadoop-0.19.1-streaming.jar
-mapper /home/hadoop/mapper.py -recer /home/hadoop/recer.py -input gutenberg/*
-output gutenberg-output

additionalConfSpec_:null
null=@@@userJobConfProps_.get(stream.shipped.hadoopstreaming
packageJobJar: [/usr/local/hadoop-datastore/hadoop-hadoop/hadoop-unjar54543/]
[] /tmp/streamjob54544.jar tmpDir=null
[...] INFO mapred.FileInputFormat: Total input paths to process : 7
[...] INFO streaming.StreamJob: getLocalDirs(): [/usr/local/hadoop-datastore/hadoop-hadoop/mapred/local]
[...] INFO streaming.StreamJob: Running job: job_200803031615_0021
[...]
[...] INFO streaming.StreamJob: map 0% rece 0%
[...] INFO streaming.StreamJob: map 43% rece 0%
[...] INFO streaming.StreamJob: map 86% rece 0%
[...] INFO streaming.StreamJob: map 100% rece 0%
[...] INFO streaming.StreamJob: map 100% rece 33%
[...] INFO streaming.StreamJob: map 100% rece 70%
[...] INFO streaming.StreamJob: map 100% rece 77%
[...] INFO streaming.StreamJob: map 100% rece 100%
[...] INFO streaming.StreamJob: Job complete: job_200803031615_0021

[...] INFO streaming.StreamJob: Output: gutenberg-output hadoop@ubuntu:/usr/local/hadoop$

正如你所见到的上面的输出结果,Hadoop 同时还提供了一个基本的WEB接口显示统计结果和信息。
当Hadoop集群在执行时,你可以使用浏览器访问 http://localhost:50030/ ,如图:

检查结果是否输出并存储在HDFS目录下的gutenberg-output中:

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -ls gutenberg-output
Found 1 items
/user/hadoop/gutenberg-output/part-00000 <r 1> 903193 2007-09-21 13:00
hadoop@ubuntu:/usr/local/hadoop$

可以使用dfs -cat 命令检查文件目录

hadoop@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -cat gutenberg-output/part-00000
"(Lo)cra" 1
"1490 1
"1498," 1
"35" 1
"40," 1
"A 2
"AS-IS". 2
"A_ 1
"Absoluti 1
[...]
hadoop@ubuntu:/usr/local/hadoop$

注意比输出,上面结果的(")符号不是Hadoop插入的。

转载仅供参考,版权属于原作者。祝你愉快,满意请采纳哦

热点内容
phppopen 发布:2025-10-12 21:37:19 浏览:6
联通无线密码是多少 发布:2025-10-12 21:33:44 浏览:119
php中英文 发布:2025-10-12 21:05:20 浏览:352
svn36服务器搭建 发布:2025-10-12 21:03:15 浏览:885
为什么感觉苹果相机比安卓好 发布:2025-10-12 21:00:57 浏览:746
华意压缩机股份 发布:2025-10-12 20:38:11 浏览:930
逍遥安卓怎么样 发布:2025-10-12 20:36:06 浏览:292
怎么设置电脑进入密码怎么设置密码 发布:2025-10-12 20:34:36 浏览:526
文件存储时怎么会显示多个文件 发布:2025-10-12 20:33:55 浏览:958
外形编程代码 发布:2025-10-12 20:32:39 浏览:91